解答专项训练
- 格式:docx
- 大小:51.84 KB
- 文档页数:6
六年级数学解答应用题训练20篇专项训练带答案解析一、六年级数学上册应用题解答题1.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?解析:420米【分析】第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的443+,则72米对应的分率是全长的443+去掉两个20%,用分量÷分率即可求出全长。
【详解】72÷(443+-20%-20%)=72÷6 35=72×35 6=420(米)答:这条水渠长420米。
【点睛】要分析找准单位“1”的量及72米所对应的分率。
2.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?解析:50个【分析】设这批零件共有x个,根据已完成个数与零件总个数的比是1∶5,可知完成的占总个数的1 5,没完成的占1-15,完成了15x个,没完成(1-15)x个,根据完成的个数+15=没完成的个数-15,列出方程解答即可。
【详解】解:设这批零件共有x个。
1 5x+15=(1-15)x-151 5x+15=45x-1535x=30x=50答:这批零件共有50个。
【点睛】关键是通过比确定完成和没完成的对应分率,找到等量关系,从而列出方程进行解答。
3.小红和小兰都积攒了一些零用钱,她们所积攒的零用钱的比是5:3.在“支援灾区,奉献爱心”的捐款活动中,小红捐了26元,小兰捐了10元,这时她们剩下的钱数相等.小红原来有多少钱?解析:40元【分析】因为她们剩下的钱数相等,所以小红比小芳多捐的钱数等于原来小红比小芳多攒的钱数,求出1份的钱数,即可求出小红原来的钱数.【详解】26﹣10=16(元)16÷(5﹣3)=8(元)8×5=40(元);或:(26﹣10)÷(5﹣3)×5=16÷2×5,=8×5,=40(元);答:小红原来有40元钱.4.一张正方形桌子可以围坐4人,同学们吃饭时把正方形桌子拼成一排,每张不留空位.(如图所示)(1)20人吃饭需要多少张桌子拼在一起才能正好坐下?(2)10张桌子这样拼成一排,可坐多少人?(3)发现规律.多摆1个□,就多出2个〇.如果有n个□,那么一共有2+个〇.解析:(1)9张(2)22人(3)2n【详解】(1)1张桌子可坐人数:4人2张桌子可坐人数:4+2=6(人)3张桌子可坐人数:4+2+2=8(人)……n张桌子可坐人数:4+2(n﹣1)=(2n+2)人当能坐20人时,桌子张数:2n+2=202n=18n=9答:20人吃饭需要9张桌子拼在一起才能正好坐下.(2)2×10+2=20+2=22(人)答:10张桌子这样拼成一排,可坐22人.(3)发现规律:多摆1个□,就多出2个〇.如果有n个□,那么一共有2+2n个〇.故答案为:2n.5.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,岸上的只数是水中的45,这群鸭子有多少只?解析:567只【详解】3:4=3 49÷(445+-334+)=9÷(49-37)=9÷1 63=567(只)答:这群鸭子有567只.6.学校组织五年级少先队员参加义务植树活动。
四年级数学上册解决问题解答应用题专项专题训练专项专题训练带答案解析一、四年级数学上册应用题解答题1.某人步行每分钟走90米,从甲地到乙地要22分钟才能到达,当他步行了480米后,改乘汽车,他乘汽车行了多少米?2.王老师带800元钱去商店买体育用品,买足球用去320元,剩下的钱用来买排球。
可以买多少个排球?3.某风景区的门票价有单人票价和团体票价两种,单人票价:成人每人100元,儿童每人70元;团体票价:团体5人以上(包括5人)每人80元。
现在有成人4人,儿童6人要去游玩。
算一算怎样买票最省钱?需要多少钱?4.某车间原加工2400个零件需8小时,技改后在同样的时间里可加工同种零件5600个,技改后每小时可比技改前多加工零件多少个(用两种方法解)5.某游乐园的门票是每张80元,如果去的人多,购买团体票比较合算,四年级有45人去游玩,购买团体票共付了3240元,这样每人便宜了多少元?6.商店以14元/个的价格购进一批帽子,然后以18元/个的价格出售。
还剩下10个帽子时,不但收回了成本,还获利60元,这家商店原来共购进帽子多少个?7.兄弟两人早晨7时同时从家里出发去上学,兄每分钟走100米,弟每分钟走60米,兄到了学校后休息了5分钟才发现英语书没带,立即回家,途中7时25分与弟相遇,学校离家有多远?8.蓝天小学四年级师生共有204人,准备包车去研学。
租车的价格是25元/人。
请问,带队老师带5000元钱够吗?9.胜利小学新购买了4200本图书,将这些图书放到书架上,每个书架都有4层,每层可以放50本书。
20个书架够用吗?通过计算说明。
10.一批零件有3800个。
李师傅平均每天能加工零件132个。
李师傅28天能把这批零件加工完吗?11.汽车从A城开往B城,每小时行驶80千米,要3小时才能到达。
返回时,只需2小时就能到达。
返回时汽车每小时行驶多少千米?12.一辆洒水车,每分钟行驶250米,洒水的宽度是8米。
洒水车行驶13分钟,能给多大的地面洒上水?13.张大伯家有一块菜地(如图),种黄瓜的面积比种西红柿的面积多多少平方米?14.甲比乙多存了800元钱,如果乙取出200元,甲存入100元,这时甲的存款是乙的12倍。
三年级数学上册第五单元倍的认识专项训练——解答题一、解答题1.小兰有7颗白珠子和32颗红珠子,她想让红珠子数量是白珠子的5倍。
如果白珠子数量不变,需要增加或减少几颗红珠子?2.篮子里装有梨和苹果,其中梨有6个,苹果的个数比梨的7倍少7个,苹果有多少个?如果苹果的个数不变,要使苹果的个数是梨的7倍,需要减少几个梨?3.舞蹈队有40名女生,9名男生。
摆一个造型,女生的人数必须是男生的4倍。
如果男生人数不变,需要减少几名女生?4.供应小学饲养小组去年养兔7只,今年养兔的只数是去年的3倍,今年养兔多少只?5.学校里组织兴趣小组,合唱队的人数是器乐队人数的5倍,舞蹈队的人数比器乐队多8人,舞蹈队有14人,合唱队有多少人?6.生物小组有6只黑兔,18只白兔。
白兔的只数是黑兔的几倍?7.街心花园的道路两旁摆了9盆红花,黄花的数量是红花的3倍,两种花一共有多少盆?8.乐乐有8颗黄珠子,红珠子的颗数比黄珠子的3倍多5颗,红珠子有多少颗?9.小丽今年9岁,爸爸今年的年龄是小丽今年年龄的4倍多5岁,爸爸今年多少岁?10.一个玩具汽车8元,一个玩具飞机的价钱是一个玩具汽车的2倍,玩具汽车和玩具飞机各买一个需要多少元?11.小军今年4岁,李阿姨的年龄是小军的9倍。
(1)李阿姨今年多少岁?(2)4年后,李阿姨的年龄是小军的几倍?12.小明有8张邮票,小红的邮票是小明的5倍,小红有几张邮票?13.一辆小汽车准乘5人,一辆大客车准乘的人数是小汽车的9倍。
大客车准乘多少人?14.有两摞纸,第一摞高4分米,第二摞高8厘米,第一摞纸的高度是第二摞的几倍?15.妈妈今年35岁,是小芳的7倍,小芳今年多少岁?明年妈妈的年龄是小芳的几倍?16.一只猴子重9千克,一头熊猫的体重比猴子的6倍还多7千克一头熊猫的体重是多少?17.小红家有白兔48只,黑兔8只,白兔是黑兔的多少倍?18.爸爸今年32岁,女儿今年8岁。
(1)今年爸爸年龄是女儿年龄的多少倍?(2)爸爸比女儿大多少岁?(3)10年后爸爸与女儿年龄又相差多少岁?19.白兔有16只,灰兔有4只,白兔是灰兔的几倍?一个笼子里可以装5只兔子。
六年级上册数学专项训练解答题1.李阿姨买了一套衣服共花了780元,已知裤子的价钱是上衣的58,上衣和裤子分别要多少钱?2.妈妈买一件上衣花了260元钱,买裤子的钱是上衣的1413,买皮鞋的钱是裤子的107。
妈妈买皮鞋花了多少元?3.菜市场运来大白菜6000千克,比运来的菠菜多14,菜市场运来菠菜多少千克?4.一项工程,甲队独做3小时可以完成这项工程的12,乙队独做需要8小时完成。
如果两队同时施工完成这项工程需要多长时间?5.一根电线长26.4米,第一次用去14,第二次用去12米,两次一共用去多少米?6.蚂蚁家在风景秀丽的半山坡上,以蚂蚁家为观测点,看一看,填一填。
(1)小河的位置是南偏西60°,距离蚂蚁家()。
(2)大树的位置是()偏()()°,距离蚂蚁家()。
(3)沙丘的位置是()偏()()°,距离蚂蚁家()。
(4)要下雨了,蚂蚁决定搬家,搬到东偏北70°,距现在20m处,请你用•标出大概位置。
7.一本书包括“地球之旅”“神秘的宇宙”和“科学发现”三部分的内容,共420页。
其中37的页数是“地球之旅”,其余的页数按3∶5分配给“神秘的宇宙”和“科学发现”。
这三部分的内容各有多少页?8.一桶油倒出13后,又倒出16千克,正好是一桶油的一半。
这桶油原来有多少千克?(1)将线段图补充完整:(2)解答:9.猎豹是陆地上跑得最快的动物,奔跑速度每分钟可达116千米,34分钟可以奔跑多少千米?10.统计与分析。
下面是根据聪聪家上个月支出情况绘制的统计表和统计图。
请你根据提供的信息解答以下问题:(1)从统计表和统计图中可以看出,其他支出600元,占上个月总支出的30%,那么聪聪家上个月一共支出()元。
(2)聪聪家上个月伙食费支出占总支出的()%。
(3)先将统计表中的空格填写完整,再将条形统计图中的直条补画完整。
11.某电脑厂商A、B两种品牌的电脑在2018年下半年的销售情况统计表.(1)请根据上表,绘制折线统计图.(2)B品牌电脑,2018年第四季度比第三季度少卖百分之多少?(百分号前保留一位小数)(3)2018年下半年,A品牌电脑平均每月卖多少台?(4)简单分析A、B两种品牌电脑销售量的变化趋势,并写出你的建议.12.一本童话书有160页,胡兵第一周读了这本书的58,第二周读了余下的45,第二周读了多少页?13.淘气调制了一杯糖水,糖与水的比是2∶25,其中糖用了10克。
人教版七年级上册数学期末解答题专项训练及答案二三、解答题:本题有7小题,19、20、21题6分,22题4分,23、24、25题8分,共46分19.(6分)计算:(1)38°7′4″+59°28′59″﹣61°5′9″(2)[2﹣(+﹣)×24]÷5×(﹣1)2006.20.(6分)解方程:(1)2x﹣(x+10)=5x+2(x﹣1)(2)﹣1=.21.(6分)已知x,y,m满足下列条件:(1)|x﹣5|+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求式子2x2﹣3xy+6y2﹣m(3x2﹣xy+9y)的值.22.(4分)如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.23.(8分)如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.24.(8分)十年前,父亲的年龄是儿子的6倍,从现在起的十年后,父亲的年龄是儿子年龄的2倍,求父亲和儿子现在的年龄?25.(8分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+3|;(写出化简过程)(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.三、解答题(19,22题每题8分,20,23,24题每题10分,21题6分,25题14分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 022.20.解下列方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.(第22题)23.如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠BOD的度数.(第23题)24.甲、乙两人同时从相距25 km的A地去B地,甲骑车,乙步行,甲的速度是乙的3倍,甲到达B地停留40 m i n,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3 h.求两人的速度各是多少.25.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P 从点B 出发,以8个单位长度/s 的速度向右运动,同时另一只电子蚂蚁Q 恰好从点A 出发,以4个单位长度/s 的速度向右运动.设数轴上的点N 到原点O 的距离等于电子蚂蚁P 到原点O 的距离的一半(点N 在原点右侧),有下面两个结论:①ON +AQ 的值不变;②ON -AQ 的值不变.请判断哪个结论正确,并求出正确结论的值.(第25题)三、解答题(26、27题每题10分,其余每题8分,共60分)21.计算:(1)-10-|-8|÷(-2)×⎝ ⎛⎭⎪⎫-12; (2)-3×23-(-3×2)3+48÷⎝ ⎛⎭⎪⎫-14.22.解方程:(1)8x =-2(x +4); (2)3x -14-1=5x -76.23.先化简,再求值:已知|2a +1|+(4b -2)2=0,求3ab 2-⎣⎢⎡⎦⎥⎤5a 2b +2⎝ ⎛⎭⎪⎫ab 2-12+ab 2+6a 2b 的值.24.如图,已知点A ,B ,C ,D ,E 在同一条直线上,且AC =BD ,E 是线段BC的中点.(1)点E 是线段AD 的中点吗?并说明理由.(2)当AD =10,AB =3时,求线段BE 的长.25.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.26.如图,已知A,B为数轴上的两个点,点A表示的数为-20,点B表示的数为100.(1)求线段AB的中点M表示的数;(2)现有一只电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数;(3)若一只电子蚂蚁P从点B出发,以每秒6个单位长度的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以每秒4个单位长度的速度向左运动,设两只电子蚂蚁在数轴上的点D处相遇,求点D表示的数.27.(1)如图①,∠AOB和∠COD都是直角,请你写出∠AOD和∠BOC之间的数量关系,并说明理由;(2)当∠COD绕点O旋转到如图②所示的位置时,上述结论还成立吗?并说明理由.(3)如图③,当∠AOB=∠COD=β(0°<β<90°)时,请你直接写出∠AOD和∠BOC之间的数量关系.(不用说明理由)参考答案三、解答题:本题有7小题,19、20、21题6分,22题4分,23、24、25题8分,共46分19.(6分)计算:(1)38°7′4″+59°28′59″﹣61°5′9″(2)[2﹣(+﹣)×24]÷5×(﹣1)2006.【考点】有理数的混合运算;度分秒的换算.【专题】计算题;实数.【分析】(1)原式利用度分秒运算法则计算即可得到结果;(2)原式中括号中利用乘法分配律计算,再计算乘方运算,最后算乘除运算即可得到结果.【解答】解:(1)原式=38°7′4″+59°28′59″﹣61°5′9″=97°35′63″﹣61°5′9″=36°30′54″;(2)原式=(2﹣9﹣4+18)×=(+5)×=+1=1.【点评】此题考查了有理数的混合运算,以及度分秒的换算,熟练掌握运算法则是解本题的关键.20.(6分)解方程:(1)2x﹣(x+10)=5x+2(x﹣1)(2)﹣1=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=5x+2x﹣2,移项合并得:6x=﹣8,解得:x=﹣;(2)方程整理得:﹣1=,去分母得:x﹣4﹣12=8x+40,移项合并得:7x=﹣56,解得:x=﹣8.【点评】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(6分)已知x,y,m满足下列条件:(1)|x﹣5|+|m|=0;(2)﹣2ab y+1与4ab3是同类项.求式子2x2﹣3xy+6y2﹣m(3x2﹣xy+9y)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;同类项.【专题】计算题.【分析】利用非负数的性质以及同类项的定义求出x,y及m的值,代入原式计算即可求出值.【解答】解:由题意得:x﹣5=0,m=0,y+1=3,即x=5,m=0,y=2,则原式=2x2﹣3xy+6y2﹣0=2×25﹣30+24=44.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.22.(4分)如图,∠AOB=120°,∠COD=20°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.【考点】角的计算.【专题】计算题.【分析】利用角平分线的定义可得EOC+∠DOF=∠AOC+∠BOD=(AOC+∠BOD),再根据∠EOF=∠EOC+∠DOF+∠COD即可求解.【解答】解:∵∠AOB=120°,∠COD=20°∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣20°=100°又∵OE平分∠AOC,OF平分∠BOD∴∠EOC+∠DOF=∠AOC+∠BOD=(AOC+∠BOD)=×100°=50°∴∠EOF=∠EOC+∠DOF+∠COD=50°+20°=70°【点评】本题主要考查了角度的计算,正确理解角平分线的定义,根据角平分线的定义求得∠EOC+∠DOF是解题的关键.23.(8分)如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.【考点】比较线段的长短.【专题】计算题;数形结合.【分析】(1)点E是线段AD的中点.由于AC=BD可以得到AB=CD,又E是线段BC的中点,利用中点的性质即可证明结论;(2)由于AD=10,AB=3,由此求出BC,然后利用中点的性质即可求出BE的长度.【解答】解:(1)点E是线段AD的中点.(1分)∵AC=BD,∴AB+BC=BC+CD,∴AB=CD.(3分)∵E是线段BC的中点,∴BE=EC,∴AB+BE=CD+EC,即AE=ED,∴点E是线段AD的中点.(5分)(2)∵AD=10,AB=3,∴BC=AD﹣2AB=10﹣2×3=4,∴BE=BC=×4=2.即线段BE的长度为2.(8分).【点评】此题主要考查了线段的长度的比较,其中利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.(8分)十年前,父亲的年龄是儿子的6倍,从现在起的十年后,父亲的年龄是儿子年龄的2倍,求父亲和儿子现在的年龄?【考点】一元一次方程的应用.【分析】设十年前父亲和儿子的年龄分别是6x岁和x岁,根据十年后,父亲的年龄是儿子年龄的2倍,列出方程,求出x的值,继而可求得现在父亲和儿子的年龄.【解答】解:设十年前父亲和儿子的年龄分别是6x岁和x岁.由题意得,6x+20=2(x+20),即4x=20,解得:x=5,6x=30,则父亲现在的年龄为:30+10=40(岁),儿子现在的年龄为:5+10=15(岁).答:父亲和儿子现在的年龄分别是40岁和15岁.【点评】本题考查了一元一次方程的应用,解答这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等,年龄差是一定的.25.(8分)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+3|;(写出化简过程)(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;绝对值;整式的加减.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣1,x+5的符号,然后根据绝对值的意义即可化简;(3)根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB﹣BC 的值.【解答】解:(1)根据题意得:c﹣5=0,a+b=0,b=1,∴a=﹣1,b=1,c=5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+3>0,∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣(1﹣x)+2(x+3)=x+1﹣1+x+2x+6=4x+6;当1<x≤2时,x+1>0,x﹣1>0,x+3>0.∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣(x﹣1)+2(x+3)=x+1﹣x+1+2x+6=2x+8;(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC﹣AB=2,BC﹣AB的值不随着时间t的变化而改变.【点评】本题考查了数轴与绝对值,正确理解AB,BC的变化情况是关键.三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5×12×(-1)+5×1×(-1)=5-5=0. 22.解:如图所示.(第22题)23.解:因为∠COE是直角,∠COF=34°,所以∠EOF =∠COE -∠COF =56°.又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°.所以∠BOD =∠AOC =22°.24.解:设乙的速度为x km/h ,则甲的速度为3x km/h.由题意得⎝ ⎛⎭⎪⎫3-4060×3x +3x =25×2, 解得x =5.所以3x =15.答:甲、乙两人的速度分别为15 km/h 和5 km/h.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50. 故ON -AQ 的值不变,这个值为50.三、21.解:(1)原式=-10-8×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12 =-10-2=-12.(2)原式=-3×8-(-6)3+48×(-4)=-24+216-192=0.22.解:(1)去括号,得8x =-2x -8,移项、合并同类项,得10x =-8,系数化为1,得x =-0.8.(2)去分母,得3(3x -1)-12=2(5x -7),去括号,得9x -3-12=10x -14,移项,得9x -10x =-14+3+12,合并同类项,得-x =1,系数化为1,得x =-1.23.解:因为|2a +1|+(4b -2)2=0,所以2a +1=0,4b -2=0,所以a =-12,b =12.3ab 2-[5a 2b +2⎝ ⎛⎭⎪⎫ab 2-12+ab 2]+6a 2b =3ab 2-(5a 2b +2ab 2-1+ab 2)+6a 2b=3ab 2-(5a 2b +3ab 2-1)+6a 2b=3ab 2-5a 2b -3ab 2+1+6a 2b=a 2b +1.将a =-12,b =12代入,得原式=a 2b +1=⎝ ⎛⎭⎪⎫-122×12+1=98. 24.解:(1)点E 是线段AD 的中点.理由:因为AC =BD ,即AB +BC =BC +CD ,所以AB =CD .因为E 是线段BC 的中点,所以BE =EC ,所以AB +BE =CD +EC ,即AE =ED ,所以点E 是线段AD 的中点.(2)因为AD =10,AB =3,所以BC =AD -2AB =10-2×3=4,所以BE=12BC=12×4=2.故线段BE的长为2.25.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,所以∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.所以x=14,所以∠ABC=7x°=98°.26.解:(1)设线段AB的中点M表示的数为x,由BM=MA,得x-(-20)=100-x,解得x=40,即线段AB的中点M表示的数为40.(2)易知数轴上A,B两点之间的距离为120.设电子蚂蚁P和电子蚂蚁Q运动t秒后在点C处相遇,依题意,得4t+6t=120,解得t=12.所以点C表示的数为-20+4t=28.(3)设电子蚂蚁P和电子蚂蚁Q运动y秒后在点D处相遇,依题意,得6y-4y=120,解得y=60,所以点D表示的数为-20-4y=-260.点拨:动点在数轴上运动的问题,可以转化成某一时刻的相遇问题或追及问题,列方程求解.27.解:(1)∠AOD与∠BOC互补.理由:因为∠AOB,∠COD都是直角,所以∠AOB=∠COD=90°,所以∠BOD=∠AOD-∠AOB=∠AOD-90°,∠BOD=∠COD-∠BOC=90°-∠BOC,所以∠AOD-90°=90°-∠BOC,所以∠AOD+∠BOC=180°,所以∠AOD与∠BOC互补.(2)成立.理由:因为∠AOB,∠COD都是直角,所以∠AOB=∠COD=90°.因为∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠AOD+∠BOC=180°,所以∠AOD与∠BOC互补.(3)∠AOD+∠BOC=2β.。
人教版小学数学六年级下册第三单元专项训练——《解答题》班级:_________ 姓名:__________1.一根圆柱形的下水管,底面半径是5厘米,长10米,这根下水管的表面积是多少平方厘米?2.用一张长方形铁皮(如图),裁剪出底面和侧面,做一个容积最大的圆柱形无盖水桶。
(1)请你在图中画出这个水桶的底面和侧面展开图。
(2)这个水桶的底面直径是dm,高是dm。
(3)这个水桶实际用了多少平方分米的铁皮?(接头处忽略不计)(4)这个水桶最多能盛水多少升?(铁皮厚度忽略不计)3.一个饮料生产商生产一种饮料,采用圆柱形易拉罐包装,从外面量,易拉罐的底面直径是6厘米、高是12厘米,易拉罐侧面标有“净含量350毫升”字样。
这家生产商是否欺瞒了消费者?请计算说明理由。
4.将底面周长25.12米,高3米的一堆圆锥形小麦,装进底面直径是8米的圆柱形粮仓里,正好装满,这个圆柱形粮仓的高是多少?5.一个圆柱形水池,底面半径6米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?6.一个底面积是20平方厘米的圆柱,斜着截去了一段后,剩下的图形如图,截后剩下的图形的体积是多少立方厘米?7.如图,圆锥形容器中装有水40升,水面高度是这个容器的一半,这个容器最多能装水多少升?8.测量一个粮仓,从里面量得的数据如图所示,如果每立方米的粮食约重800干克,这个粮仓能装粮食多少干克?(π取3.14)9.一个圆锥的底面半径2厘米,高是7厘米,沿着高并垂直于底面将圆锥切成完全相同的两块,每个切面的面积是多少平方厘米?10.将一个棱长为5分米的正方体铁块熔铸成底面积是60平方分米的圆锥,这个圆锥的高是多少分米?11.一个圆柱被截去10厘米后(如下图),圆柱的表面积减少了628平方厘米,原来圆柱的表面积是多少平方厘米?(π取3.14)12.如图,一个蛋糕的包装盒,其中打结处用了25厘米,绳子共长多少米?侧面积是多少平方厘米?13.如图所示的百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,这个百宝箱的表面积是多少?14.如下图一块立方体木料,体积是64立方厘米,以它的一面为底面加工成一个最大的圆锥体,体积是多少立方厘米?15.有一个底面直径是20cm的圆柱形容器,容器内盛了一些水。
人教版小学数学三年级下册第六单元专项训练——《解答题》班级:_________ 姓名:__________1.兰兰从4:05分开始做作业,4:55做完,兰兰做作业花了多少时间?2.中国铁路提速后,“和谐号”每小时行350千米,普通快车每小时行160千米。
两列火车早上10:00同时从北京出发开往广州,下午2:00的时候,“和谐号”要比普通快车多行多少千米?3.李军早上7:40到校,中午11:40放学,下午2:00上学5:00放学,他一天在学校多少时间?4.小军、小丽和小伟三位同学住在同一个小区,周末他们相约一起去科技馆看展览。
(1)出发时,小伟家的钟面显示,它比准确时间慢了5分钟,他们出发的准确时间是几时几分?(2)他们到达科技馆时是9:10,他们从小区到科技馆用了多长时间?(3)小军下午4:00要和妈妈一起去外公家。
他们下午3:00离开科技馆,用了同样的时间回到家,这时离小军和妈妈约定的时间还有多久?5.一个商店早晨8:00开始营业,晚上8:00停止营业,这个商店营业多长时间?6.光耀商店营业时间为上午8:00~晚上8:30,问它每天的营业时间为多少小时?7.陈平的妈妈早上8:00上班,中午休息1小时30分,下午5:30下班。
陈平的妈妈一天工作了几小时?8.小东早上7时到姑妈家,晚上9时离开。
小东在姑妈家玩了多长时间?9.李师傅每小时做35个零件,他从早上8:30--11:30一共做了多少个零件?10.下面是邮局和超市每天的营业时间,谁的营业时间长?长多少?11.7月份和8月份每个月都有31天,两个月一共有多少天?12.下面是丽丽和东东制订的星期六的日程安排。
8:30出发去游泳馆,路上要用30分钟,10:20离开游泳馆。
下午2:00去舞蹈班,下午3:30下课后去图书馆看书。
9:00~10:30 踢球10:50~12:00音乐班14:20~15:00 书法班15:10~17:00 图书馆(1)丽丽在游泳馆里玩了多长时间?东东踢球用了多长时间?(2)丽丽舞蹈班下课后到图书馆,平常坐公交车要40分钟。
人教版八年级上册数学解答题期末专项训练及答案二解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.22.(8分)解方程:(1)(2).23.(6分)先化简,再求值:(﹣)÷,其中x=3.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F .求证:∠1=∠2.27.(10分)如图,在△ABC 中,∠ACB=90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G . 求证:(1)DF ∥BC ;(2)FG=FE .解答题(23题6分,24题10分,27题12分,其余每题8分,共60分) 21.计算:(1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.22.(1)先化简,再求值:(2+a )(2-a )+a (a -2b )+3a 5b ÷(-a 2b )4,其中ab =-12.(2)因式分解:a(n-1)2-2a(n-1)+a. 23.解方程:(1)xx-1=3x+1+1;(2)x+14x2-1=32x+1-44x-2.24.如图,已知网格上最小的正方形的边长为1.(1)分别写出A,B,C三点的坐标;(2)作△ABC关于y轴对称的△A′B′C′(不写作法),想一想:关于y轴对称的两个点之间有什么关系?(3)求△ABC的面积.25.如图,△ABC为等边三角形,D是BC延长线上一点,连接AD,以AD为边作等边三角形ADE,连接CE,用你学过的知识探索AC,CD,CE三条线段的长度的关系.试写出证明过程.26.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?27.如图①,在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA 平分∠BCD ;(3)如图②,若AF 是△ABC 的边BC 上的高,求证:CE =2AF .解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简,再求值:⎝ ⎛⎭⎪⎫3x +4x 2-1-2x -1÷x +2x 2-2x +1,其中x =-3.20. 解分式方程:x x -2-1=8x 2-4.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证∠B=∠D.(第21题)22.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各题:(1)把△ABC向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.(第22题)23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证∠CFD=12∠B.(第23题)24.新冠肺炎疫情期间,某商店老板第一次用1 000元购进了一批口罩,很快销售完毕;第二次购进时发现每个口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完毕,两批口罩的售价均为每个15元.(1)第二次购进了多少个口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴、x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,已知点C的横坐标为-1,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC 且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.(第25题)参考答案解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b);(2)a2+6ab+9b2=(a+3b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.22.(8分)解方程:(1)(2).【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x=3代入计算可得.【解答】解:原式=[﹣]•=•=,当x=3时,原式==3.【点评】本题主要考查分式的化简求值,熟练掌握分数的混合运算顺序和运算法则是解题的关键.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,则s=;△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.【考点】角平分线的性质.【分析】先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,从而得出BD=CD.【解答】证明:∵PB⊥BA,PC⊥CA,在Rt△PAB,Rt△PAC中,∵PB=PC,PA=PA,∴Rt△PAB≌Rt△PAC,∴∠APB=∠APC,又D是PA上一点,PD=PD,PB=PC,∴△PBD≌△PCD,∴BD=CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD 于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.【点评】本题考查了全等三角形的判定和性质;由全等得对应角相等是一种很重要的方法,也是解决本题的关键.27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知,利用SAS判定△ACF≌△ADF,从而得到对应角相等,再根据同位角相等两直线平行,得到DF∥BC;(2)已知DF∥BC,AC⊥BC,则GF⊥AC,再根据角平分线上的点到角两边的距离相等得到FG=EF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.在△ACF和△ADF中,∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.②证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.【点评】此题考查了学生以全等三角形的判定及平行线的判定的理解及掌握. 三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.22.解:(1)原式=4-a 2+a 2-2ab +3a 5b ÷a 8b 4=4-2ab +3a -3b -3.当ab =-12时,原式=4-2×⎝ ⎛⎭⎪⎫-12+3×⎝ ⎛⎭⎪⎫-12-3=4+1-3⎝ ⎛⎭⎪⎫123=5-24=-19. (2)原式=a [(n -1)2-2(n -1)+1]=a (n -1-1)2=a (n -2)2.23.解:(1)方程两边乘x 2-1,得x (x +1)=3(x -1)+x 2-1,解得x =2.检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2;(2)去分母,得2(x +1)=6(2x -1)-4(2x +1),去括号,得2x +2=12x -6-8x -4,解得x =6.经检验x =6是分式方程的解.∴原分式方程的解为x =6.24.解:(1)A (-3,3),B (-5,1),C (-1,0).(2)图略,关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等(两点连线被y 轴垂直平分).(3)S △ABC =3×4-12×2×3-12×2×2-12×4×1=5.25.解:CE =AC +CD .证明:∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.又∵△ADE 为等边三角形,∴AD =AE ,∠DAE =60°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .∵AC =BC ,∴BD =BC +CD =AC +CD ,∴CE =AC +CD .26.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5, 解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,解得a ≥8,答:甲工程队至少修路8天.27.证明:(1)∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°,∴∠ABC =∠ADE .在△ABC 与△ADE 中,⎩⎨⎧∠BAC =∠DAE ,AB =AD ,∠ABC =∠ADE ,∴△ABC ≌△ADE .(2)∵△ABC ≌△ADE ,∴AC =AE ,∠BCA =∠E ,∴∠ACD =∠E ,∴∠BCA =∠ACD ,即CA 平分∠BCD .(3)如图,过点A 作AM ⊥CE ,垂足为点M .∵AM ⊥CD ,AF ⊥CF ,∠BCA =∠ACD ,∴AF =AM .∵∠BAC =∠DAE ,∴∠CAE =∠CAD +∠DAE =∠CAD +∠BAC =∠BAD =90°,∴∠ACE =∠E =45°.∵AM ⊥CE ,∴M 为CE 的中点.∴CM =AM =ME .又∵AF =AM ,∴CE =2AM =2AF .三、19.解:⎝ ⎛⎭⎪⎫3x +4x 2-1-2x -1÷x +2x 2-2x +1=⎣⎢⎡⎦⎥⎤3x +4(x +1)(x -1)-2(x +1)(x +1)(x -1)÷x +2(x -1)2=3x +4-2x -2(x +1)(x -1)÷x +2(x -1)2=x +2(x +1)(x -1)·(x -1)2x +2=x -1x +1. 当x =-3时,原式=x -1x +1=-3-1-3+1=2. 20.解:方程两边同时乘(x +2)(x -2),得x (x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0,即x =2不是原分式方程的解. 所以原分式方程无解.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示.(第22题)(2)如图所示.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A=∠C=65°.∴∠EDF=360°-65°-155°-90°=50°.(2)证明:如图,连接BF.(第23题)∵AB=BC,且点F是AC的中点,∴BF⊥AC, ∠ABF=∠CBF=12∠ABC.∴∠CFD+∠BFD=90°.∵FD⊥BC,∴∠CBF+∠BFD=90°.∴∠CFD=∠CBF.∴∠CFD=12∠ABC.24.解:(1)设第一次购进了x个口罩.依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200个口罩.(2)[100(1-3%)+200(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴CF=AO=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(第25题)(2)解:BP的长度不变.如图③,过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=BC,∴△CBE≌△BAO(AAS).∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS).∴BP=EP=2.。
人教版七年级数学上册第1章《有理数》解答题专项训练1.(2020春•通州区期末)对于一个数x ,我们用(x ]表示小于x 的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9. (1)填空:(﹣2020]= ,(﹣2.4]= ,(0.7]= ;(2)如果a ,b 都是整数,且(a ]和(b ]互为相反数,求代数式a 2﹣b 2+4b 的值; (3)如果|(x ]|=3,求x 的取值范围. 2.(2019秋•北京期末)小华的体重是35kg ,小刚比小华重15.(1)画线段图表示两人体重之间的关系; (2)求出小刚的体重是多少kg ? 3.(2019秋•密云区期末)初一某班6名男生测量身高,以160cm 为标准,超过的记作正数,不足的记作负数.测量结果记录如下:学生序号1 2 3 4 5 6 身高(cm )165158164 163 157 168 差值(cm )+5 m +4+3﹣3+8(1)求m 值.(2)计算这6名同学的平均身高.4.(2019秋•顺义区期末)A 表示一个数,若把数A 写成形如a 0+1a 1+1a 2+1a 3+1⋯的形式,其中a 0、a 1、a 2、a 3、…都为整数.则我们称把数A 写成连分数形式. 例如:把2.8写成连分数形式的过程如下: 2.8﹣2=0.8,10.8=1.25,1.25﹣1=0.25,10.25=4,4﹣4=0.∴2.8=2+11+14(1)把3.245写成连分数形式不完整的过程如下: 3.245﹣3=0.245,10.245=4.082, 4.082﹣4=0.082,10.082=12.25, 12.250﹣12=0.25,10.25=4,4﹣4=0.∴3.245=a 0+14+1a 2+14则a 0= ;a 2= ; (2)请把97写成连分数形式;(3)有这样一个问题:如图是长为47,宽为10的长方形纸片.从中裁剪出正方形,若长方形纸片无剩余,则剪出的正方形最少是几个?小明认为这个问题和“把一个数化为连分数形式”有关联,并把4710化成连分数从而解决了问题.你可以参考小明的思路解决上述问题,请直接写出“剪出的正方形最少”时,正方形的个数.5.(2019秋•通州区期末)在数轴上,我们把表示数2的点定为核点,记作点C ,对于两个不同的点A 和B ,若点A ,B 到点C 的距离相等,则称点A 与点B 互为核等距点.如图,点A 表示数﹣1,点B 表示数5,它们与核点C 的距离都是3个单位长度,我们称点A 与点B 互为核等距点.(1)已知点M 表示数3,如果点M 与点N 互为核等距点,那么点N 表示的数是 ; (2)已知点M 表示数m ,点M 与点N 互为核等距点, ①如果点N 表示数m +8,求m 的值;①对点M 进行如下操作:先把点M 表示的数乘以2,再把所得数表示的点沿着数轴向左移动5个单位长度得到点N ,求m 的值. 6.(2019秋•通州区期末)计算:(1)3×(﹣4)+18÷(﹣6)﹣(﹣2); (2)﹣14﹣16÷(﹣2)3+|﹣2|×(﹣1).7.(2019秋•房山区期末)规定|a a a a |=ad ﹣bc ,例如|1203|=1×3﹣2×0=3.(1)计算|3243|的值;(2)若|2a −32a +24|=−4,求x 的值.8.(2019秋•海淀区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3); (2)﹣3×(﹣2)2﹣1+(−12)3.9.(2019秋•平谷区期末)我们规定,有理数的整数部分就是取其最接近的两个整数中的最小整数,小数部分就是用原数减去整数部分,比如,小数3.25,最接近的两个整数就是3和4,则整数部分取3,小数部分就是3.25﹣3=0.25,(1)6.14的整数部分是 ,小数部分是 ; (2)﹣3.6的整数部分是 ,小数部分是 ; (3)如果一个数的整数部分比小数部分大88.11,且整数部分的值恰好是小数部分的100倍,求这个数. 10.(2019秋•平谷区期末)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3 ﹣2 ﹣1.5 0 1 2.5 筐 数2 4 23 3 6 (1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 11.(2019秋•怀柔区期末)计算:﹣6﹣(﹣13)+(﹣9). 12.(2019秋•怀柔区期末)计算:(﹣1)2020+|−12|÷(﹣4)×8.13.(2019秋•顺义区期末)如图所示,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1.设点A ,B ,C 所对应的数之和是m ,点A ,B ,C 所对应的数之积是n .(1)若以B 为原点,写出点A ,C 所对应的数,并计算m 的值;若以C 为原点,m 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =4,求n 的值.14.(2019秋•延庆区期末)计算: (1)(−13+56−38)×(﹣24);(2)﹣32+(﹣12)×|−12|﹣6÷(﹣1). 15.(2019秋•石景山区期末)对数轴上的点P 进行如下操作:先把点P 表示的数乘以m (m ≠0),再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P '.称这样的操作为点P 的“倍移”对数轴上的点A ,B ,C ,D 进行“倍移”操作得到的点分别为A ',B ',C ',D '.(1)当m =12,n =1时,①若点A 表示的数为﹣4,则它的对应点A '表示的数为 . 若点B '表示的数是3,则点B 表示的数为 ;①数轴上的点M 表示的数为1,若CM =3C 'M ,则点C 表示的数为 ;(2)当n =3时,若点D 表示的数为2,点D '表示的数为﹣5,则m 的值为 ; (3)若线段A 'B '=2AB ,请写出你能由此得到的结论. 16.(2019秋•朝阳区期末)判断一个正整数能被3整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的. 17.(2019秋•东城区期末)计算:(1)3×(﹣2)+(﹣5)﹣(﹣20) (2)﹣23÷(−16)−14×(﹣2)218.(2019秋•朝阳区期末)阅读材料,并回答问题钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然10+4=14,但在表盘上看到的是2点钟,如果用符号“①”表示钟表上的加法,则10①4=2.若问2点钟之前4小时几点钟,就得到钟表上的减法概念,用符号“㊀”表示钟表上的减法.(注:我用0点钟代替12点钟)由上述材料可知:(1)9①6= ;2㊀4= .(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是 ,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立. (3)规定在钟表运算中也有0<1<2<3<4<5<6<7<8<9<10<11,对于钟表上的任意数字a ,b ,c ,若a <b ,判断a ①c <b ①c 是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,并结合反例加以说明. 19.(2019秋•西城区期末)计算: (1)(﹣5)+12﹣(﹣8)﹣21 (2)14×(−16)÷(−135) 20.(2019秋•西城区期末)计算: (1)(134−78+712)×(−87)(2)[(−3)2−(−0.75)×83−19]×(−4)21.(2019秋•丰台区期末)小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点Q 1处;第2步,从点Q 1继续运动2t 个单位长度至点Q 2处;第3步,从点Q 2继续运动3t 个单位长度至点Q 3处….例如:当t =3时,点Q 1,Q 2,Q 3,的位置如图2所示.解决如下问题:(1)如果t =4,那么线段Q 1Q 3= ;(2)如果t <4,且点Q 3表示的数为3,那么t = ; (3)如果t ≤2,且线段Q 2Q 4=2,那么请你求出t 的值. 22.(2019秋•丰城市期末)已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意一点,其对应的数为x .(1)MN 的长为 ;(2)如果点P 到点M 、点N 的距离相等,那么x 的值是 ; (3)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.23.(2019秋•门头沟区期末)计算: (1)(14+16−12)×12.(2)(﹣1)10÷2+(−12)3×16.24.(2019秋•顺义区期末)计算:−23÷(−43)﹣24×(23−34−112)25.(2019秋•昌平区期末)计算:−2.5÷58×(−14). 26.(2019秋•顺义区期末)计算:54+[−73−(74−53)].27.(2018秋•密云区期末)已知数轴上两点A 、B ,其中A 表示的数为﹣2,B 表示的数为2,若在数轴上存在一点C ,使得AC +BC =n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC +BC =2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题: (1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为﹣4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为 ; (3)若点E 在数轴上(不与A 、B 重合),满足BE =12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.(2018秋•延庆区期末)计算: ①36×(19−16−34).①(−2)3×[−7+(3−1.2×56)].29.(2018秋•石景山区期末)在质量检测中,从每盒标准质量为125克的酸奶中,抽取6盒,结果如表:编号1 2 3 4 5 6 质量(克)126127124126123125差值(克)+1 (1)补全表格中相关数据;(2)请你利用差值列式计算这6盒酸奶的质量和. 30.(2018秋•平谷区期末)金秋十月小鹏家的苹果园喜获丰收,共采摘苹果20筐,经过称重这20筐苹果的质量如下:(单位:千克) 48,46,53,50,60, 49,51,36,45,47,56,50,57,48,44,52,49,53,49,54在没带计算器的情况下,小鹏想帮父亲快速算出苹果的总质量.(1)小鹏通过观察发现,如果以千克为标准,把超出的质量记为正,不足的质量记为负,将得到的数字填入下表:可以得到上表中各数之和为;(2)因此,这20筐苹果的总质量为.31.(2018秋•西城区期末)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M=;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.32.(2018秋•大兴区期末)在同一平面内的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).如图,等腰直角三角形ABC的一条直角边AB垂直数轴于点D,斜边AC与数轴交于点E,数轴上点O 表示的有理数是0,若AB=BC=8,AD=6,OD=2.点O到边BC的距离与线段DB的长相等.(1)求d(点O,点E);(2)求d(点O,△ABC).33.(2018秋•怀柔区期末)如图,小明、小英、小丽和小华的家都在同一条街的同侧居民住宅的一排住宅楼内居住,四个家庭的住址位于同一直线上.小明家到小英家的距离约为480米,小丽家到小英家的距离约为320米,小华家在小明家和小丽家之间线段的中点的位置.请你通过所学图形知识建立数学模型,画出图形,求出小明家和小华家的距离.参考答案与试题解析一.解答题(共33小题) 1.【解答】解:(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0; (2)∵a ,b 都是整数,且(a ]和(b ]互为相反数, ∴a ﹣1+b ﹣1=0, ∴a +b =2, ∴a 2﹣b 2+4b =(a ﹣b )(a +b )+4b =2(a ﹣b )+4b =2(a +b ) =2×2 =4;(3)当x <0时, ∵|(x ]|=3, ∴x >﹣3,∴﹣3<x ≤﹣2; 当x >0时, ∵|(x ]|=3, ∴x >3, ∴3<x ≤4.故x 的范围取值为﹣3<x ≤﹣2或3<x ≤4. 故答案为:﹣2021,﹣3,0. 2.【解答】解:(1)线段图如下:;(2)由题意可得:35×(1+15)=35×65=42(kg ). 答:小刚的体重是42kg . 3.【解答】解:(1)m =158﹣160=﹣2; (2)这6名同学的平均身高为: 160+(5﹣2+4+3﹣3+8)÷6 =160+15÷6 =160+2.5 =162.5.答:这6名同学的平均身高是162.5cm . 4.【解答】解:(1)由题意得:a 0=3,a 2=12; 故答案为:3,12;(2)∵97−1=27,127=72,72−3=12,112=2,2﹣2=0,∴97=1+13+12; (3)∵4710−4=710,1710=107,107−1=37,137=73,73−2=13,113=3,3﹣3=0,∴4710=4+11+12+13, ∴4+1+2+3=10, 答:“剪出的正方形最少”时,正方形的个数10. 5.【解答】解:(1)∵点M 表示数3, ∴MC =1,∵点M 与点N 互为核等距点, ∴N 表示的数是1, 故答案为1;(2)①因为点M 表示数m ,点N 表示数m +8, ∴MN =8.∴核点C 到点M 与点N 的距离都是4个单位长度. ∵点M 在点N 左侧, ∴m =﹣2.①根据题意得2m ﹣5=4﹣m , 解得m =3. 6.【解答】(1)解:3×(﹣4)+18÷(﹣6)﹣(﹣2) =﹣12﹣3+2 =﹣13;(2)﹣14﹣16÷(﹣2)3+|﹣2|×(﹣1) =﹣1﹣16÷(﹣8)+2×(﹣1) =﹣1+2﹣2 =﹣1. 7.【解答】解:(1)根据题中的新定义得:原式=9﹣8=1;(2)根据题中的新定义化简得:4(2x ﹣3)﹣2(x +2)=﹣4, 去括号得:8x ﹣12﹣2x ﹣4=﹣4, 解得:x =2. 8.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3) =7+6+12 =25; (2)﹣3×(﹣2)2﹣1+(−12)3 =﹣3×4﹣1+(−18) =﹣12﹣1+(−18) =﹣1318.9.【解答】解:(1)由题意可得,6.14的整数部分是6,小数部分是6.14﹣6=0.14, 故答案为:6,0.14; (2)由题意可得,﹣3.6的整数部分是﹣4,小数部分是﹣3.6﹣(﹣4)=0.4, 故答案为:﹣4,0.4;(3)解:设这个数的小数部分为x ,则整数部分为100x , 100x ﹣x =88.11 解得,x =0.89则100x =89,答:这个数是89.89. 10.【解答】解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克), 答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克), 答:20筐白菜总计超过1千克; (3)(25×20+1)×1.6=501×1.6≈802(元),答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元. 11.【解答】解:﹣6﹣(﹣13)+(﹣9) =﹣6+13﹣9 =7﹣9 =﹣2 12.【解答】解:原式=1+12×(−14)×8=1+(﹣1) =0. 13.【解答】解:(1)以B 为原点,点A ,C 所对应的数分别是﹣2,1, m =﹣2+0+1=﹣1,以C 为原点,点A ,B 所对应的数分别是﹣3,﹣1, m =﹣3+(﹣1)+0=﹣4,(2)由题意得:A 表示﹣7,B 表示﹣5,C 表示﹣4, n =﹣7×(﹣5)×(﹣4)=﹣140. 14.【解答】解:(1)(−13+56−38)×(﹣24) =−13×(﹣24)+56×(﹣24)−38×(﹣24) =8﹣20+9 =﹣3;(2)﹣32+(﹣12)×|−12|﹣6÷(﹣1) =﹣9+(﹣12)×12+6 =﹣9﹣6+6 =﹣9. 15.【解答】解:(1)①∵点A 表示的数为﹣4, ∴﹣4×12+1=﹣1,∴它的对应点A '表示的数为﹣1, 设点B 表示的数为x , ∵点B '表示的数是3, ∴x ×12+1=3, 解得:x =4,故答案为:﹣1,4;①设点C 表示的数为a ,则C ′表示的数为a 2+1,∵CM =3C ′M , ∴|a ﹣1|=3|a 2+1﹣1|,解得:a =﹣2或a =25, 故答案为:﹣2或25;(2)由题意得:2m +3=﹣5, 解得:m =﹣4,故答案为:﹣4;(3)设点A 表示的数为a ,点B 表示的数为b ,则点A ′表示的数为am +n ,点B ′表示的数为bm +n , ∴|bm +n ﹣am ﹣n |=2|b ﹣a |, ∴|m (b ﹣a )|=2|b ﹣a |, 解得:m =±2,∴若线段A 'B '=2AB ,m =±2. 16.【解答】证明:设这个两位正整数是10a +b . 10a +b =9a +a +b可以看出,9a 必定能被3整除,所以判断10a +b 能否被3整除,就看a +b 能否被3整除,也就是看它的各位数字之和能否被3整除. 所以,把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.这个判断方法都是正确的. 17.【解答】解:(1)3×(﹣2)+(﹣5)﹣(﹣20) =﹣6﹣5+20 =9 (2)﹣23÷(−16)−14×(﹣2)2=﹣8÷(−16)−14×4=48﹣1 =47 18.【解答】解:(1)由 题意可知,9①6表示9点以后6小时的时间,从钟表面看为3点; 2㊀4表示2点以前4小时的时间,从钟表面看为10点. 故答案为:3,10.(2)∵用0点钟代替12点钟 ∴5①7=0故答案为:7.有理数减法法则在钟表运算中仍然成立. 举例如下:∵5㊀7=10,5①5=10, ∴5㊀7=5①5即减去一个数等于加上这个数的相反数. (3)不一定成立, 一组反例如下:取a =3,b =5,c =7.∵3①7=10,5①7=0,10>0, ∴当3<5时,3+7>5+7. 19.【解答】解:(1)(﹣5)+12﹣(﹣8)﹣21 =7+8﹣21 =15﹣21 =﹣6 (2)14×(−16)÷(−135)=(﹣4)÷(−85) =52 20.【解答】解:(1)(134−78+712)×(−87) =134×(−87)−78×(−87)+712×(−87)=﹣2+1−23=﹣123(2)[(−3)2−(−0.75)×83−19]×(−4)=(9+2﹣19)×(﹣4) =(﹣8)×(﹣4) =32 21.【解答】解:(1)当t =4时,Q 1表示的数为4, Q 1Q 2=4×2=8,Q 2表示的数为4+8=12, Q 2Q 3=4×3=12,Q 3所表示的数为0, ∴Q 1Q 3=4, 故答案为:4.(2)①当Q 3未到点N 返回前,有t +2t +3t =3,解得:t =12, ①当Q 3点到达N 返回再到表示3的位置,t +2t +3t +3=12×2,解得:t =72,故答案为:12或72;(3)①当Q 4未到点N ,有3t +4t =2,解得:t =27;①当Q 4到达点N 返回且在Q 2的右侧时,有24﹣10t ﹣3t =2,解得:t =2213; ①当Q 4到达点N 返回且在Q 2的左侧时,有3t ﹣(24﹣10t )=2,解得:t =2;答:t 的值为27或2213或2.22.【解答】解:(1)MN 的长为3﹣(﹣1)=4; (2)根据题意得:x ﹣(﹣1)=3﹣x , 解得:x =1;(3)①当点P 在点M 的左侧时. 根据题意得:﹣1﹣x +3﹣x =8. 解得:x =﹣3.①P 在点M 和点N 之间时,则x ﹣(﹣1)+3﹣x =8,方程无解,即点P 不可能在点M 和点N 之间. ①点P 在点N 的右侧时,x ﹣(﹣1)+x ﹣3=8. 解得:x =5.∴x 的值是﹣3或5;(4)设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN . 点P 对应的数是﹣t ,点M 对应的数是﹣1﹣2t ,点N 对应的数是3﹣3t . ①当点M 和点N 在点P 同侧时,点M 和点N 重合, 所以﹣1﹣2t =3﹣3t ,解得t =4,符合题意. ①当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧), 故PM =﹣t ﹣(﹣1﹣2t )=t +1.PN =(3﹣3t )﹣(﹣t )=3﹣2t . 所以t +1=3﹣2t ,解得t =23,符合题意. 综上所述,t 的值为23或4. 23.【解答】解:(1)(14+16−12)×12=14×12+16×12−12×12=3+2﹣6 =﹣1(2)(﹣1)10÷2+(−12)3×16=1÷2﹣2=0.5﹣2=﹣1.524.【解答】解:原式=23×34−24×23+24×34+24×112 =12−16+18+2=92.25.【解答】解:原式=−52×85×(−14)=1.26.【解答】解:原式=54+[−73−74+53]=5 4−73−74+53=−12−2 3=−76.27.【解答】解:(1)∵A表示的数为﹣2,B表示的数为2,点C在数轴上表示的数为﹣4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AD+BD=5,∵AB=4,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=5,∴﹣2﹣x+2﹣x=5或x﹣2+x﹣(﹣2)=5,x=﹣2.5或2.5,∴点D表示的数为2.5或﹣2.5;故答案为:﹣2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;①当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;①当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.28.【解答】解:①原式=36×19−36×16−36×34=4﹣6﹣27=﹣29;①(−2)3×[−7+(3−1.2×56)]=(−8)×[−7+(3−1.2×56)]=(﹣8)×[﹣7+(3﹣1)]=(﹣8)×(﹣5)=40.29.【解答】解:(1)补全表格中相关数据如下:编号123456质量(克)126127124126123125差值(克)+1+2﹣1+1﹣20故答案为:+2,﹣1,+1,﹣2,0;(2)这6盒酸奶的质量和:6×125+(1+2﹣1+1﹣2+0)=751(克),答:这6盒酸奶的质量和是751克;30.【解答】解:(1)如果以50千克为标准,把超出的质量记为正,不足的质量记为负,将得到的数字填入下表(不唯一);﹣2﹣43010﹣11﹣14﹣5﹣3607﹣2﹣62﹣13﹣14可以得到上表中各数之和为﹣3;(2)因此,这20筐苹果的总质量为:50×20+(﹣2﹣4+3+0+10﹣1+1﹣14﹣5﹣3+6+0+7﹣2﹣6+2﹣1+3﹣1+4)=997,故答案为:50,﹣3,997.31.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B 上的数字y.32.【解答】解:(1)∵等腰直角三角形ABC,AB=BC=8,∴∠C=∠A=45°∠ABC=90°.∵AB垂直数轴于点D,∴∠ADE=∠ABC=90°.∴BC∥DE∴∠AED=∠C=∠A=45°.∴AD=DE.∵AD=6,∴DE=AD=6,∵OD=2,∴OE=4.∴d(点O,点E)=4.(2)过点O作OF⊥AC于点F,∵∠AED=45°,OE=4,∴∠AED=∠FOE=45°∴OF=FE,设OF=FE=x,在Rt△OEF中,x2+x2=16x2=8,a=±2√2(负值舍去),a=2√2,∴点O到边AC距离OF是2√2,∵AB=8,AD=6,∴DB=AB﹣AD=2.∵点O到边BC的距离与线段DB的长相等.∴点O到边BC距离是2,∵点O到边AB距离OD是2,∴对于△ABC三边上任意一点Q,O,Q两点间的距离的最小值为2.∴d(点O,△ABC)=2.33.【解答】解:设小明家为点A、小英家为点B、小丽家为点C、小华家为点Q.∵小明、小英、小丽和小华的家都在同一条街的东侧居民住宅的一排住宅楼内居住,且四个家庭的住址位于同一直线上,根据题意AB=480m,BC=320m,∵AB>BC,∴先确定直线上A、B的位置,AB=480m,B、C两点位于A点的同侧,C点的位置分两种情况:第一种情况:当点C在点B的左侧时(如图1),AB=480m,BC=320m,∴AC=160m,∵点Q是AC的中点,∴AQ=12AC=80m;第二种情况:当点C在点B的右侧时(如图2),∵AB=480m,BC=320m,∴AC=800m.∵点Q是AC的中点,∴AQ=12AC=400m.∴综上所述,小明家和小华家的距离为80m或400m.。
地理中考复习:解答题专项训练八年级上册1. 阅读《边疆行》路线图和有关文字材料,回答下列问题。
中央电视台《远方的家》栏目推出专题片《边疆行》,以新闻纪实的手法和边行走边观察的方式,顺时针勾绘出一幅从广西到辽宁的美丽画卷,反映了我国边疆的风土人情。
(1)《边疆行》摄制组从广西防城港出发,基本沿我国陆上疆界到达辽宁丹东,其行程大约是()。
A.5000千米B.10000千米C.22000千米D.40000千米(2)《边疆行》路线经过的省级行政区域中,最早迎来新的一天的是(填数字代号)。
当地的人们迎来第一缕曙光时,帕米尔高原的天空可能是。
A.一片晚霞B.满天星斗C.烈日当头D.旭日东升。
(3)《边疆行》路线经过的省级行政区中,陆地面积最大的是(填数字代号)跨经度最广的是(填数字代号)。
(4)途中摄制组经过了一个既临渤海又临黄海的省级行政区域是。
(省级行政区的全称)2. 读“我国地势阶梯状分布图”,完成下列题目(1)在图上标出我国地势三级阶梯的名称(2)写出图中数码所代表的地区名称:①__高原②__高原③__平原④__海。
(3)黄河从高一级阶梯进入低一级阶梯时,落差会有什么变化?,水流速度会有什么变化?,适合建设大型的。
(4)我国地势总的特征是高、低,呈状分布,这一方面有利于上湿润的水汽深入内地,为我国广大地区带来了丰沛的,另一方面,使我国许多大河东流入海,沟通了交通,方便了沿海和的经济联系,同时河流从高一级阶梯进入低一级梯形成了巨大的水流落差,使我国许多大河蕴藏有丰富的资源。
3. 图1为我国主要气候类型图,图2为北京、吐鲁番气温曲线和降水量柱状图,读图回答下列问题。
(1)我国气候类型复杂多样,我国地处世界最大的大陆东部、濒临世界最大的大洋,因此我国气候具有的特点。
(2)亚热带季风气候和温带季风气候的分界线大致在一线。
(3)从图2中可以看出,北京月份降水量最多,北京的年降水量比吐鲁番的年降水量(多/少),造成两地降水量差异的主要因素是(纬度位置/海陆位置/地形)。
专项训练(一)初中物理电学简答题1、对于电火灾这种突发事件,火灾现场的人应采取什么应对措施,同时要注意什么问题?根据你所学的物理知识,提出自己的建议.首先切断电源。
(在切断电源之前)不能用水灭火。
此外,建议打火警电话、呼救。
2、在家用电器的电源插头中有些是用二脚插头,有些是用三脚插头,请各举出两种电器的名称。
说明为什么有些电器要用三脚插头。
家用电器电源插头为二脚的是:电视机、台灯等;家用电器电源插头为三脚的是:电冰箱、洗衣机等。
通常使用三脚插头的家用电器外壳通常是金属的,为防止漏电造成触电事故,三脚插头的第三个脚与家用电器金属外壳相连接,三孔插座的第三个孔与大地相连接,当三脚插头插入三孔插座后,把外壳与大地连接起来,保证人体的安全。
3、家庭用的白炽灯,用了很久以后发现灯泡壁变黑,且在相同电压下工作时灯光比原来暗了(即实际电功率变小)。
请用相关物理知识说明其原因。
白炽灯工作时,灯丝(钨丝)温度很高而发生升华,升华的钨蒸气凝华在灯泡壁上,白炽灯工作久了,升华使灯丝变细,凝华使灯泡壁发黑,变细了的灯丝电阻变大,根据p=u2/r可知,在相同电压下灯泡消耗电功率变小,结果灯变暗了。
4、为什么额定电压和额定功率均相同的新旧灯泡正常工作时,旧灯泡要暗些?因为灯泡用久了,灯丝升华会变细,灯丝电阻变大,根据p=u2/r可知,在相同电压下灯泡消耗电功率变小,所以灯会变暗了。
5、一个灯泡的灯丝烧断了,把断的灯丝搭接在一起,灯炮会更亮,为什么?搭在一起的灯丝长度变短了,电阻会变小,根据p=u2/r可知,在相同电压下灯泡消耗电功率变大,所以灯会更亮了。
6、白炽灯是人们常用的照明用具,如图7根据你对白炽灯的了解,请提出两个与物理知识有关的问题,并针对提出的问题作出简要回答。
例如:问题:白炽灯的灯丝用久了为什么会变细?简答:在高温状态下工作灯丝升华造成的.⑴问题:_____白炽灯的灯丝为什么用钨丝?___简答:_____钨丝熔点高__ __⑵问题:__白炽灯为什么用久了灯泡壁会变黑?简答:___升华的钨蒸气凝华在灯泡壁上___。
7、家庭电路中能否用铜丝、铁丝代替保险丝?为什么?不能。
因为铜丝铁丝电阻小,熔点高,在电路中的电流过大时不会熔断,起不到保险的作用。
8、为什么通电后的电炉丝热得发红,而与它连接的铜导线却不怎么发热?因为铜导线和电炉丝串联,根据q=i2rt,通过的电流和时间是相等的,但铜导线电阻比电炉丝的电阻小得多,所以电炉丝热得发红,而铜导线却不怎么热。
9、现有两个标记模糊,额定电压都是220v,但额定功率相差较大的白炽灯泡,怎样判断哪一盏灯的额定功率较大?(1)灯丝粗而且短的白炽灯泡的额定功率大(2)将两灯并联起来接入电路中,发光较亮的额定功率大(3)将两灯串联起来接入电路中,发光较暗的额定功率大10、为什么不能用湿手触摸开关?因为水是导体,湿手电阻变小,根据欧姆定律可知,在电压一定时,电阻越小,通过的电流越大,所以危险。
11、一位电视记者在讲到某工厂上半年共节约电5000kwh的时候,手举一只理发用电吹风机时:“我这只电吹风是500瓦的,也就是0.5千瓦,这个厂节省的电力可以开动10000个这样的电吹风。
”这位记者错在哪里?如果你是记者,该怎样进行新闻报导?记者没有说可以开动10000个这样的电吹风多长时间,应该说这个厂节省的电力可以同时开动10000个这样的电吹风吹1小时。
12、为什么不能把三线插头的铜片拆除,当两孔插座用?因为三线插头中间的那个线是与用电器金属外壳相连的,如果拔下去金属外壳就不能与地线接触了,漏电时电不能流入大地,而使用电器金属外壳带电导致人触电。
13、安装照明电路时,如果装保险丝时拧得不紧,往往容易熔断。
为什么?如果保险丝拧得不紧,保险丝和接线柱的接触电阻就会增大,根据q= i2rt,通电时,保险丝和接线柱的接触部分会发热,时间长了就容易熔断。
14、保险丝在什么情况下起作用?它保护了什么?保险丝串联在电路中,当电流超过一定值时,保险丝自动熔断,切断电源,从而保护用电器和电路。
15、如果在照明电路中接入大功率的电炉,电线将显著发热,有可能烧坏它的绝缘皮,甚至引起火灾。
这是为什么?根据q=pt可知,功率较大的情况下,产生的电热也会较多,从而烧坏外部绝缘体,引起火灾。
16、为什么220v电路中接入大功率电炉会烧坏电线引起火灾?那应该如何防止电线发热功率过大?请写出一种方法因为q=pt,在时间一定时,p越大,则q热量就会增加,热了,就导致短路或绝缘皮烧坏等问题,引起火灾了。
防止电线发热功率过大的方法:(1)在同一电路中减少并联电器数量2一些大功率电炉不要使用。
17、电路发生短路时,保险丝为什么会熔断?(根据焦耳定律和保险丝材料的特点作答)保险丝的作用是:在电路发生短路或者用电器的总功率过大时,熔断以切断电路来保护用电器的。
当电流流过它时,它就会发热,当温度升高到保险丝的熔点以上时保险丝就发生了熔断。
这就是保险丝的工作原理。
而短路时产生的短路电流是相当大的,足以使保险丝瞬间产生高温而熔断保险...18、有一同学根据公式r=u/i ,认为电阻和电压成正比;跟电流成反比,这种说法对吗?为什么?不对。
因为电阻是导体本身的一种性质,它跟电压、电流无关,只跟它的材料、长度、横截面积以及温度有关。
19、为什么开灯瞬间,灯丝容易断?这是因为开灯的瞬间,灯丝的温度低,电阻小,电流大,特别是因为灯丝升华造成灯丝粗细不均匀,灯细处产热较多,温度较高,并高于正常工作的温度达到熔点,所以易熔断。
20、白炽灯的安装过程用到了安全用电知识。
螺丝口灯泡的灯丝两头各有一根金属导线,它们分别接在灯泡尾部的中心金属块和螺旋上。
在接入家庭电路时,螺丝口灯座的螺旋套只准接在零线上,不准接在火线上。
因为螺丝口灯座的螺旋套是金属做的,其外表仅有一层电木包着,将螺旋套接在零线上后,倘若电木破损,人手无意中接触了金属螺旋套,也不会发生触电事故。
倘若螺旋套接在火线上,遇到上述情况时,就会触电。
21、照明开关为什么必须接在火线上?因为家庭电路中火线与零线间的电压为220v,正常情况下开关断开时,零线与地之间无电压,当开关接在零线上时,开关断开后,电灯虽然熄灭了,而灯头(或灯座)与地之间仍存在220v的电压,这是非常危险的,因为一般人会认为电灯没有亮是没有“电”了,这时如果人去触及灯头(或灯座)中的金属部分,就可能发生触电事故,所以开关一定要接在火线上保证用电安全。
22、小明同学学习了家庭电路的知识后,在生活中更加注意观察家用电器.(1)他发现自己家洗衣机用的是三脚插头,其铭牌上标有“10a 250v”字样,其中的“10a”表示什么意思?“10a”表示允许通过的最大电流(2)小明同学仔细观察三只插脚,又有新的发现:标有“e”字的插脚比其它两脚稍长一些.他又查看了其它家用电器的三脚插头,也是这种情况.它比其它两脚稍长一些有什么好处?它比其它两脚稍长一些,插插头时能使家用电器的金属外壳先接地,拔插头时能使金属外壳后离开地线,即使家用电器因绝缘不好“漏电”,人也不会触电。
23、市场中,一位顾客和一位卖微波炉的售货员出现了不同意见。
售货员说,微波炉很省电,用它加热食品花不了多少电费;顾客说,微波炉很费电,他家的微波炉一开就“烧保险”。
他们二人说的情况是否真有矛盾?请你用科学术语表达一下他们的意思。
从科学的角度讲,他们二人说的情况并不矛盾,售货员说:“很省电”,是指微波炉的效率比较高,顾客说“很费电”,是指微波炉的功率较大,因而工作电流比较大。
24、学校宿舍走廊的路灯容易损坏,经常被更换,电工小王在原来的位置接入两盏与原来一样的白炽灯,同学们发现灯很长时间没有坏,而这两盏灯比原来用一盏时还要暗,由此:(1)同学们猜想了这两盏灯的连接方式,是串联还是并联呢?你的依据是什么?(2)电工小王这样做能否省电?理由是什么?两盏灯在一起比原来还暗,说明两盏灯的总功率比原来一盏灯功率还要小,即每盏灯的实际功率比额定功率都小的多,所以两盏灯的实际电压比额定电压要小,即每盏灯是串联的。
根据p=u2/r和w=pt可知,在u一定时,r越大,p越小,越省电。
所以这样做是可以省电的。
25、家电热毯的电阻线断了,将电阻线接上后继续使用,在使用中发现接头处容易烧焦。
请你用学过的物理知识解释其原因。
把电阻线断处接上后,由于接触不良使接触处的电阻增大,根据q=i2rt,通过的电流和时间是相等的,由于电阻增大,产生的热量就多,使得接点的温度很高,使接头处被烧焦了。
26、小明家买了一台“220v 1500w”的热水器,由于安装的位置离固定插座太远,便到商店买了标有“220v 6a”字样的插座、标有“220v 10a”字样的插头以及导线,组装了一个多孔的移动插座请问:(1)这台热水器与其它家用电器之间的连接方式是串联还是并联?(2)从安全用电的角度指出这个移动插座存在问题的两个地方并说明原因:(1)并联(2)①插座;允许通过的电流小于热水器正常工作时的电流②插头;两脚插头没有接地线27、如图18所示,甲图中鸟a提示鸟b:“快飞,你会触电的!”鸟b说:“你怎么不怕?”乙图中电压表提示电流表:“你不能直接连在电源两极上,会把你烧坏的!”请分析两幅图中的对话是否合理,并说明理由.b鸟会触电,因为他的两个脚分别接触到电源的两极上了,他身上有电压。
a鸟身上没有电压。
电压表的说法是合理的,因为电流表不能直接接在电源的两极上。
28、请结合欧姆定律说明为什么电压越高越危险?由欧姆定律,人体电阻不变,电压越大,通过人体的电流就越大,人的死亡率就越高。
29、小鸟站在高压电线上为什么不会触电?站在高压线上的小鸟,是站在同一根电线上的,电线的电阻没有小鸟两腿之间的电阻大,电线会把小鸟短接,在小鸟的两只脚之间不会有电压存在,也就不会有电流从它身上通过,所以小鸟不会触电。
30、.家用电器如电扇、电视机等,连续使用较长时间后,要停用一会儿(尤其是在夏天).这是为什么?因为电扇、电视机中含有电阻的元件通电发热使其温度升高,为了避免温度过高损坏设备,必须让其及时散热,所以连续使用较长时间后,要停用一会。
而用电器长期停用时,又必须隔一段时间通电一次,以便其中含有电阻的元件通电发热来驱除电器中的潮气,以免元器件发生绣蚀和霉变。
29、为什么线路连接处接触不良容易引起火灾?当线路连接处接触不良时,会使该处的电阻增大,根据q=i2rt可知,电流经过该处产生的热量增多,同时接触处的电阻又将随温度升高而增大,从而形成电热的逐步积累和恶性循环,以致引发火灾.30、为什么家用电器的插头和插座大多采用三线的?因为插头和插座使用三线的,可将家用电器的金属外壳接地,这样在电路接通时,人体接触到外壳就可避免发生触电事故。