2016年高考文科数学全国卷I
- 格式:doc
- 大小:1.61 MB
- 文档页数:21
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年新课标高考真题全国三卷文科数学一、单选题1.设集合4 = {0,2,4,6,8,10}1 = {4,8},则QB =A. {4,8}B. {0, 2,6}C. {0, 2, 6,10}D. {0,2, 4, 6, 8,10}2.若z = 4 + 3i,则高=()A. 1B. -1C. l+UD.D D D D3. (2016高考新课标HI,理3)已知向量方1 堂)前=(今]则乙4c=A. 30 °B. 45 0C. 60 °D. 120 °4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15:B点表示四月的平均最低气温约为5二.下面叙述不正确的是( )▼.均・低气* 一▼均MT*A.各月的平均最低气温都在0匚以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20:j的月份有5个5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M, 1,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是6.若tan6 =:,则cos26 =( )D- IA. B- 一! C.青7.已知a = = 3^c = 252,则D. c < a < b8 .执行下面的程序框图,如果输入的a=4, b=6,那么输出的n=() (W)n = =5][。
=6-0]■:[a = b + 司CWA. 3B. 4C. 5D. 69 .在△4BC 中,F = p BC 边上的高等于则sin/=10 .如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多11 .在封闭的直三棱柱— 内有一个体积为V 的球,若48 = 6,BC = 8,/& = 3,则该球体枳V 的最大值是932A. 4TTB. -7TC. 67rD. —n2312 .己知。
2016年普通高等学校招生全国统一考试文科综合能力测试第Ⅰ卷本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
我国是世界闻名的瓷古国,明清时期,“瓷都”是全国的瓷业中心,产品远销海外,20世纪80年代初,省市率先引进国外现代化瓷生产线,逐步发展成为全国乃至世界最大的瓷生产基地。
2003年,瓷主产区被划入中心城区围,瓷产业向等瓷产地转移。
据此完成1—3题。
1.与相比,20世纪80年代瓷业迅速发展的主要原因是()A.市场广阔B.原材料充足C.劳动力素质高D.国家政策倾斜2.促使瓷产业向外转移的主要原因是()A.产业结构调整B.原产料枯竭C.市场需求减小D.企业竞争加剧3.吸引瓷产业转移的主要优势是()A.资金充足B.劳动力成本低C.产业基础好D.交通运输便捷自20世纪50年代,荷兰的兰斯塔德地区经过多次空间规划,形成城市在外,郊区在的空间特征:该区中间是一个接近3000平方千米的“绿心”——乡村地带;四个核心城市和其他城镇呈环状分布在“绿心”的周围,城镇之间设置不可侵占的绿地,四个核心城市各具特殊职能,各城市分工明确,通过快速交通系统连接成具有国际竞争力的城市群,近20年来,该地区城镇扩展程度小,基本维持稳定的城镇结构体系。
据此完成4—6题。
4.兰斯塔德地区通过空间规划,限制了该地区各核心城市的()A.服务种类B.服务等级C.服务围D.服务人口5.兰斯塔德空姐规划的实施,显著促进该地区同类产业活动的()A.技术创新B.空间集聚C.市场拓展D.产品升级6.兰斯塔德空间规划的实施,可以()A.提高乡村人口比重B.降低人口密度C.促进城市竞争D.优化城市天地结构贝壳堤由死亡的贝类生物在海岸带堆积而成,在沿海地区经常分布着多条贝壳堤,标志着海岸线位置的变化,图1示意渤海湾沿岸某地区贝壳堤的分布。
据此完成7—9题7.在任一条贝壳堤的形成过程中,海岸线()A.向陆地方向推进B.向海洋方向推进C.位置稳定D.反复进退8.沿岸流动的海水搬运河流入处的泥沙,并在贝壳堤外堆积。
2016年全国高考文科数学试题(全国卷3)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则=(A)(B)(C)(D)(2)若,则=(A)1 (B)(C)(D)(3)已知向量=(,),=(,),则∠ABC=(A)30°(B)45°(C)60°(D)120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)(B)(C)(D)(6)若,则cos2θ=(A)(B)(C)(D)(7)已知则(A)(B) (C)(D)(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3 (B)4 (C)5 (D)6(9)在△ABC中,边上的高等于,则=(A)(B)(C)(D)(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)90 (D)81(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(A)(B)(C)(D)(12)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P 为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13)设满足约束条件则的最小值为______.(14)函数的图像可由函数的图像至少向右平移______个单位长度得到. (15)已知直线与圆交于A、B两点,过A、B分别作l的垂线与x轴交于C、D两点,则|CD|=______.(16)已知f(x)为偶函数,当时,,则曲线y= f(x)在点(1,2)处的切线方程式_________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知各项都为正数的数列满足,.(I)求;(II)求的通项公式.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,,,≈2.646.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求四面体N-BCM的体积.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数.(I)讨论的单调性;(II)证明当时,;(III)设,证明当时,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点。
2016年普通高等学校招生全国统一考试(江苏卷)数学本卷满分200分,考试时间150分钟.参考公式:样本数据x1,x2,…,x n的方差s2=(x i-)2,其中=x i.棱柱的体积V=Sh,其中S是棱柱的底面积,h是高.棱锥的体积V=Sh,其中S是棱锥的底面积,h是高.数学Ⅰ(共160分)一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=.2.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.3.在平面直角坐标系xOy中,双曲线-=1的焦距是.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.函数y=的定义域是.6.下图是一个算法的流程图,则输出的a的值是.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.已知{a n}是等差数列,S n是其前n项和.若a1+=-3,S5=10,则a9的值是.9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点个数是.10.如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是.12.已知实数x,y满足则x2+y2的取值范围是.13.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,·=4,·=-1,则·的值是.14.在锐角三角形ABC中,若sin A=2sin Bsin C,则tan Atan Btan C的最小值是.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos的值.16.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(本小题满分16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(本小题满分16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab的值.20.(本小题满分16分)记U={1,2,…,100}.对数列{a n}(n∈N*)和U的子集T,若T=⌀,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.数学Ⅱ(附加题,共40分)21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题作答...........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4—1:几何证明选讲](本小题满分10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E是BC的中点.求证:∠EDC=∠ABD.B.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A=,矩阵B的逆矩阵B-1=,求矩阵AB.C.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.D.[选修4—5:不等式选讲](本小题满分10分)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.23.(本小题满分10分)(1)求7-4的值;(2)设m,n∈N*,n≥m,求证:(m+1)+(m+2)+(m+3)+…+n+(n+1)=(m+1).2016年普通高等学校招生全国统一考试(江苏卷)一、填空题1.答案{-1,2}解析∵A={-1,2,3,6},B={x|-2<x<3},∴A∩B={-1,2}.2.答案5解析(1+2i)(3-i)=3+5i-2i2=5+5i,所以z的实部为5.3.答案2解析由-=1,得a2=7,b2=3,所以c2=10,c=,所以2c=2.4.答案0.1解析==5.1,则该组数据的方差s2==0.1.5.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.6.答案9解析代值计算,第一次运行后,a=5,b=7,第二次运行后,a=9,b=5,a>b,从而输出的a值为9.7.答案解析先后抛掷2次骰子,所有可能出现的情况可用数对表示为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),……(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.其中点数之和不小于10的有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个.从而点数之和小于10的数对共有30个,故所求概率P==.8.答案20解析设等差数列{a n}的公差为d,则由题设可得解得从而a9=a1+8d=20.解后反思数列的计算求值问题一般应以“基本元素”为主.9.答案7解析在同一平面直角坐标系中作出y=sin2x与y=cos x在区间[0,3π]上的图象(如图).由图象可知,共有7个交点.思路分析解决交点个数问题一般采用“数形结合”的思想方法,因此准确画出相关函数图象是解题的关键.10.答案解析由已知条件易得B,C,F(c,0),∴=,=,由∠BFC=90°,可得·=0,所以+=0,c2-a2+b2=0,即4c2-3a2+(a2-c2)=0,亦即3c2=2a2,所以=,则e==.思路分析圆锥曲线中垂直问题往往转化为向量垂直.利用向量数量积为零转化为数量关系.11.答案-解析∵f(x)是周期为2的函数,∴f=f=f,f=f=f,又∵f=f,所以f=f,即-+a=,解得a=,则f(5a)=f(3)=f(4-1)=f(-1)=-1+=-.思路分析由f(x)的周期为2联想到周期函数的性质f(x+T)=f(x),把f、f进行转化,进而利用f=f求得a的值,最后求f(5a).12.答案解析画出不等式组表示的可行域如图:由x-2y+4=0及3x-y-3=0得A(2,3),由x2+y2表示可行域内的点(x,y)与点(0,0)的距离的平方可得(x2+y2)max=22+32=13,(x2+y2)min=d2==,其中d表示点(0,0)到直线2x+y-2=0的距离,所以x2+y2的取值范围为.解后反思对于线性规划问题,要正确作出可行域,并理解目标函数的几何意义,分清常规的“距离型”“斜率型”与“截距型”是解题的关键.13.答案解析由已知可得=+=+=-=(-)-(+)=-,=+=+=-=(-)-(+)=-,=+=+=(-)-(+)=-,=+=+=(-)-(+)=-,因为·=4,所以·=4,则·=·=·--+·=·-(+)=×4-(+)=-1,所以+=,从而·=·=--+·=-(+)+·=-×+×4==.思路分析合理选择“基底”,把相关向量用“基底”表示出来,进而求得向量的数量积.14.答案8解析∵sin A=2sin Bsin C,∴sin(B+C)=2sin Bsin C,即sin Bcos C+cos Bsin C=2sin Bsin C,亦即tan B+tan C=2tan Btan C,∵tan A=tan[π-(B+C)]=-tan(B+C)=-=,又△ABC为锐角三角形,∴tan A=>0,tan B+tan C>0,∴tan Btan C>1,∴tan Atan Btan C=·tan B·tan C=,令tan Btan C-1=t,则t>0,∴tan Atan Btan C==2≥2×(2+2)=8,当且仅当t=,即tan Btan C=2时,取“=”.∴tan Atan Btan C的最小值为8.方法总结三角求值问题中,角的变换是重点,也是探求解题途径的切入点,把已知条件sin A=2sin Bsin C转化为sin Bcos C+cos Bsin C=2sin Bsin C进而得到tan B+tan C=2tan Btan C,再把tan A用tan B、tan C表示出来,从而将tan Atan Btan C用含tan B、tan C的式子表示出来,这是解题的关键.二、解答题15.解析(1)因为cos B=,0<B<π,所以sin B===.由正弦定理知=,所以AB===5.(2)在△ABC中,A+B+C=π,所以A=π-(B+C),于是cos A=-cos(B+C)=-cos=-cos Bcos+sin B·sin,又cos B=,sin B=,故cos A=-×+×=-.因为0<A<π,所以sin A==.因此,cos=cos Acos+sin Asin=-×+×=.16.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.17.解析(1)由PO1=2知O1O=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积V锥=·A1·PO1=×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,O1O=4h.连结O1B1.因为在Rt△PO1B1中,O1+P=P,所以+h2=36,即a2=2(36-h2).于是仓库的容积V=V柱+V锥=a2·4h+a2·h=a2h=(36h-h3),0<h<6,从而V'=(36-3h2)=26(12-h2).令V'=0,得h=2或h=-2(舍).当0<h<2时,V'>0,V是单调增函数;当2<h<6时,V'<0,V是单调减函数.故h=2时,V取得极大值,也是最大值.因此,当PO1=2m时,仓库的容积最大.方法小结(1)注意正四棱锥与正四棱柱底面相同,高的倍数关系.(2)选择中间关联变量PO1为主变量把相关边长与高用主变量表示出来.再把容积表示成主变量的函数.转化成求函数最值的问题.再考虑用导数求解.18.解析圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].19.解析(1)因为a=2,b=,所以f(x)=2x+2-x.①方程f(x)=2,即2x+2-x=2,亦即(2x)2-2×2x+1=0,所以(2x-1)2=0,于是2x=1,解得x=0.②由条件知f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x))2-2.因为f(2x)≥mf(x)-6对于x∈R恒成立,且f(x)>0,所以m≤对于x∈R恒成立.而=f(x)+≥2=4,且=4,所以m≤4,故实数m的最大值为4.(2)因为函数g(x)=f(x)-2只有1个零点,而g(0)=f(0)-2=a0+b0-2=0,所以0是函数g(x)的唯一零点.因为g'(x)=a x ln a+b x ln b,又由0<a<1,b>1知ln a<0,ln b>0,所以g'(x)=0有唯一解x0=lo.令h(x)=g'(x),则h'(x)=(a x ln a+b x ln b)'=a x(ln a)2+b x(ln b)2,从而对任意x∈R,h'(x)>0,所以g'(x)=h(x)是(-∞,+∞)上的单调增函数.于是当x∈(-∞,x0)时,g'(x)<g'(x0)=0;当x∈(x0,+∞)时,g'(x)>g'(x0)=0.因而函数g(x)在(-∞,x0)上是单调减函数,在(x0,+∞)上是单调增函数.下证x0=0.若x0<0,则x0<<0,于是g<g(0)=0.又g(log a2)=+-2>-2=0,且函数g(x)在以和log a2为端点的闭区间上的图象不间断,所以在和log a2之间存在g(x)的零点,记为x1.因为0<a<1,所以log a2<0.又<0,所以x1<0,与“0是函数g(x)的唯一零点”矛盾.若x0>0,同理可得,在和log b2之间存在g(x)的非0的零点,矛盾.因此,x0=0.于是-=1,故ln a+ln b=0,所以ab=1.20.解析(1)由已知得a n=a1·3n-1,n∈N*.于是当T={2,4}时,S T=a2+a4=3a1+27a1=30a1.又S T=30,故30a1=30,即a1=1.所以数列{a n}的通项公式为a n=3n-1,n∈N*.(2)因为T⊆{1,2,…,k},a n=3n-1>0,n∈N*,所以S T≤a1+a2+…+a k=1+3+…+3k-1=(3k-1)<3k.因此,S T<a k+1.(3)下面分三种情况证明.①若D是C的子集,则S C+S C∩D=S C+S D≥S D+S D=2S D.②若C是D的子集,则S C+S C∩D=S C+S C=2S C≥2S D.③若D不是C的子集,且C不是D的子集.令E=C∩∁U D,F=D∩∁U C,则E≠⌀,F≠⌀,E∩F=⌀.于是S C=S E+S C∩D,S D=S F+S C∩D,进而由S C≥S D得S E≥S F.设k为E中的最大数,l为F中的最大数,则k≥1,l≥1,k≠l.由(2)知,S E<a k+1.于是3l-1=a l≤S F≤S E<a k+1=3k,所以l-1<k,即l≤k.又k≠l,故l≤k-1.从而S F≤a1+a2+…+a l=1+3+…+3l-1=≤=≤,故S E≥2S F+1,所以S C-S C∩D≥2(S D-S C∩D)+1,即S C+S C∩D≥2S D+1.综合①②③得,S C+S C∩D≥2S D.解后反思(1)考查等比数列通项公式及等比数列项的求解与计算,通法“基本元素法”依旧适用,只不过是创新背景,语言理解要准确.(2)数列求和与不等式放缩结合,注意放缩适度.(3)间接证明与数列结合,有一定难度.21.A.证明在△ADB和△ABC中,因为∠ABC=90°,BD⊥AC,∠A为公共角,所以△ADB∽△ABC,于是∠ABD=∠C.在Rt△BDC中,因为E是BC的中点,所以ED=EC,从而∠EDC=∠C.所以∠EDC=∠ABD.B.解析设B=,则B-1B==,即=,故解得所以B=.因此,AB==.C.解析椭圆C的普通方程为x2+=1.将直线l的参数方程代入x2+=1,得+=1,即7t2+16t=0,解得t1=0,t2=-.所以AB=|t1-t2|=.D.证明因为|x-1|<,|y-2|<,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×+=a.22.解析(1)抛物线C:y2=2px(p>0)的焦点为,由点在直线l:x-y-2=0上,得-0-2=0,即p=4.所以抛物线C的方程为y2=8x.(2)设P(x1,y1),Q(x2,y2),线段PQ的中点M(x0,y0).因为点P和Q关于直线l对称,所以直线l垂直平分线段PQ,于是直线PQ的斜率为-1,则可设其方程为y=-x+b.①由消去x得y2+2py-2pb=0.(*)因为P和Q是抛物线C上的相异两点,所以y1≠y2,从而Δ=(2p)2-4×(-2pb)>0,化简得p+2b>0.方程(*)的两根为y1,2=-p±,从而y0==-p.因为M(x0,y0)在直线l上,所以x0=2-p.因此,线段PQ的中点坐标为(2-p,-p).②因为M(2-p,-p)在直线y=-x+b上,所以-p=-(2-p)+b,即b=2-2p.. 由①知p+2b>0,于是p+2(2-2p)>0,所以p<.因此,p 的取值范围是.23.解析(1)7-4=7×-4×=0.(2)当n=m时,结论显然成立.当n>m时,(k+1)==(m+1)·=(m+1),k=m+1,m+2,…,n.又因为+=,所以(k+1)=(m+1)(-),k=m+1,m+2,…,n.因此,(m+1)+(m+2)+(m+3)+…+(n+1)=(m+1)+[(m+2)+(m+3)+…+(n+1)]=(m+1)+(m+1)[(-)+(-)+…+(-)]=(m+1).'.。
2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合{123}A =,,,2{|9}B x x =<,则A B = (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},(2)设复数z 满足i 3i z +=-,则z =(A )12i -+(B )12i -(C )32i +(D )32i -(3) 函数=sin()y A x ωϕ+的部分图像如图所示,则(A )2sin(2)6y x π=- (B )2sin(2)3y x π=- (C )2sin(2+)6y x π= (D )2sin(2+)3y x π=(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为(A )12π(B )323π(C )8π(D )4π (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12(B )1 (C )32(D )2 (6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43(B )−34(C D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(A )710(B )58(C )38(D )310(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =(A )7(B )12(C )17(D )34(10) 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是(A )y =x (B )y =lg x (C )y =2x (D )y= (11) 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4(B )5 (C )6 (D )7(12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑ (A)0 (B)m (C) 2m (D) 4m二.填空题:共4小题,每小题5分.(13) 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.(14) 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________(15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________.(16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+=(I )求{n a }的通项公式;(II)设n b =[n a ],求数列{n b }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2(18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:学科.网随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。
2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)(B)(C)(D)解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b等于( D )(A)(B)(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×,解得b=3(b=-舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( B )(A)(B)(C)(D)解析:设椭圆方程为+=1(a>b>0)(-c,0),B(0,b)F1点O到直线l的距离为OM,则OM=.O中,=sin 30°,=,所以∠OBM=30°,在△BF1所以e=.故选B.6.(2016·全国Ⅰ卷,文6)若将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.7.(2016·全国Ⅰ卷,文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( A )(A)17π(B)18π(C)20π(D)28π解析:因为·πR3=π,所以R=2.S=·4π·R2+3·πR2=17π,故选A.8.(2016·全国Ⅰ卷,文8)若a>b>0,0<c<1,则( B )(A)loga c<logbc (B)logca<logcb(C)a c<b c (D)c a>c b 解析:由题意令a=4,b=2,c=.A选项:loga c=-,logbc=-1,logac>logbc,A错误.B选项:logc a=-2,logcb=-1,logca<logcb,B正确.同理C,D选项错误,故选B.9.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:结合图象f(-x)=f(x),函数为偶数,在[0,2]区间内,f(x)=2x2-e x,f′(x)=4x-e x.当0<x<时,f′(x)<0.当<x<2时,f′(x)>0.得出f(x)在(0,)上为减函数,在(,2)上为增函数.故选D.10.(2016·全国Ⅰ卷,文10)执行如图所示的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( C )(A)y=2x (B)y=3x (C)y=4x (D)y=5x 解析:当x=0,y=1,n=1,x=0,y=1,x2+y2=1<36,当n=2时,x=,y=2,x2+y2<36,当n=3时,x=+=,y=2×3=6,x2+y2>36,输出x=,y=6,令y=kx,得k=4,所以y=4x.故选C.11.(2016·全国Ⅰ卷,文11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( A )(A) (B) (C)(D)解析:在正方体ABCD A1B1C1D1中,由题意,直线m∥BD,直线n∥A1B,则△A1DB为等边三角形,∠DBA1=60°,sin 60°=,所以m,n所成角的正弦值为,故选A.12.(2016·全国Ⅰ卷,文12)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:排除法:令a=-1,f(x)=x-sin 2x-sin x=x-sin xcos x-sin x,f′(x)=-cos 2x-cos x=-(cos x+)2,当cos x=1时,f′(x)=-<0,因为f(x)在(-∞,+∞)上为增函数,所以f′(x)>0在(-∞,+∞)上恒成立,所以a=-1不正确,排除A,B,D.故选C.13.(2016·全国Ⅰ卷,文13)设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .解析:因为a⊥b,所以a·b=(x,x+1)·(1,2)=x+2x+2=0,x=-.答案:-14.(2016·全国Ⅰ卷,文14)已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:因为θ+-(θ-)=,所以(θ-)=.因为θ在第四象限,所以sin(θ-)=-,tan(θ-)==-.答案:-15.(2016·全国Ⅰ卷,文15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.解析:因为x2+y2-2ay-2=0,所以x2+(y-a)2=2+a2,点(0,a)到直线y=x+2a的距离h==.2+a2-=3,所以a2=2,所以r2=2+a2=4,圆面积S=πr2=4π.答案:4π16.(2016·全国Ⅰ卷,文16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.解析:设生产A产品x件,B产品y件,产品A,B的利润之和为z.则z=2 100x+900y.画出可行域.解得所以z=2 100×60+900×100=216 000,所以生产产品A、产品B的利润之和的最大值为216 000元. 答案:216 00017.(本小题满分12分)(2016·全国Ⅰ卷,文17)已知{an }是公差为3的等差数列,数列{bn}满足b 1=1,b2=,anbn+1+bn+1=nbn.(1)求{an}的通项公式;(2)求{bn}的前n项和.解:(1)由已知a1b2+b2=b1,b1=1,b2=,得a1=2.所以数列{an }是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和an bn+1+bn+1=nbn得bn+1=,因此{bn}是首项为1,公比为的等比数列.记{bn}的前n项和为Sn,则Sn==-.18.(本小题满分12分)(2016·全国Ⅰ卷,文18)如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.(1)证明G是AB的中点;(2)作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.解:(1)因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由已知可得PA=PB,从而G是AB的中点.(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=××2×2×2=.19.(本小题满分12分)(2016·全国Ⅰ卷,文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解:(1)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y与x的函数解析式为y=(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为(3 800×70+4 300×20+4 800×10)=4 000元.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为(4 000×90+4 500×10)=4 050元.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.20.(本小题满分12分)(2016·全国Ⅰ卷,文20)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其他公共点?说明理由.解:(1)由已知得M(0,t),P(,t).又N为M关于点P的对称点,故N(,t),ON的方程为y=x,代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=,因此H(,2t),所以N为OH的中心,即=2.(2)直线MH与C除H以外没有其他公共点.理由如下: 直线MH的方程为y-t=x,即x=(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.21.(本小题满分12分)(2016·全国Ⅰ卷,文21)已知函数f(x)=(x-2)e x+a(x-1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.②设a<0,由f′(x)=0得x=1或x=ln(-2a).③若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x∈(ln(-2a),1)时,f′(x)<0,所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减.④若a<-,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(1,ln(-2a))时,f′(x)<0,所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递增. (2)①设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且<ln,则f(b)>(b-2)+a(b-1)2=a(b2-b)>0,所以f(x)有两个零点.②设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.③设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1时f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)<0,故f(x)不存在两个零点.综上,a的取值范围为(0,+∞).22.(本小题满分10分)(2016·全国Ⅰ卷,文22)(选修4-1:几何证明选讲)如图,△OAB是等腰三角形,∠AOB=120°.以☉O为圆心,OA为半径作圆.(1)证明:直线AB与☉O相切;(2)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥CD.解:(1)设E是AB的中点,连接OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.在Rt△AOE中,OE=AO,即O到直线AB的距离等于☉O半径,所以直线AB与☉O相切.(2)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB. 同理可证,OO′⊥CD,所以AB∥CD.23.(本小题满分10分)(2016·全国Ⅰ卷,文23)(选修44:坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2: =4cos .(1)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为=a,其中a满足tan a=2,若曲线C1与C2的公共点都在C3上,求a.解:(1)消去参数t得到C1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=1,a=1(舍去).a=1时,极点也为C1,C2的公共点,在C2上,所以a=1.24.(本小题满分10分)(2016·全国Ⅰ卷,文24)(选修45:不等式选讲)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)f(x)=y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为{x x<或x>5}.所以|f(x)|>1的解集为{x x<或1<x<3或x>5}.2016年普通高等学校招生全国统一考试Ⅱ文科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅱ卷,文1)已知集合A={1,2,3},B={x|x2<9},则A∩B等于( D )(A){-2,-1,0,1,2,3} (B){-2,-1,0,1,2}(C){1,2,3} (D){1,2}解析:B={x|-3<x<3},A∩B={1,2}.故选D.2.(2016·全国Ⅱ卷,文2)设复数z满足z+i=3-i,则等于( C )(A)-1+2i (B)1-2i(C)3+2i (D)3-2i解析:z=3-2i,=3+2i.故选C.3.(2016·全国Ⅱ卷,文3)函数y=Asin(ωx+ϕ)的部分图像如图所示,则( A )(A)y=2sin(2x-)(B)y=2sin(2x-)(C)y=2sin(x+)(D)y=2sin(x+)解析:T=2(+)=π=得ω=2,A=2.当x=时,y=2sin(2x+ϕ)=2,+ϕ=+2kπ,k∈Z,ϕ=-+2kπ,k∈Z.故选A.4.(2016·全国Ⅱ卷,文4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( A )(A)12π(B)π(C)8π(D)4π解析:由题知正方体棱长为2,球的直径为2,半径R=,则球的表面积S=4πR2=12π.故选A.5.(2016·全国Ⅱ卷,文5)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x 轴,则k等于( D )(A)(B)1 (C)(D)2解析:由题P(1,2),2=k.故选D.6.(2016·全国Ⅱ卷,文6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a等于( A )(A)-(B)-(C)(D)2解析:同全国Ⅱ理4解析.7.(2016·全国Ⅱ卷,文7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:几何体的表面积为S=π·2×+2π·2×4+π22=8π+16π+4π=28π.故选C.8.(2016·全国Ⅱ卷,文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( B )(A)(B)(C)(D)解析:由题至少等15秒遇绿灯的概率为P==.故选B.9.(2016·全国Ⅱ卷,文9)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于( C )(A)7 (B)12 (C)17 (D)34解析:由输入x=2,n=2.k=0,S=0,a=2,则S=2,k=1<n,再输入a=2,得S=6,k=2=n,再输入a=5,得S=17,k=3>n,输出S=17.故选C.10.(2016·全国Ⅱ卷,文10)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( D )(A)y=x (B)y=lg x(C)y=2x(D)y=解析:由y=10lg x定义域值域均为(0,+∞),与D符合.故选D.11.(2016·全国Ⅱ卷,文11)函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:f(x)=1-2sin2x+6sin x=-2(sin2x-3sin x)+1=-2[(sin x-)2-]+1=-2(sin x-)2+.当sin x=1时,f(x)max=5.故选B.12.(2016·全国Ⅱ卷,文12)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi等于( B )(A)0 (B)m (C)2m (D)4m解析:由题y=f(x)与y=|x2-2x-3|均关于x=1对称.则两函数交点个数m为偶数.=×2=m.故选B.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.(2016·全国Ⅱ卷,文13)已知向量a=(m,4),b=(3,-2),且a∥b,则m= .解析:由题-2m+12=0,m=6.答案:614.(2016·全国Ⅱ卷,文14)若x,y满足约束条件则z=x-2y的最小值为.解析:由线性约束条件得可行域如图则z=x-2y在B(3,4)处取得最小值为3-2×4=-5.答案:-515.(2016·全国Ⅱ卷,文15)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=, cos C=,a=1,则b= .解析:解析:由题sin A=,sin C=,sin B=sin(A+C)=sin Acos C+cos Asin C=×+×=.则由=得b===.答案:16.(2016·全国Ⅱ卷,文16)有三张卡片,分别写有1和2,1和3,2和3,甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.解析:设三张卡片分别为A(1,2),B(1,3),C(2,3),由丙得数字和不是5,则丙的卡片可能为A或B.若丙为A(1,2),则乙为C(2,3),甲为B(1,3)合题,若丙为B(1,3),则甲、乙为相同数字2,不合题.答案:1,3三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2016·全国Ⅱ卷,文17)等差数列{an }中,a3+a4=4,a5+a7=6.(1)求{an}的通项公式;(2)设bn =[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.解:(1)设数列{an }的公差为d,由题意有2a1+5d=4,a1+5d=3.解得a1=1,d=.所以{an }的通项公式为an=.(2)由(1)知,bn=[].当n=1,2,3时,1≤<2,bn=1;当n=4,5时,2≤<3,bn=2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4≤<5,bn=4.所以数列{b}的前10项和为1×3+2×2+3×3+4×2=24.n18.(本小题满分12分)(2016·全国Ⅱ卷,文18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出0 1 2 3 4 ≥5险次数保费0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数0 1 2 3 4 ≥5频数60 50 30 30 20 10(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a 2a 频率0.30 0.25 0.15 0.15 0.10 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.19.(本小题满分12分)(2016·全国Ⅱ卷,文19)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD 上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.由此得EF⊥HD,EF⊥HD′,所以AC⊥HD′.(2)解:由EF∥AC得==.由AB=5,AC=6得DO=BO==4.所以OH=1,D′H=DH=3.于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.所以五棱锥D′-ABCFE的体积V=××2=.20.(本小题满分12分)(2016·全国Ⅱ卷,文20)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0.曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.设g(x)=ln x-,则g′(x)=-=,g(1)=0.(ⅰ)当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0。
正确答案1、D2、B3、B4、B5、B6、C7(1)(皇帝)赏赐宴会(你)没有参加,这是对君命的不恭敬。
君主患有疾病,却一定要让他亲自来参加宴会,(你)对这种做法能觉得安心吗?(赐、虔、处各一分,句意表达两分)(2)苏轼曾经态度严正地责备曾公亮不能匡救补正,世人讥讽(批评)曾公亮贪持俸禄,稳固恩宠。
(从容、救正、固各一分,句意表达两分)8、诗的首联运用比喻夸张的手法,描写了长江绵延万里、支流众多的宏大景象;颔联则回想江水泛滥造成的影响来写近古国运不兴。
诗的前四句起势不凡,照应题目,为歌颂大唐盛世蓄势。
9、诗歌尾联运用任公子的典故,含蓄地写出了盛唐王朝无内忧外患、国泰民安的盛世景象,同时也流露出作者盛世才子无用武之地的淡淡惆怅。
10、(1)上食埃土,下饮黄泉(2)今天下三分,益州疲弊(3)封狼居胥,赢得仓皇北顾11、(1)B、D(2)小说以“锄”为标题,具有双关意义,既是六安爷手中的劳动工具,又是六安爷的精神寄托;同时象征在农耕文明与工业文明的冲突中,农耕文明渐失的社会现状。
(3)表明农耕文明历史悠久;突出农业生产对人们生活的重要意义;表明农耕对人们精神情感的重要性,为六安爷的活作铺垫。
(4)“我不是锄地,我是过瘾”在文中多次(三次)出现,是全文的线索,一方面表现了六安爷对农业生产的眷恋,另一方也突出六安爷面对失去耕地的无奈与悲凉。
就小说主旨而言,表面写农业耕地被工业生产挤占的现状,实则表达了人们对赖以生存的土地的眷恋与不舍,从而表现出作者对工业化社会到来的深沉思考。
(言之成理即可)四、实用类文本阅读12、(1)A、B(2)①创作《蓝袍先生》,更加清醒地认识自我,希望获得精神上的解放;②这一年的泰国之行,让他深受刺激,他认识到必须写一部长篇小说在文学上确立自己;③他痛感自己需要从什么地方剥离出来,将自己彻底打开,尤其在思想方面。
(3)①在继承与创新中,陈忠实作品反映了那一时期小说艺术所达到的最高水平,有独特的、无可取代的地位;②陈忠实作品体现了他对生活真实而独特的感受;③陈忠实作品是他思想、精神的折射,体现其人格魅力。
2016年高考文科数学全国卷I绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,3,5,7}=≤≤,则A B=()A=,{|25}B x xA.{1,3}B. {3,5}C. {5,7}D. {1,7}2. 设(12)()++的实部与虚部相等,其中a为实数,则a=i a i()A.3-B. 2-C. 2D. 33. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B. 12C. 23D. 56 4. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知5a =,2c =,2cos 3A =,则b =( )23 C. 2 D. 3 5. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B. 12 C. 23 D. 34 6. 将函数2sin(2)6y x π=+的图像向右平移14个周期后,所得图像对应的函数为( )A. 2sin(2)4y x π=+B. 2sin(2)3y x π=+ C. 2sin(2)4y x π=- D. 2sin(2)3y x π=- 7. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是283π,则它的表面积是( )A.17πB. 18πC. πD. 28πB CD10. 执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出,x y 的值满足( )A.2y x =B. 3y x =C. 4y x =D. 5y x =- 2yx - 2yx11. 平面α过正方体1111ABCD A B C D -的顶点A ,α//平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( ) A.32B.22C.33 D. 1312. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A.[1,1]-B. 1[1,]3-C. 11[,]33- D. 1[1,]3--第II 卷二、填空题(每小题5分,共4小题,20分) 13. 设向量(,1)a x x →=+,(1,2)b →=,且a b →→⊥,则x =14. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= 15. 设直线2y x a =+与圆22:220C xy ay +--=相交于,A B 两点,若||3AB =,则圆C 的面积为16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.5kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元,该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A ,产品B 的利润之和的最大值为元三、解答题(共70分)17.(12分)已知{}na 是公差为3的等差数列,数列{}nb 满足11b =,213b=,11n n n na bb nb +++=(I )求{}na 的通项公式;(II )求{}nb 的前n 项和18.(12分)如图,已知正三棱锥P ABC-的侧面是直角三角形,6PA=,顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G(I)证明:G是AB的中点;(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积PEACDGB19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期间更换的易损零件数,得下面柱状图:频22116设x 表示1台机器在三年使用期内需要更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数 (I )若19n =,求y 与x 的函数解析式;(II )若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均值,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy 中,直线1:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C ypx p =>于点P ,M 关于P 的对称点为N ,连结ON 并延长交C 于点H(I )求||||OH ON ; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.更换的易16 17 1821.(12分)已知函数2()(2)(1)xf x x e a x =-+-(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围选做题22.(10分)选修4-1:几何证明选讲如图,OAB ∆是等腰三角形,120AOB ∠=,以O 为圆心,12OA 为半径作圆(I )证明:直线AB 与圆O 相切;(II )点C ,D 在圆O 上,且A ,B ,C ,D 四点共圆,证明AB//CD23.(10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为 参数,0a >),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos Cρθ=(I )说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(II )直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求aOA BD C24.(10分)选修4-5:不等式选讲已知函数()|1||23|=+--f x x x(I)在答题卡第(24)题图中画出()y f x=的图像;(II)求不等式|()|1f x>的解集2016年普通高等学校招生全国统一考试文科数学参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)B (2) A (3)C (4)D (5)B (6)D(7)A (8)B (9)D (10)C (11)A (12)C第II卷二、填空题:本大题共3小题,每小题5分.(13)2-(14)43-(15)4π(16)2160003三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(I )由已知,1221121,1,,3a bb b b b +===得1221121,1,,3a bb b b b +===得12a =,所以数列{}n a 是首项为2,公差为3的等差数列,通项公式为31nan =-.(II )由(I )和11nn n na bb nb +++= ,得13n n b b+=,因此{}nb 是首项为1,公比为13的等比数列.记{}nb 的前n 项和为nS ,则111()313.122313nn n S --==-⨯-(18)(I )因为P 在平面ABC 内的正投影为D ,所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点. (II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE在等腰直角三角形EFP 中,可得 2.==EF PF所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V (19)(I )分x ≤19及x.19,分别求解析式;(II )通过频率大小进行比较;(III )分别求出您9,n=20的所需费用的平均数来确定。
试题解析:(Ⅰ)当19≤x 时,3800=y ;当19>x 时,5700500)19(5003800-=-+=x x y ,所以y 与x 的函数解析式为)(,19,5700500,19,3800N x x x x y ∈⎩⎨⎧>-≤=.(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为4050)104500904000(1001=⨯+⨯. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. (20)(Ⅰ)由已知得),0(t M ,),2(2t pt P .又N 为M 关于点P 的对称点,故),(2t pt N ,ON 的方程为xtp y =,代入pxy22=整理得0222=-x t px,解得01=x,pt x 222=,因此)2,2(2t pt H .所以N 为OH 的中点,即2||||=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下:直线MH 的方程为x t p t y 2=-,即)(2t y p t x -=.代入pxy22=得4422=+-t ty y ,解得ty y221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.(21) (I)()()()()()'12112.xx f x x ea x x e a =-+-=-+(i)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >.所以在(),1-∞单调递减,在()1,+∞单调递增. (ii)设0a <,由()'0f x =得x=1或x=ln(-2a).①若2ea =-,则()()()'1xf x x ee =--,所以()f x 在(),-∞+∞单调递增.②若2e a >-,则ln(-2a)<1,故当()()(),ln 21,x a ∈-∞-+∞时,()'0f x >;当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③若2e a <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增.又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝⎭,所以()f x 有两个零点.(ii)设a =0,则()()2xf x x e =-所以()f x 有一个零点.(iii)设a <0,若2ea ≥-,则由(I)知,()f x 在()1,+∞单调递增.又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2e a <-,则由(I)知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点. 综上,a 的取值范围为()0,+∞. (22)(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O的半径,所以直线AB 与⊙O 相切.EO'DCO BA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥.同理可证,'OO CD ⊥.所以//AB CD .(23)⑴cos 1sin x a ty a t=⎧⎨=+⎩(t 均为参数) ∴()2221xy a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin xy y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=: 两边同乘ρ得22224cos cos x y xρρθρρθ==+=,224x y x ∴+=即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C∴210a-=∴1a =(24)⑴如图所示:文科数学试卷 ⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ()1f x > 当1x -≤,41x ->,解得5x >或3x < 1x -∴≤ 当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x << 当32x ≥,41x ->,解得5x >或3x < 332x <∴≤或5x > 综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。