材料力学读书笔记刘鸿文第四版
- 格式:docx
- 大小:68.96 KB
- 文档页数:2
第一章绪论1.材料力学基本任务✓强度(抵抗破坏)✓刚度(抵抗变形)✓稳定性(维持平衡)2.变形固体的基本假设✓连续性✓均匀性✓各向同性3.外力及其分类✓表面力(分布力集中力)✓体积力✓静载✓动载4.内力、变形与应变线应变切应变(角应变)1Pa=1N/m2MPa应力5.杆件变形基本形式✓拉伸与压缩✓剪切✓扭转✓弯曲第二章拉伸、压缩与剪切1.轴力、轴力图拉伸为正压缩为负2.圣维南原理离端界面约截面尺寸范围受影响3.直杆拉伸或压缩时斜截面上的应力α=0时,σαmax=σα=45°,ταmax=σ/24.低碳钢的拉伸性能(铸铁、球墨铸铁)✓弹性阶段(塑形变形、弹性变形比例极限弹性极限胡克定律)✓屈服阶段✓强化阶段✓紧缩阶段(局部变形阶段)塑性指标:伸长率δ(工程上的划分:>5%塑形材料<5%脆性材料)、断面收缩率ψ卸载定律:应力应变按直线规律变化冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火)碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。
铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。
材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩率5.温度和时间对材料力学性能的影响✓低温脆性✓高温蠕变(松弛)6.强度设计✓失效(强度不足、刚度不足、稳定性不足高温、腐蚀等环境加载方式)✓许用应力强度校核、截面设计、许可载荷强度计算✓安全因素选取的考虑因素(载荷、材料、重要性、计算精度、经济性……)拉伸时横向缩短轴向伸长泊松比固体在外力作用下因变形而储存的能量应变能(功能关系)7.拉伸、压缩超静定问题力学静力平衡方程+几何变形协调方程温度应力、装配应力8.应力集中几何外形突然变化引起局部应力集中增大(圆弧过渡)理论应力集中系数(塑形材料静载条件下可以不考虑脆性材料较敏感灰铸铁:内部缺陷和不均匀性)周期性载荷和冲击载荷应力集中非常危险。
绪论一、材料力学的发展材料力学源于人们的生产经验,是生产经验的提炼和浓缩,同时形成理论后又应用于指导生产实践和工程设计。
公元前2250年,古巴比伦王汉谟拉比法典公元1103年,宋代李诫《营造法式》1638年,伽利略,梁的强度试验和计算理论1678年,英国科学家R.Hooke的胡克定律二、材料力学的任务在构件能安全工作的条件下,以最经济的代价,为构件确定合理的形状和尺寸,选择适当的材料,为构件的设计提供必要的理论基础和计算方法。
构件安全工作的条件有以下三条:(1)具有必要的强度,指构件抵抗破坏的能力。
构件在外力作用下不会发生破坏或意外的断裂。
(2)具有必要的刚度,指构件抵抗弹性变形的能力。
构件在规定的使用条件下不会产生过份的变形。
(3)具有必要的稳定性,指构件保持原始平衡构形的能力。
构件在规定的使用条件下,不会发生失稳现象。
三、材料力学的研究对象材料力学主要研究对象是构件中的杆以及由若干杆组成的简单杆系等。
杆件的形状与尺寸由其轴线和横截面确定。
轴线通过横截面的形心,横截面与轴线正交。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
四、材料力学基本假设材料力学中,构成构件的材料皆视为可变形固体。
(1)均匀、连续假设:构件内任意一点的材料力学性能与该点位置无关,且毫无空隙地充满构件所占据的空间。
(2)各向同性假设:构件材料的力学性能没有方向性。
(3)小变形假设:本课主要研究弹性范围内的小变形。
小变形假设可使问题得到如下的简化:a).忽略构件变形对结构整体形状及荷载的影响;b).构件的复杂变形可处理为若干基本变形的叠加。
(4)大多数场合局限于线性弹性当以上条件部分不能满足时,须采用其他力学理论如结构力学(杆系)、弹性力学(研究对象的差异)、塑性力学、断裂力学、损伤力学、连续介质力学以及随着计算机技术的发展而越来越受到重视的计算力学等等。
本课程材料力学是基础。
五、杆件的基本受力形式杆件受外力作用后发生的变形是多种多样的,但最基本的变形是以下四种:拉伸(或压缩)(第1章)固体;对材料所作的基本假设为均匀连续、各向同性、小变形且大多数情况为线弹性;材料力学研究的对象是杆件;杆件的基本受力形式是拉伸(或压缩)、剪切、扭转、弯曲。
1.✓✓✓
2.✓✓✓
3.✓✓
学习好资料欢迎下载
第一章绪论
材料力学基本任务
强度(抵抗破坏)
刚度(抵抗变形)
稳定性(维持平衡)
变形固体的基本假设
连续性
均匀性
各向同性
外力及其分类
表面力(分布力集中力)作用方式
体积力
✓✓
4.静载
动载(交变、周期、冲击)
内力、变形与应变
时间变化
线应变切应变(角应变)1Pa=1N/m2MPa应力
5.杆件变形基本形式
✓拉伸与压缩
✓剪切
✓扭转
✓弯曲
第二章拉伸、压缩与剪切
1.轴力、轴力图
拉伸为正压缩为负
2.圣维南原理
离端界面约截面尺寸范围受影响
3.直杆拉伸或压缩时斜截面上的应力
α=0时,σ
αmax
=σ
α=45°,τ
αmax
=σ/2
4.低碳钢的拉伸性能(铸铁、球墨铸铁)
✓弹性阶段(塑形变形、弹性变形比例极限弹性极限胡克定律)
✓屈服阶段
✓强化阶段
✓紧缩阶段(局部变形阶段)
塑性指标:伸长率δ(工程上的划分:>5%塑形材料<5%脆性材料)、断面收缩率ψ
卸载定律:应力应变按直线规律变化
冷作硬化:第二次加载时比例极限得到提高,但塑性变形和伸长率有所降低(利用:起重钢索、建筑钢筋常用冷拔工艺提高强度;某些零件喷丸处理使其表面塑形变形形成冷硬层提高表面强度克服:冷作硬化使材料变硬变脆难于加工易产生表面裂纹,工序之间安排退火)
碳素钢随含碳量的增加,屈服极限和强度极限相应提高,但伸长率降低。
铸铁拉伸因没有屈服现象,强度极限成为唯一强度指标。
材料力学性能主要指标:比例极限、屈服极限、强度极限、弹性模量、伸长率、断面收缩
)
率 5. ✓ ✓ 6. ✓ ✓ ✓
7.
8. 学习好资料 欢迎下载
温度和时间对材料力学性能的影响
低温脆性
高温蠕变(松弛)
强度设计
失效(强度不足、刚度不足、稳定性不足 高温、腐蚀等环境 加载方式)
许用应力 强度校核、截面设计、许可载荷强度计算
安全因素选取的考虑因素(载荷、材料、重要性、计算精度、经济性……
拉伸时横向缩短轴向伸长 泊松比
固体在外力作用下因变形而储存的能量 应变能(功能关系)
拉伸、压缩超静定问题
力学静力平衡方程+几何变形协调方程
温度应力、装配应力
应力集中
几何外形突然变化引起局部应力集中增大(圆弧过渡)
理论应力集中系数(塑形材料静载条件下可以不考虑 脆性材料较敏感 灰铸铁:内部缺 陷和不均匀性)
周期性载荷和冲击载荷应力集中非常危险。