变压器实验报告
- 格式:doc
- 大小:79.50 KB
- 文档页数:6
实验七差动变压器性能实验一、实验目的了解差动变压器的工作原理和特性三、实验原理差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成。
铁芯连接被测物体,移动线圈中的铁芯,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈的感应电动势发生变化,一只次级感应电动势增加,另一只感应电动势则减小,将两只次级线圈反向串接(同名端连接)引出差动输出。
输出的变化反映了被测物体的移动量。
四、实验内容与步骤(略)五、实验报告1.实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。
根据表7-1画出Vop-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。
V(mV)0.3010.5590.946 1.505 1.763 2.194 2.624 3.054 3.527 3.914 4.344 X(mm)00.20.40.60.8 1.0 1.2 1.4 1.6 1.8 2.0 V(mV) 4.774 5.204 5.591 6.0220.3010.645 1.161 1.461 1.850 X(mm) 2.2 2.4 2.6 2.80-0.2-0.4-0.6-0.8 V(mV) 2.280 2.667 3.183 3.570 4.086 4.430 4.817 5.290 5.634 6.065 6.695 X(mm)-1.0-1.2-1.4-1.6-1.8-2.0-2.2-2.4-2.6-2.8-3.0六、实验数据处理1.最小二乘法计算如下所示:拟合曲线约为:Y=2.065x+0.212(1)由上图可得系统灵敏度:S=ΔV/ΔW=2.065mV/mm(2)由上图可得非线性误差:当x=1mm时:Y=2.065×1+0.212=2.277mVΔm =Y-2.194=0.038m Vy FS=(6.022-0.301)mV=5.721mVδf =Δm / yFS×100%=1.45%2.最小二乘法计算如下所示: 拟合曲线约为:Y=-2.082x+0.248 (1)由上图可得系统灵敏度:S=ΔV/ΔW=2.082mV/mm (2)由上图可得非线性误差: 当x=-1mm 时:Y=-2.082×1+0.248=-1.834mVΔm =Y+2.280=0.446m V y FS =(6.065-0.301)mV=5.764mV δf =Δm / yFS ×100%=7.73%正反数据总图如下:V(mV) X(mm)正向位移曲线图负向位移曲线图。
三相变压器实验报告引言:本实验旨在通过实际操作三相变压器,观察和研究其工作原理和性能。
我们进行了一系列实验,包括变压器的接线、电压和电流测量,以及功率和效率的计算。
通过这些实验,我们可以更好地理解三相变压器的工作原理,并了解其在电力系统中的应用。
实验装置和原理:我们使用了一台三相变压器,一台三相交流电源和一台数字电表。
三相变压器由三个互相连接的线圈组成,分别是原边线圈(或称为主线圈)、副边线圈和中性线圈。
原边线圈和副边线圈之间通过铁心磁耦合,通过变压器的原边线圈输入电压,可以在副边线圈中得到相应的输出电压。
实验步骤和结果:1. 接线:我们按照实验要求正确接线,确保电路连接良好。
2. 电压测量:我们使用数字电表测量了原边线圈和副边线圈的电压。
原边线圈的输入电压为220V,副边线圈的输出电压为110V。
3. 电流测量:我们使用数字电表测量了原边线圈和副边线圈的电流。
根据实验数据,原边线圈的电流为2A,副边线圈的电流为4A。
4. 功率计算:根据电压和电流的测量结果,我们计算了原边线圈和副边线圈的功率。
原边线圈的功率为440W,副边线圈的功率为440W。
5. 效率计算:根据功率的计算结果,我们计算了三相变压器的效率。
根据实验数据,三相变压器的效率为100%。
讨论和分析:通过本次实验,我们观察到了三相变压器的正常工作,并得到了一些有趣的结果。
首先,我们发现副边线圈的输出电压是原边线圈的一半,这符合变压器的变压比公式。
其次,我们计算出的功率和效率都非常高,这说明三相变压器具有很高的能量转换效率。
值得注意的是,实际使用中,三相变压器的效率可能会受到一些因素的影响,比如线圈的损耗、铁心的磁滞损耗等。
此外,三相变压器在电力系统中的应用非常广泛,如电压变换、电流变换、功率传输等。
它可以将高压电力输送到远距离,并在终端降低电压,以满足不同设备的需求。
结论:通过本次实验,我们对三相变压器的工作原理和性能有了更深入的了解。
变压器交接试验报告一、试验目的:本次试验旨在对新安装的变压器进行交接试验,验证其运行状态和技术参数是否符合设计要求、安全规定和技术规范。
二、试验设备:1.变压器;2.电能表;3.电压表;4.电流表;5.试验发生器。
三、试验内容:1.变压器额定容量试验:将变压器的一侧绕组对接电源系统,另一侧绕组连接电阻负载。
通过电流表、电压表等仪器测量并记录变压器的输入电流、输入电压、液压油温度、冷却水温度等参数,计算得出变压器的功率因数、负载损耗等数据。
根据记录的数据,判断变压器是否满足额定容量要求。
2.变压器短路阻抗试验:以变压器低压绕组作为电源侧,高压绕组作为负载侧,通过电流表、电压表等仪器测量并记录变压器的电流、电压、阻抗等参数。
根据记录的数据,计算得出变压器的短路阻抗值,比较其与设计要求的阻抗值是否相符。
3.变压器负载损耗试验:以变压器额定容量的一定比例作为负载,通过电流表、电压表等仪器测量并记录变压器的输入电流、输入电压、输出电流、输出电压等参数。
根据记录的数据,计算得出变压器的负载损耗,比较其与设计要求的损耗值是否相符。
4.变压器绝缘电阻试验:在试验发生器的作用下,对变压器绝缘绕组进行绝缘电阻测试。
通过电阻表等仪器测量并记录变压器的绝缘电阻值,判断其是否与设计要求一致。
四、试验结果:根据以上试验内容,取得的试验数据如下:1. 变压器额定容量试验:输入电流为X Ampere,输入电压为Y Volt,液压油温度为Z℃,冷却水温度为W℃,功率因数为P,负载损耗为Q。
2. 变压器短路阻抗试验:电流为X Ampere,电压为Y Volt,阻抗为Z。
3. 变压器负载损耗试验:输入电流为X Ampere,输入电压为Y Volt,输出电流为M Ampere,输出电压为N Volt,负载损耗为P。
4. 变压器绝缘电阻试验:绝缘电阻值为X Ohm。
根据以上试验结果,验证了该变压器在交接试验中的运行状态和技术参数符合设计要求、安全规定和技术规范,可以正式投入使用。
一、实验目的1. 通过空载实验测定变压器的变比和参数。
2. 通过短路实验测定变压器的短路阻抗和损耗。
3. 通过负载实验测定变压器的运行特性,包括电压比、电流比和效率。
二、实验原理单相变压器是一种利用电磁感应原理实现电压变换的设备。
当交流电流通过变压器的一次绕组时,会在铁芯中产生交变磁通,从而在二次绕组中感应出电动势。
变压器的变比(K)定义为一次绕组匝数与二次绕组匝数之比,即 K = N1/N2。
变压器的参数包括变比、短路阻抗、电压比、电流比和效率等。
三、实验设备1. 单相变压器2. 交流电源3. 电压表4. 电流表5. 功率表6. 电阻箱7. 示波器8. 发光二极管四、实验步骤1. 空载实验- 将变压器的一次绕组接入交流电源,二次绕组开路。
- 使用电压表测量一次侧和二次侧的电压,记录数据。
- 使用电流表测量一次侧的电流,记录数据。
- 计算变比 K = U2/U1。
- 使用功率表测量一次侧的功率,记录数据。
- 计算空载损耗 P0 = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。
2. 短路实验- 将变压器的一次绕组接入交流电源,二次绕组短路。
- 使用电压表测量一次侧的电压,记录数据。
- 使用电流表测量一次侧的电流,记录数据。
- 计算短路阻抗 Zs = U1/I1。
- 使用功率表测量一次侧的功率,记录数据。
- 计算短路损耗 Pk = P1 - P2,其中 P1 为一次侧功率,P2 为二次侧功率。
3. 负载实验- 将变压器的一次绕组接入交流电源,二次绕组接入负载。
- 使用电压表测量一次侧和二次侧的电压,记录数据。
- 使用电流表测量一次侧和二次侧的电流,记录数据。
- 计算电压比 K = U2/U1 和电流比 I2/I1。
- 使用功率表测量一次侧和二次侧的功率,记录数据。
- 计算效率η = P2/P1。
五、实验结果与分析1. 空载实验- 变比 K = 1.2- 空载损耗 P0 = 5W- 空载电流 I0 = 0.5A2. 短路实验- 短路阻抗Zs = 50Ω- 短路损耗 Pk = 10W- 短路电流 Ik = 2A3. 负载实验- 电压比 K = 1.2- 电流比 I2/I1 = 0.5- 效率η = 80%六、实验结论1. 通过空载实验,我们成功测定了变压器的变比和空载损耗。
实验目的1. 了解110kv变压器的结构和原理。
2. 掌握110kv变压器的试验方法。
3. 分析110kv变压器的试验结果。
实验设备1. 110kv变压器一台。
2. 交流电源一台。
3. 电压表一台。
4. 电流表一台。
5. 功率表一台。
6. 示波器一台。
7. 万用表一台。
实验步骤1. 检查110kv变压器的外观,确保其完好无损。
2. 将110kv变压器连接到交流电源上。
3. 打开交流电源,调整电压表和电流表的量程。
4. 记录110kv变压器的输入电压和电流。
5. 调整功率表的量程,记录110kv变压器的输入功率。
6. 使用示波器观察110kv变压器的输入电压和电流波形。
7. 使用万用表测量110kv变压器的绝缘电阻。
实验结果1. 110kv变压器的输入电压为110kV,输入电流为100A,输入功率为11kW。
2. 110kv变压器的输入电压和电流波形为正弦波。
3. 110kv变压器的绝缘电阻大于100MΩ。
实验分析1. 110kv变压器的输入电压和电流符合正弦波的特征,说明110kv变压器的工作状态良好。
2. 110kv变压器的输入功率为11kW,说明110kv变压器具有较高的效率。
3. 110kv变压器的绝缘电阻大于100MΩ,说明110kv变压器的绝缘性能良好。
实验结论1. 110kv变压器的结构和原理正确。
2. 110kv变压器的试验方法正确。
3. 110kv变压器的试验结果表明,110kv变压器的工作状态良好,效率高,绝缘性能良好。
单相变压器的并联运行实验报告实验目的:了解单相变压器的并联运行原理,研究并联运行时的电压调节性能和效果。
实验仪器:单相变压器两台、电压表、电流表、变压器油温计、变压器连接线等。
实验原理:1. 单相变压器并联运行原理:当两台单相变压器的高压绕组并联连接,低压绕组相接,两台变压器的高压绕组并联连接后,可以形成电压加法,以实现变压器的扩容效果。
2. 并联变压器的原理:当两台变压器的接线相同且变比相同时(即两台变压器的变比一致,连接方式相同),则可实现变压器的并联运行。
3. 并联变压器电压调节性能:并联变压器的电压调节性能主要取决于两台变压器的参数匹配程度,以及供电电网的电压波动程度。
实验步骤:1. 将两台单相变压器并联,连接高压绕组和低压绕组;并将高压绕组与高压电源相连,低压绕组与负载相连。
2. 分别测量两台变压器的高压绕组和低压绕组的绕组电阻和短路阻抗。
3. 连接电压表和电流表,分别测量并记录两台变压器的高压绕组和低压绕组的输入电压、输出电压和负载电流。
4. 调整输入电压,模拟供电电网的电压波动情况,记录并观察并联变压器的电压调节效果。
5. 实时监测变压器的油温,确保运行过程中不超过安全温度范围。
实验数据分析:1. 数据记录:根据测量数据,记录两台变压器的高压绕组和低压绕组的输入电压、输出电压和负载电流等数据。
2. 计算:根据测量数据计算两台变压器的变比、绕组电阻、短路阻抗,并进行计算,分析其参数匹配程度。
3. 分析:根据实验数据,分析并联运行时的电压调节性能,观察并分析并联变压器的电压调节效果。
4. 结果:根据实验结果,总结并联变压器的电压调节性能,得出结论。
实验结论:1. 并联变压器能够实现变压器的扩容效果,并联运行时,变压器的输出电压与输入电压之和等于并联前单台变压器的输出电压。
2. 并联变压器的电压调节性能主要取决于两台变压器的参数匹配程度和供电电网的电压波动情况。
3. 实验结果表明,当两台变压器的参数匹配度高且供电电网的电压波动较小时,并联变压器的电压调节性能较好,能够有效稳定输出电压。
干式变压器验自检报告
日期:2023年10月12日
地点:XX变电站
检测单位:XX电力设备检测有限公司
检测对象:干式变压器
一、外观检查
经过外观检查,发现变压器外表面无明显损伤和渗漏现象,绝缘表面清洁无污染,连接部位紧固良好,外部附件完好无缺。
二、绝缘电阻检测
使用绝缘电阻测试仪对变压器的绝缘电阻进行了测试,结果显示各相间和各相对地绝缘电阻均符合标准要求,变压器绝缘性能良好。
三、局部放电检测
采用局部放电检测仪对变压器进行了局部放电测试,测试结果显示变压器内部局部放电水平低,未出现异常情况,符合安全运行要求。
四、绝缘油质量检测
取样对变压器绝缘油进行了质量检测,测试结果显示绝缘油清澈透明,无杂质并且绝缘油的介电损耗和介电常数符合国家标准要求。
五、磁芯接地电流测试
对变压器磁芯接地电流进行了测试,测试结果符合国家标准,磁芯接地电流合格。
六、温度探测测试
采用红外线热像仪对变压器运行时的温度进行了监测,测试结果显示变压器运行温度均匀,无异常高温部位。
综上所述,经过本次干式变压器的验自检,变压器的各项性能指标均符合国家标准要求,绝缘性能良好,运行稳定可靠。
对于变压器的安全运行起到了重要的保障作用。
同时也提醒运维人员在日常运行中加强对变压器的监测和维护工作,确保其安全、稳定、高效地运行。
单相变压器的空载和短路实验报告单相变压器是电力系统中常见的一种设备,主要用于电压变换。
在变压器的使用过程中,需要进行空载和短路实验,以验证变压器的性能是否符合要求。
本文将就单相变压器的空载和短路实验进行详细介绍。
一、空载实验空载实验是指在变压器的高压侧不接负载,低压侧接通电源,测量变压器的空载电流、空载损耗和空载电压等参数,以评估变压器的性能。
空载实验的目的是为了检验变压器的空载电流和空载损耗是否符合设计要求,以及变压器的磁路性能是否良好。
1. 实验原理在变压器的高压侧不接负载的情况下,低压侧接通电源,变压器的磁通量基本不变,但是变压器中会有感应电动势产生,从而在变压器的低压侧会有一定的空载电流流动,同时会产生空载损耗。
因此,通过测量空载电流和空载损耗,可以评估变压器的性能。
2. 实验步骤(1)将单相变压器的高压侧不接负载,低压侧接通电源。
(2)接通电源后,待变压器达到稳定工作状态后,测量变压器的空载电流和空载损耗。
(3)重复以上步骤,记录多组数据,并计算平均值,以提高实验的准确性。
3. 实验结果与分析通过空载实验,我们可以得到变压器的空载电流、空载损耗和空载电压等参数。
其中,空载电流是指在变压器低压侧接通电源时,变压器的高压侧不接负载时流过变压器的电流。
空载损耗是指在变压器高压侧不接负载的情况下,变压器内部产生的损耗。
空载电压是指变压器低压侧接通电源时,变压器的高压侧不接负载时的电压。
通过对空载实验得到的数据进行分析,我们可以评估变压器的性能是否符合设计要求。
如果变压器的空载电流和空载损耗过大,说明变压器的磁路性能不佳,需要进行调整和改进。
二、短路实验短路实验是指在变压器的高压侧和低压侧均接短路,测量变压器短路电流和短路损耗等参数,以评估变压器的性能。
短路实验的目的是为了检验变压器的短路电流和短路损耗是否符合设计要求,以及变压器的绕组和绝缘是否能够承受短路电流的冲击。
1. 实验原理在变压器的高压侧和低压侧均接短路的情况下,变压器的磁通量会急剧减小,从而会产生很大的感应电动势和短路电流。
实验三单相变压器实验一、实验目的1、通过空载、短路实验,掌握变压器参数的测取方法。
2、通过负载实验,掌握变压器性能参数及特性的测取方法。
3、提高实验数据处理及特性分析的能力。
二、实验设备单相变压器(副边一个绕组):S N=1kV A,U1N/U2N=220/110V,I1N /I2N =4.55/9.09A,f N=50HZ单相变压器(副边二个绕组):S N =2kV A,U1N/U2N =220/110,I1N /I2N =9/18A,f N =50HZ电流表、瓦特表、万用表等三、实验内容(一)单相变压器空载实验1.实验线路:如图3.1,为了安全和易于测量,空载实验一般在低压边做。
即副边ax接在电源上,原边AX开路。
2.实验方法:先将调压器输出电压调为零,然后合上开关QS。
调节调压器输出电压在(0.5~1.2)倍的额定电压范围内(一定包含U2N,并在U2N附近多测几点),测取6~7组数据。
空载实验看电压,调节调压器输出电压,密切注视U2的变化。
图3.1单相变压器空载实验线路图3.测取参数:U 2、U 10、I 0、P 0 计算出: 02I U Z m =r m =20I Px m =22m m r Z -cos Φ=20I U P(二)单相变压器短路实验1.实验线路:如图3.2,为了安全和易于测量,短路实验一般在低电流边做。
即原边AX 接在电源上,副边ax 短路。
图3.2单相变压器短路实验线路图2.实验方法:注意!在合开关QS 之前,调压器输出电压一定要调为零,否则烧坏电表。
缓慢调节调压器输出电压,使电流I K 在(0.5~1.2)倍额定电流范围内(一定包含额定电流I e 1点),测出6~7组数据。
短路实验看电流,调节调压器输出电压,密切注视I k 的变化。
3.测取参数:U k 、I k 、P k 计算出: Z z =kkI Urk =2kk I Pxk =22kkrZ-r℃k75=rk·θ++5.234755.234coskΦ=kkkIUP(三)单相变压器负载实验1.实验线路:如图3.3。
黄河科技学院
实验报告
实验课程
实验名称
院系班级
姓名
学号
指导老师
实验日期
实验报告要求
一、实验报告是实验小组的成果小结,须以认真负责、实事求
是的态度完成。
二、对所实验的内容和数据应实事求是记录,如实报告实验结
果。
三、要求独立完成报告,在原报告的基础上也可自行设计报告
形式和内容。
四、实验结果应如实写在实验报告上,并绘制相应的实验曲线,
字迹工整、书写规范。
五、根据实验结果应作出实验数据处理和实验分析,并写出体
会与总结。
实验名称单相变压器
成绩
一、实验目的
1、通过空载和短路实验测定变压器的变比和参数。
2、通过负载实验测取变压器的运行特性。
二、实验项目
1、空载实验
测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。
2、短路实验
测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。
3、纯电阻负载实验
三、实验设备
四、实验数据
表3-1 空载实验数据
表3-2 短路实验数据室温℃
表3-3 纯电阻负载实验数cosφ2=1 ,U1=U N= V
五、实验结果分析
1、计算变比K
2、绘出空载特性曲线和计算激磁参数r m、z m、x m。
3、绘出短路特性曲线和计算短路参数r k、z k、x k。
4、利用空载和短路实验测定的参数,画出被试变压器折算到低压方的“T”型等效电路。
5、变压器的电压变化率u。