齿轮受力分析
- 格式:pptx
- 大小:163.43 KB
- 文档页数:4
齿轮受力综合分析齿轮是一种常用的机械传动元件,主要用于将一个轴上的动力或运动传递给另一个轴。
齿轮的工作原理是利用两个齿轮之间的啮合来传递动力和转矩,因此齿轮的强度和刚度是十分重要的。
齿轮传动在使用的过程中,由于外界的作用,会受到不同方向的力和力矩的作用,因此齿轮在设计时需要考虑各种力和力矩的综合作用。
齿轮的受力综合分析就是针对齿轮在使用过程中受到的各种力和力矩进行分析和计算,以确保齿轮能够安全、稳定地工作。
下面将介绍齿轮受力综合分析中需要考虑的各种因素。
1. 齿轮轴向力对于两个相啮合的齿轮,轴向力是沿着齿轮轴线方向上的力。
轴向力的大小和方向取决于齿轮在传递动力时所受的载荷和加速度,以及齿轮位置和啮合角度等因素。
一般情况下,齿轮所受的轴向力都会导致轴承的不必要负荷,因此在设计和制造齿轮时需要考虑这一因素。
齿轮切向力是指沿齿轮齿向方向的力,它与齿轮的强度和刚度密切相关。
齿轮工作时,由于啮合处的弯曲应力和拉伸应力的作用,会产生齿面接触处的切向力,这对齿轮的耐磨性和稳定性都有很大的影响。
因此,在设计齿轮时需要根据切向力的大小和方向制定相应的强度和刚度要求。
3. 齿轮弯曲应力齿轮在工作时会产生弯曲应力,主要集中在齿根和齿尖处。
由于齿轮的齿根处和齿谷处是应力集中部位,因此设计时需要特别注意这些位置的强度和刚度。
4. 齿轮振动齿轮振动是指齿轮在工作时由于啮合错位或不平衡造成的振动。
振动会导致齿面磨损加剧,甚至引起齿面的破坏。
因此在设计齿轮时需要考虑振动的影响,采取相应的措施进行消除或控制。
综合以上因素,在设计齿轮时需要根据所要传递的动力和转矩大小、啮合角度、齿数等因素,结合材料强度和制造工艺等因素进行综合分析和计算,以确保齿轮能够在安全、稳定的工作状态下工作。
齿轮传动受力分析(补)齿轮传动受力分析是传动机械设计过程中必不可少且重要的步骤。
齿轮传动特性决定了齿轮各种受力状态。
任何一个受力状态下的齿轮都会受到外界不同形式的受力作用,需要进行受力分析和识别各种受力的作用,从而工程设计者可以依据受力状况来判断齿轮的强度和承载能力是否能满足工程使用的要求。
齿轮传动的受力的来源主要有内外力扭矩、载荷再力和热膨胀压力三种。
其中,内外力扭矩和载荷再力是决定齿轮受力状况的两个因素。
内力扭矩是齿轮传动系统中必经因素,是齿轮受力的主要来源。
外力扭矩是指齿轮系统外部的动力源,例如异步电动机的初始动力,将直接作用于齿轮上,驱动旋转,使齿轮系统具有传动功能,而载荷再力是通过齿轮传动上的运动物体产生的受力,例如,当齿轮的轴线上的传动装置传动一个重物时,重物给予齿轮系统以反作用力,使其受到这个重物所施加的载荷再力。
此外,热膨胀压力也是齿轮受力来源之一,热膨胀压力是当齿轮传动系统受到持续长时间驱动和加热影响时,齿轮系统因热变形而产生的受力。
由于热膨胀受力和内外力扭矩和载荷再力之间关系复杂,齿轮传动受力分析时,必须考虑热膨胀受力的影响。
齿轮传动的受力分析主要由齿轮系统运动力学理论、齿轮系统在减速机体系中的动力学性能和齿轮系统动力传动时的受力情况组成。
其中,齿轮系统的运动力学理论多以实体力学分析为基础,包括齿轮系统运动原理、摩擦噪声分析、齿轮传动效率分析、参考齿轮受力学分析等方面,来对齿轮受力情况进行研究和分析,以便更好地掌握齿轮传动系统的受力情况,设计更高效的齿轮传动系统。
此外,现代数字技术的发展带给了齿轮传动系统更多的受力分析工具,比如数字动力学分析可以准确地模拟和研究齿轮传动系统受力情况,使齿轮系统的模型设计和优化更加容易。
另外,还可以做台架试验以评估齿轮传动实际状况,从而更好地控制齿轮传动系统受力情况并保证高效率传动性能。
总之,齿轮传动受力分析是传动机械设计过程中必不可少的一环,根据齿轮的受力状况,及时采取有效措施可以较好地分析研究和控制齿轮传动系统,以提高齿轮传动性能和实现高效率传动,从而保证工程使用的需求。
齿轮传动的受力分析齿轮传动是一种常见的机械传动方式,其主要特点在于能够有效地将输入轴的旋转速度转换为输出轴的旋转速度,并将旋转力矩进行传递。
齿轮传动具有传递功率大、传动效率高、运转平稳、使用寿命长等优点,广泛应用于机械制造领域。
齿轮传动的受力分析是研究齿轮传动力学特性的重要内容,这主要涉及到力矩传递、载荷分配、齿面接触等方面的问题。
以下将简要介绍齿轮传动的受力分析过程。
一、齿轮传动的力矩传递在齿轮传动中,力矩是通过齿轮齿面间的接触传递的。
因此,在进行齿轮传动的受力分析时,需要先求出齿轮的齿面接触力,从而确定齿轮传递的力矩。
齿轮齿面间的接触力主要由两部分组成:正向接触力和切向接触力。
正向接触力是指沿着齿轮轴向方向的力,主要用于传递齿轮的轴向载荷;切向接触力是指垂直于齿轮轴向方向的力,主要用于传递齿轮的扭矩。
在齿轮传动的受力分析中,通常采用Hertz接触理论来求解齿轮齿面间的接触力。
Hertz接触理论认为,在齿轮齿面间的接触区域内,应力分布呈现出一个类似于椭圆形的曲面。
根据该曲面的形状和大小,可以计算出齿轮齿面间的接触应力和接触面积。
一般来说,齿轮齿面间的接触应力越大,接触面积越小,齿轮的寿命就越短。
二、齿轮传动的载荷分配在齿轮传动中,不同的齿轮会承受不同的载荷,其原因主要是由于齿轮的尺寸、材料、齿形等不同。
因此,在进行齿轮传动的受力分析时,需要对齿轮的载荷分配进行研究。
齿轮载荷分配的主要方法有两种:按齿数配载法和按力配载法。
按齿数配载法是指根据齿轮的齿数比例来确定齿轮的载荷分配,这种方法简单、实用,但往往不能考虑到齿轮的实际情况。
按力配载法是指根据齿轮的载荷情况来计算其分配比例,这种方法更为精确,但需要进行较复杂的数学计算。
三、齿轮传动的齿面接触齿面接触是齿轮传动中的一个重要问题,直接影响到齿轮的使用寿命和传动效率。
在齿轮传动的受力分析中,需要关注齿面接触区域的形状、大小、位置等因素,并采取相应的措施来避免齿面接触问题的发生。
齿轮受力分析:
圆周力Ft :主动轮圆周力的方向与回转方向相反,从动轮圆周力的方向与回转方向相同。
径向力Fr :指向各自的回转中心。
轴向力Fa :使用左、右定则判断,只针对主动轮有效。
齿轮受力之间的关系:下角标1表示主动轮、下脚标2表示从动轮。
直齿圆柱齿轮:⎩⎨⎧-=-=2
121r r t t F F F F
斜齿圆柱齿轮:⎪⎩⎪⎨⎧-=-=-=21
2121a a r r t t F F F F F F
直齿圆锥齿轮:⎪⎩⎪⎨⎧-=-=-=21
2121r a a r t t F F F F F F
蜗杆传动:⎪⎩⎪⎨⎧-=-=-=212121t a a t r r F F F F F F
斜齿轮、蜗杆旋向判断:轴线竖直放置,斜线左边高为左旋,右边高为右旋。
例题:
如上图所示:判断齿轮1、2
的转动方向和旋向?
如上图所示:判断齿轮1、2的转向和旋向?
提示:①判断时根据轴向力的方向进行判断,同一根轴上的两个齿轮(包括斜齿轮、锥齿轮、蜗杆)所受轴向力大小相等,方向相反。
②注意齿轮之间作用力与反作用力,特别是直齿圆锥齿轮和蜗杆传动中的作用力与反作用力。
齿轮⼯作时受⼒分析齿轮传动的受⼒分析为了计算齿轮强度,必须先分析作⽤于轮齿上⼒的⼤⼩、⽅向和性质。
如图5-1,当忽略齿⾯间的摩擦⼒时,作⽤于轮齿上的总压⼒将垂直于齿⾯,即图中法向⼒Fn ,Fn 可分解为圆周⼒(⼜称名义切向⼒)Ft 和径向⼒Fr ;112000d T F t = αtan *=t r F Fαcos t n F F =式中: d1——齿轮分度圆直径,mm ;α——分度圆压⼒⾓,通常为?20;T1——齿轮传递名义扭矩,N ·M ;圆周⼒t F 的⽅向上,在主动轮上与圆周速度⽅向相反,在从动轮上与圆周速度⽅向相同。
径向⼒r F 的⽅向对两轮都是由作⽤点指向各⾃轮⼼。
(受⼒分析如图2-1、2-2、2-3)2-12-22-3齿轮名义转矩计算可⽤公式1119550n P T = 式中1P ——齿轮传递功率,KW1n ——齿轮转速(r/min )计算载荷上述受⼒分析是在载荷沿齿宽均匀分布的理想条件下进⾏的。
但实际运转中,由于齿轮、轴、⽀承等存在制造、安装误差,以及受载后产⽣形变等,使载荷分布沿齿宽分布不均,造成载荷局部集中。
轴和轴承刚度越⼩、齿宽b 越宽,载荷集中⽉严重。
此外,由于各种原因和⼯作机的特性不同(例如机械的启动和制动、⼯作机构速度的突然变化和过载等),导致在齿轮传动中将引起附加动载荷。
因此在齿轮强度计算时,通常⽤K F n 代替名义载荷,K 为载荷系数。
齿轮弯曲应⼒分析进⾏轮齿弯曲应⼒计算时,假设全部载荷由⼀对齿轮承受且作⽤于齿顶处,这时齿根,这时齿根所受弯矩最⼤,计算轮齿弯曲应⼒时,将齿轮看做宽度为b 的悬臂梁,受⼒简图如5-2-1。
⽤霍⾮尔(H. Hofer )?30切线法确定齿根危险截⾯位置,。
作与齿轮对称线呈?30⾓的两条直线与齿根圆⾓过渡曲线相切,过两切点并平⾏于齿轮轴线的截⾯即为齿根危险截⾯。
此外还应确定齿根处产⽣的最⼤弯曲时载荷作⽤点。
对于直齿圆柱齿轮传动,啮合线上的DB 段为单对齿啮合区,全部载荷由⼀对齿承担;⽽AB 与DE 段为双对齿啮合啮合区,载荷由两对齿承担,轮齿受⼒分析如图5-2-2,由图可看到齿轮危险截⾯处应⼒分布曲线及单齿⾯上载荷分布,齿轮⼯作时齿根处容易因承受应⼒强度过⼤导致失效。