所以,经过伸缩变换后,直线 2x+4y=1 变成直线 x′+y′=1. (2)将 ①代入 x + y = 4,得到经过伸缩变换后的图形的方程为 x′2 y′2 + =4. 4 16
2 2 x ′ y ′ 所以,圆 x2+y2=4 经过伸缩变换后变成椭圆 + =1. 16 64 2 2
x ′ y′ 答案:(1)x′+y′=1 (2) + =4 4 16
2
2
5x'=x 例 3 在平面直角坐标系中,经过伸缩变换 曲线 C 变 4y'=y,
为曲线 x′2+y′2=1,求曲线 C 的方程. 解析:设曲线 C 上任意一点为(x,y),经过伸缩变换后对应点的 坐标为(x′,y′),
5x′=x, 由 得 4y′=y
x y 1 代入 x′ +y′ =1,得25+16=1. y′=4y.
题型二 伸缩变换
例 2 在平面直角坐标系中, 求下列方程所对应的图形经过伸缩
x'=2x, 变换 后的图形. y′=4y
(1)2x+4y=1;(2)x2+y2=4.
x′=2x, 解析:由伸缩变换式 得 y′=4y
1 y=4y′.
1 x= x′, 2
①
(1)将①代入 2x+4y=1,得到经过伸缩变换后的图形方程为 x′ +y′=1.
2.平面直角坐标系中的伸缩变换 (1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换 就可归纳为坐标伸缩变换,这就是用代数方法研究几何变换. (2)设点 P(x,y)是平面直角坐标系中的任意一点,在变换 ������' = ������������(������ > 0), φ: 的作用下,点 P(x,y)对应到点 P'(x',y'),称 φ 为平面直 ������' = ������������(������ > 0) 角坐标系中的坐标伸缩变换,简称伸缩变换.