北京市第四中2017年中考数学冲刺复习专题训练圆讲与圆有关的位置关系(无答案
- 格式:doc
- 大小:148.50 KB
- 文档页数:3
平行线的性质及命题复习如图,填空 (说出在什么条件下,能使结论成立,及它的根椐) :(1)∠1 ∠2a∥b()(2)∠2 ∠3a∥b()(3)∠2+∠4=a∥b()猜想:两条平行线被第三条直线所截,同位角,内错角,同旁内角.在纸上用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交,标出如图的角:度量这些角,各对同位角、内错角、同旁内角的度数之间有什么关系?你能证明“两直线平行,同位角相等”吗?你能根据“两直线平行,同位角相等”,推出“两直线平行,内错角相等”吗?例1.已知:如图,AB//DC ,(1)若AD//BC ,求证:A=C ;分析:(略)证明:(1)∵AB//DC ,∴∠A+_____=180( ).即∠A= .①∵AD//BC ,∴∠C+_____=18( ).即∠C= .②由①,②,∴∠A=∠C.还有其他的方法吗?例1.已知:如图,AB//DC ,(1)若AD//BC ,求证:A=C ;分析2:构造同位角或内错角作为过渡角.证明2:(1)延长线段CB ,如图∵AD//BC ,∴∠A= ( ).∵AB//DC ,∴∠C= ( ).∴∠A=∠C.分析3:充分利用好“三线八角”.连结AC//121324//34AB DC AD BC ⇒∠=∠⎫⇒∠+∠=∠+∠⎬⇒∠=∠⎭即BCD BAD ∠=∠例1.已知:如图,AB//DC ,(2)若A=C ,求证:AD//BC.证明:(2)∵AB//DC ,∴∠A+∠D=_______( ).又∵∠A=∠C ,∴ _____ +∠∴ AD//BC ( ).类似的有没有其他方法分析2:构造同位角或内错角作为过渡角.证明2:(2)延长线段CB ,如图∵AB//DC ,∴∠C= ( ).∵∠A=∠C ,∴∠A= .∴AD//BC ( ).分析3:充分利用好“三线八角”.连结AC//1212AB DC BCD BAD BCD BAD ⇒∠=∠⎫⇒∠-∠=∠-∠⎬∠=∠⎭即34//AD BC ∠=∠⇒例2、已知,如图,a //b ,b //c ,求证:a //c .2、平行线的性质(1)由平行线的定义可知:若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果两条平行线被第三条直线所截,那么同位角相等;内错角相等;同旁内角互补.(3)平行线的传递性:a//b,b//c a//c.(4)如图,AB//CD,MN⊥⊥ CD练习:1、已知,如图,∠1=∠2,∠3=65°,求∠4.分析:要求∠4,只需;而∠1=∠2 .2、阅读下面的证明过程,指出其错误,并改正.已知△ABC,求证:∠A+∠B+∠C=180°.证明:过A作DE∥BC,且使∠1=∠C.∵DE∥BC,∴∠2=∠B.(两直线平行,内错角相等)∵∠1=∠C,∴∠B+∠C+∠3=∠2+∠1+∠3=180°.即∠BAC+∠B+∠C=180°(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)对顶角相等;(4)延长线段AB;(5)两个锐角的和是锐角.其中,(1)(2)(3)是正确的,(5)是错误的,我们称之为命题,(4)并没有对一件事情做出判断,它不是命题.1、命题的概念:判断一件事情的语句叫做命题.2、命题的组成:由题设和结论两部分组成.命题的题设是已知事项,结论是由已知事项推出的事项.我们通常把它写成“如果……,那么……”的形式.3、命题的真假真命题:如果题设成立,那么结论一定成立的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立的命题叫做假名题.练习:把下列命题改写成“如果……,那么……”的形式.(1)两直线平行,同位角相等;(2)对顶角相等;(3)同角的余角相等.定理:对于一些真命题,它们的正确性是我们经过推理证实的,而且我们只选择一些最基本最常用的命题作为定理.注:定理教科书中是用黑体字印刷的.证明:判断一个命题的正确性的推理过程叫做证明.这就是说,证明是由命题的题设出发,经过正确的逻辑推理,最后得出结论成立的过程,每一步推理的根据可以是已知条件,也可以是定义,学过的公理、定理、定律、公式、性质、法则等.。
几何综合问题以几何为主的综合题常研究以下几个方面的问题: ① 证明线段、角的数量关系(包括相等、和、差、倍、分关系及比例关系等);② 证明图形的位置关系(如点与线、线与线、线与圆、圆与圆等);③ 几何计算问题;④ 动态几何问题.在解几何综合题时,常常需要画图并分解其中的基本图形,挖掘其中隐含的等量关系.另外,也要注意使用数形结合、方程、分类讨论、转化等数学思想方法来解决问题.有时借助变换的观点也能帮助我们更有效地找到解决问题的思路.例1.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .例2.已知:在如图1所示的锐角三角形ABC 中,CH⊥AB 于点H ,点B 关于直线CH 的对称点为D ,AC 边上一点E 满足∠EDA =∠A,直线DE 交直线CH 于点F .(1) 求证:BF ∥AC ;(2) 若AC 边的中点为M ,求证:2DF EM ; (3) 当AB=BC 时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图 1图2例3.已知:如图,N、M是以O为圆心,1为半径的圆上的两点,B是MN上一动点(B不与点M、N重合),∠MON=90°,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)四边形EPGQ (填“是”或者“不是”)平行四边形;(2)若四边形EPG Q是矩形,求OA的值.。
第一讲:圆的基本概念、性质及其关系知识精解一、概念、性质的要点回顾1. 圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.平面内到定点O的距离等于定长R的点所组成的图形叫做圆,记作⊙O.2. 等弧:在同圆或等圆中,能够互相________的弧叫做等弧.问题:长度相等的两条弧是等弧吗?为什么?3. 圆周角定义的两个基本特征:(1)顶点在_______上;(2)两边都和圆相交。
二、关于确定圆的条件剖析定理:过____________________上的三个点确定一个圆.1)“确定”的含义:过不在一直线上的三点能作圆,并且只能作一个圆(存在性唯一性).2)由于任意一个三角形的三个顶点都不在同一直线上,所以由定理可知,经过三角形三个顶点可以作且只能作一个圆.(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的____________,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形_________圆的圆心叫做这个三角形的外心.三角形的外心是三角形三边中垂线的交点.(3)如图:⊙O称为△ABC的外接圆,△ABC称为⊙O的内接三角形,O为三角形A BC的外心。
三、重要的等量关系在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
四、圆周角定理(1)圆周角的度数等于它所对的弧(或圆心角)的度数的_______.(2)半圆(或直径)所对的圆周角是_______,90°的圆周角所对的弦是_____.(3)如果三角形一边上的中线等于这边的一半,那么这边所对的内角等于_______°.。
学科:数学专题:对两圆的位置关系的讨论 主讲教师:黄炜 北京四中数学教师重难点易错点解析题一:题面:若⊙A 和⊙B 相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为______________________. 金题精讲题一:题面:如图在直角△ABC 中,∠ACB =90°,AC =8cm ,BC =6cm ,分别以A 、B 为圆心,以2AB 的长为半径作圆,将直角△ABC 截去两个扇形,则剩余(阴影)部分的面积为( )A . 22524cm 4π⎛⎫- ⎪⎝⎭B .225cm 4πC .2524cm 8π⎛⎫- ⎪⎝⎭D .22524cm 6π⎛⎫-⎪⎝⎭ 满分冲刺题一: 题面:点O 在直线AB 上,点A 1 ,A 2, A 3…在射线OA 上,点B 1 ,B 2, B 3…在射线OB 上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M 从O 点出发,按如图所示的箭头方向沿实线段和以O 为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M 到达A 101点处所需时间为 .题二:题面:如图,已知AB是⊙O直径,C是⊙O上一点,CD⊥AB于D,以C为圆心,CD为半径作圆,交⊙O于P、Q,PQ交CD于G.求证:CG=GD.题三:题面:已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上. 设C是⊙P上一点,过点C与⊙P相切的直线交⊙O于A、B两点.⑴若点C在线段OP上,(如图①).求证:PA·PB=2Rr;⑵若点C不在线段OP上,但在⊙O内部如图②. 此时,⑴中的结论是否成立?若成立,请给予证明;若不成立,说明理由;⑶若点C在⊙O的外部,如图③. 此时,PA·PB与R,r的关系又如何?请直接写出,不要求给予证明或说明理由.题四:题面:如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=3,P为直线l上一动点,以1cm 为半径的⊙P 与⊙O 没有公共点,设PO =dcm ,则d 的范围是.l (第16题图)B AOP 课后练习详解重难点易错点解析题一:答案:10cm 或6cm解析:当⊙A 与⊙B 外切时,圆心距A B 等于两圆的半径之和,即8+2=10(cm );当⊙O 1与⊙O 2内切时,圆心距O 1O 2等于两圆的半径之差,即8-2=6(cm ).故答案为:10cm 或6cm.金题精讲题一:答案:A解析:由图形可知,阴影部分的面积=直角三角形的面积-两个扇形的面积和.如图,S 阴影=S △ABC -(S 扇形Ⅰ+S 扇形Ⅱ)=12×8×6-2905360πg =24-254π,故选A .满分冲刺题一:答案:5050 π+101.解析:根据题目中的条件求出到达A 1 ,A 2, A 3…的时间,找出其中具有的规律,从而求出动点M 到达A 101点处所需时间.动点M 到达A 1的时间为1,到达A 2的时间为(12)2π++ ,到达A 3的时间为(12)3π++,到达A 4的时间为(123)4π+++,……,所以到达A 101的时间为(12100)101π++++L =5050 π+101. 题二:答案:延长DC 交⊙C 于E ,延长CD 交⊙O 于F ,由相交弦定理,得PG ·GQ =CG ·GF =CG ·(GD +DF )PG ·GQ =DG ·GE =DG ·(GC +CE )∴ CG ·(GD +DF )=DG ·(GC +CE ).整理得:CG ·DF =DG ·CE ,由直径AB ⊥弦CF ,得DF =DC =CE ,∴CG =DG解析:证明CG =DG ,而CG 、DG 既不是圆周上的弦,又不在一个三角形中,全等、三线合一等这些常用来证明线段相等的方法都不可能.观察图形最大的特点是两圆相交,公共弦PQ 将两圆中的线段关系联系在一起,所以可以用相交弦定理,转换线段的关系,则作辅助线以便使用相交弦定理.题三:答案:⑴见详解;⑵⑴中的结论成立.⑶PA ·PB =2Rr ..解析:(1)证明:延长PO 交⊙O 于点Q ,连结AQ ,如图(1).∵AB 与⊙P 相切于点C ,且PC 是⊙P 的半径,∴AB ⊥PC ,即∠PCB =90°.又∵PQ 是⊙O 的直径,∴∠PAQ =90°.∵∠PQA =∠PBC ,∴Rt △PAQ ∽Rt △PCB , ∴PB PQ PC PA = 即 PA ·PB =PQ ·PC . 又∵PQ =2R ,PC =r,∴PA ·PB =2Rr(2)(1)中的结论成立.证明:连结PO 并延长交⊙O 于点Q ,连结AQ ,PC ,如图(2).由已知条件,得∠PAQ =∠PCB =90°.又∠PQA =∠PBC ,∴Rt △PAQ ∽Rt △PCB ,∴PBPQ PC PA =, 即PA ·PB =PQ ·PC =2Rr .(3)PA ·PB =2Rr .题四:答案:2cm<d <3cm 或d >5cm解析:如图16-1,过点O 作OC ⊥AB ,连接OA 、OP ,∵OC ⊥AB ,AB =43∴AC =BC =1232AB =,∵AO=4∴. OC=(图16-1)∴.当⊙P与⊙O外切时,如图16-2和图16-3,PO=R+r=5(图16-2)(图16-3)当⊙P与⊙O内切时,如图16-4和图16-5,PO=R-r=3(图16-4)(图16-5)∴2<d<3或d>5初中数学试卷。
数形结合问题 数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.例1. 如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A, 顶点为B, 且对称轴与x 轴交于点C.(1)求点B 的坐标 (用含m 的代数式表示);(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.例2.在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M,直线2 2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.。
《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC =78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸第5题图 第6题图 第8题图6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( ) A.1条 B.2条 C.3条 D.4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交; 【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】2个;【解析】直线与圆的位置关系:相离、相切、相交.判定方法有两种:一是看它们的公共点的个数;二是比较圆心到直线的距离与圆的半径的大小.实际上这两种方法是等价的,由题意可知,圆的半径为6.5cm ,而圆心到直线的距离6cm<6.5cm ,所以直线与圆相交,有2个公共点.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°, ∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC = ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】(1)在BF 上取点P ,连AP 交⊙O 于点D ,过D 作⊙O 切线,交OF 于E ,如图即为所求. (2)∠EDP=∠DPE ,或ED=EP 或△PDE 是等腰三角形. (3)根据题意,得△PDE 是等腰三角形, ∴ ∠EDP=∠DPE , ∴,在Rt △OAP 中,,∴,自变量x 的取值范围是且.19.【答案与解析】解:∵公共弦AB =120 ∴==a R 46120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=∠====O a R AB o1446012022602,, ()∴=-⎛⎝ ⎫⎭⎪=-==r R a O o 442422222602606090,∠S S S R a r AmB AO B AO B弓形扇形=-=-=-229036012180036004244∆ππS S S R a r AnB AO B AO B弓形扇形=-=-=-1160360122400360036266∆ππ()∴=+=-+S S S AmB AnB 阴影弓形弓形4200360013πH()[]∴-+两圆相交弧间阴影部分的面积为42003600132πcm .20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =(2)180n n-°时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .灿若寒星制作。
《圆》全章复习与巩固—知识讲解(基础)撰稿:张晓新审稿:杜少波【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系. 2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为.【答案】13;【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ 112EF OE ==,∴ 223OF OE EF -= 在Rt △DFO 中,OF 3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26.【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .【答案】65°.【解析】连结OD,则∠DOB = 40°,设圆交y轴负半轴于E,得∠DOE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°【答案】本题可先求出∠BAC的度数,∠BAC所对的弧是优弧,则该弧所对的圆心角度数为360°-120°=240°,所以,因此,.故选B.类型三、与圆有关的位置关系【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图所示,已知正方形的边长为a,求阴影部分的面积.【答案与解析】(几何方法)∵ 正方形边长为a , ∴ 2S a =正方形,2221112228a S R a πππ⎛⎫=== ⎪⎝⎭半圆.∵ 22S S S -=正方形半圆个空白处,∴ 2222211284S a a a a ππ=-⨯=-个空白处. ∴ 22421222S S a a π==-个空白处个空白处. ∴ 22222411222S S S a a a a a ππ⎛⎫=-=--=- ⎪⎝⎭阴影正方形个空白处. ∴ 阴影部分的总面积为2212a a π-.(代数解法)观察图形,可知2个“叶瓣”与1个空白组成1个半圆;4个“叶瓣”与4个空白组成一个正方形.设每个“叶瓣”面积为x ,每个空白面积为y ,则2222,244,a x y x y a π⎧⎛⎫⎪⎪⎪⎝⎭+=⎨⎪⎪+=⎩①②由①×4-②,得22142x a a π=-,即为阴影部分的总面积. 【总结升华】比较以上两种方法,代数解法更加简捷,在运用此法时,不需把两个未知数求出来,只要求出表示阴影部分面积的代数式的值即可.叶形的总面积可看做四个半圆面积减去正方形面积,则22221144222a S S S a a a ππ⎛⎫=-=⨯-=- ⎪⎝⎭阴影正方形半圆.也可以用正方形面积减去四个空白处面积.以上均为几何方法,还可以设每个“叶瓣”面积为x ,每个空白面积为y ,列方程组解答.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,»AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交»AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是»AB 的中点, ∴ 1232AE AB ==,EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)(23)R R =-+.解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°. ∴ »AB 的长为120481803ππ⨯=(m).∴ 帆布的面积为8601603ππ⨯=(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以»AB 为底面的圆柱的侧面积.根据题意,应先求出»AB 所对的圆心角度数以及所在圆的半径,才能求»AB 的长. 举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB ,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm. 初中数学试卷。
《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC =78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸第5题图 第6题图 第8题图6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( ) A.1条 B.2条 C.3条 D.4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时, 圆周角为413608092⨯⨯=°°.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交; 【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】2个;【解析】直线与圆的位置关系:相离、相切、相交.判定方法有两种:一是看它们的公共点的个数;二是比较圆心到直线的距离与圆的半径的大小.实际上这两种方法是等价的,由题意可知,圆的半径为6.5cm ,而圆心到直线的距离6cm<6.5cm ,所以直线与圆相交,有2个公共点.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-,即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°, ∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC = ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】(1)在BF 上取点P ,连AP 交⊙O 于点D ,过D 作⊙O 切线,交OF 于E ,如图即为所求. (2)∠EDP=∠DPE ,或ED=EP 或△PDE 是等腰三角形. (3)根据题意,得△PDE 是等腰三角形, ∴ ∠EDP=∠DPE , ∴,在Rt △OAP 中,,∴,自变量x 的取值范围是且.19.【答案与解析】解:∵公共弦AB =120 ∴==a R 46120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=∠====O a R AB o1446012022602,, ()∴=-⎛⎝ ⎫⎭⎪=-==r R a O o 442422222602606090,∠S S S R a r AmB AO B AO B弓形扇形=-=-=-229036012180036004244∆ππS S S R a r AnB AO B AO B弓形扇形=-=-=-1160360122400360036266∆ππ()∴=+=-+S S S AmB AnB 阴影弓形弓形4200360013πH()[]∴-+两圆相交弧间阴影部分的面积为42003600132πcm .20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =(2)180n n-°时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .鼎尚图文**整理制作。
《圆》全章复习与巩固—知识讲解(基础)撰稿:张晓新审稿:杜少波【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为.【答案】13;【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ 112EF OE ==,∴ 223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD =.【答案】65°.【解析】连结OD,则∠D OB = 40°,设圆交y轴负半轴于E,得∠D OE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°【答案】本题可先求出∠BAC的度数,∠BAC所对的弧是优弧,则该弧所对的圆心角度数为360°-120°=240°,所以,因此,.故选B.类型三、与圆有关的位置关系【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图所示,已知正方形的边长为a ,求阴影部分的面积.【答案与解析】(几何方法)∵ 正方形边长为a , ∴ 2S a =正方形,2221112228a S R a πππ⎛⎫=== ⎪⎝⎭半圆.∵ 22S S S -=正方形半圆个空白处,∴ 2222211284S a a a a ππ=-⨯=-个空白处. ∴ 22421222S S a a π==-个空白处个空白处. ∴ 22222411222S S S a a a a a ππ⎛⎫=-=--=- ⎪⎝⎭阴影正方形个空白处. ∴ 阴影部分的总面积为2212a a π-.(代数解法)观察图形,可知2个“叶瓣”与1个空白组成1个半圆;4个“叶瓣”与4个空白组成一个正方形.设每个“叶瓣”面积为x ,每个空白面积为y ,则2222,244,a x y x y a π⎧⎛⎫⎪⎪⎪⎝⎭+=⎨⎪⎪+=⎩①②由①×4-②,得22142x a a π=-,即为阴影部分的总面积. 【总结升华】比较以上两种方法,代数解法更加简捷,在运用此法时,不需把两个未知数求出来,只要求出表示阴影部分面积的代数式的值即可.叶形的总面积可看做四个半圆面积减去正方形面积,则22221144222a S S S a a a ππ⎛⎫=-=⨯-=- ⎪⎝⎭阴影正方形半圆.也可以用正方形面积减去四个空白处面积.以上均为几何方法,还可以设每个“叶瓣”面积为x ,每个空白面积为y ,列方程组解答.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是AB 的中点, ∴ 1232AE AB ==,EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)(23)R R =-+.解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°. ∴ AB 的长为120481803ππ⨯=(m).∴ 帆布的面积为8601603ππ⨯=(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.初中数学试卷鼎尚图文**整理制作。
第三讲:《旋转》全章复习与巩固引例:1、如图,C 为BD 上一点,分别以BC 和CD 为边向同侧作等边ABC ECD ∆∆、,AD 和BE 相交于点M .①探究线段BE 和AD 的数量关系和位置关系.在图中你还发现了什么结论?②当ECD ∆绕点C 在平面内顺时针转动到如图所示的位置时,线段BE 和AD 有何关系?在转动的过程中,特别是在一些特殊的位置,你还会发现什么结论?有哪些结论是不随图形位置的变化而改变的呢?③如图,当转动到A 、D 、E 在一条直线上时,若BE=15cm ,AE=6cm ,求CD 的长度及∠AEB 的度数。
思考:在当ECD ∆绕点C 在平面内顺时针转动时,你能求出线段BE 的取值范围吗?当D 在等边△A BC 内部运动时,DA+DB+DC 有无最值?2、如图,D 是等边△ABC 内一点,将△ADC 绕C 点逆时针旋转,使得A 、D 两点的对应点分别为B 、E ,则旋转角为______,图中除△ABC 外,还有等边三角形是_____.3、已知E 为正△ABC 内任意一点.求证:以AE 、BE 、CE为边可以构成一个三角形.若∠BEC=113°,∠AEC=123°,求构成的三角形各角的度数.例1、已知D 是等边△ABC 外一点,∠BDC=120º.求证:AD=BD+DC例2:如图,在四边形ABCD 中,∠ABC=30°,∠ADC=60°,AD=D C .求证:BD 2=AB 2+BC 2.例3、正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上(1)如图连结DF 、BF,试问:当正方形AEFG 绕点A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例。
(2)若将正方形AEFG 绕点A 顺时针方向旋转,连结DG ,在旋转过程中,能否找到一条线段的长度与线段DG 的长度相等,并画图加以说明。
第三讲:与圆有关的位置关系
知识精解
一、点和圆的位置关系:数量特征:
点在圆内、点在圆内⇔d_____r;
点在圆上、点在圆上⇔d_____r;
点在圆外、点在圆外⇔d_____r.
二、由直线与圆的公共点的个数,得出
直线和圆的位置关系:
(1)相交:直线与圆有____个公共点时叫做直线和圆相交.这时直线叫做
圆的割线.
(2)相切:直线和圆有____公共点时,叫做直线和圆相切.这时直线叫做
圆的切线,唯一的公共点叫做______.
(3)相离:直线和圆______公共点时叫做直线和圆相离.
三、切线的判定方法:
(1)和圆只有_____个公共点的直线是圆的切线;
(2)圆心到直线的距离等于______的直线是圆的切线;
(3)经过______的外端且与半径_______的直线是圆的切线;
所以判定切线有三种方法,证题中常用后两种方法,
且往往需要添加辅助线。
自主学习
例1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r 为半径的圆与AB有怎样的位置关系?为什么?
(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米
例2.如图,P点是∠AOB的平分线OC上一点,PE⊥OA于E,以P为圆心,PE为半径作⊙P 。
求证:⊙P与OB相切。
例3. 如图,△ABC内接于⊙O,D为AB延长线上一点,且∠DCB=∠A,求证:CD是⊙O的切线。
例4.过点P作⊙O的切线
(1)点P在⊙O上
(2)点P在⊙O外
切线长定理
(1)切线长的概念
过圆外一点可作圆的两条切线,如图所示。
在经过圆外一点的圆的切线上,这点和_______之间的线段的长,叫做这点到圆的切线长。
(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长_____,圆心和这一点的连线_______两条切线的夹角。
例5.AB是⊙O的直径,BC切⊙O于B,AC交⊙O于D点,过D作⊙O的切线DE交BC于E.求证:CE=BE.
例6.已知:如图,P为⊙O外一点,PA、PB为⊙O的切线,A和B是切点,BC是直径。
求证:AC∥OP
圆与圆的位置关系
(1)圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:_______(含外离、内含)、_______(含内切、外切)、________;
(2)_______、_____统称为相切,唯一的公共点叫作_____;
(3)具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合。
设⊙O1的半径为R,⊙O2半径为r;两圆心O1O2的距离为d,则:
两圆外离⇔d____R+r
两圆外切⇔d____R+r 外离、内含叫做相离
两圆相交⇔R-r___d____R+r(R≥r)
两圆内切⇔d___R-r(R>r)外切、内切叫做相切
两圆内含⇔d____R-r(R>r)
图示:内含内切相交外切外离
R-r (R≥r) R+r
例7.如图,在12×6的网格图中(每个小正方形的边长均为1个单位长),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B相切,那么⊙A 由图示位置需向右平移个单位长.。