青岛版九上数学1.1相似多边形练习题及答案
- 格式:doc
- 大小:1.04 MB
- 文档页数:5
青岛版2020九年级数学上册1.1相似多边形自主学习基础过关测试题1(附答案详解) 1.下列四个命题,其中正确的个数是( )①两个正方形一定是相似形;②两个矩形一定是相似形;③两个菱形一定是相似形;④两个全等的多边形一定是相似形.A .1B .2C .3D .42.如图,在大小为44⨯的正方形网格中与①中三角形相似的是( )A .②B .③C .④和③D .②和④3.如图,已知矩形ABCD 中,AB =3,BE =2,EF ⊥BC .若四边形EFDC 与四边形BEF A 相似而不全等,则CE =( )A .3B .3.5C .4D .4.54.如图,在△ABC 中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:①=;②=;③=;④=.其中正确结论的个数为( )A .1个B .2个C .3个D .4个5.如图,P 是线段AB 的黄金分割点()PB PA >,四边形ABCD 、四边形PBEF 都是正方形,且面积分别为1S 、2S ,四边形APMD 、四边形APFN 都是矩形,且面积分别为3S 、4S ,下列说法正确的是( )A .21512s s =B .23s s =C .3451s s -=D .451s -=6.如图,将菱形ABCD 沿BD 方向平移得到菱形EFGH ,若FD :BF 1=:3,菱形ABCD 与菱形EFGH 的重叠部分面积记为1S ,菱形ABCD 的面积记为2S ,则1S :2S 的值为( )A .1:3B .1:4C .1:9D .1:167.下列a 、b 、c 、d 四条线段,不成比例线段的是( )A .a 2=,b 5=,c 5=,d 12.5=B .a 5=,b 0.02=,c 0.7=,d 0.3=C .a 30=,b 2=,4c 5=,d 12=D .a 5=,b 3=,c 5=,d 3= 8.下列各组图形中一定相似的有( )A .两个矩形B .两个等腰梯形C .两个等腰三角形D .两个等边三角形 9.下列说法中不正确的是( )A .相似多边形对应边的比等于相似比B .相似多边形对应角平线的比等于相似比C .相似多边形周长的比等于相似比D .相似多边形面积的比等于相似比10.若2x =3y =z m (x ,y ,z 均不为0),2x y z z+-=1,则m 的值为______ . 11.如图,在四边形ABCD 中,AD ∥BC ,AD =12 cm ,BC =27 cm ,点E ,F 分别在两边AB ,CD 上,且EF ∥AD ,若四边形AEFD ∽四边形EBCF ,那么EF =_______cm.12.若234x y y -=,则x y=__. 13.已知340x y z --=,20x y z +-=,且0xyz ≠,则23323x y z x y z+-=-+________. 14.若a 、b 、c 、d 满足,则=_____.15.已知x :y=3:4,y :z=4:5,则x :y :z=_____.16.已知a 、b 、c 、d 是成比例线段,其中3a cm =,4b cm =,12d cm =,则c =________.17.如果图形甲与图形乙相似,图形乙与图形丙相似,那么图形甲与图形丙________. 18.如图,已知////AD BE CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .如果6AB =,10BC =,那么DE DF 的值是________.19.已知:275xy z ==,设x A x y z =++,x z B y +=,x y z C x+-=,求A 、B 、C 的值,并且比较它们大小.20.如图,已知△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,已知AC =3,BC =4.问线段AD ,CD ,CD ,BD 是不是成比例线段?写出你的理由21.已知四边形ABCD 与四边形1111A B C D 相似,且11111111:::7:8:11:14A B B C C D D A =,若四边形ABCD 的周长为40,求四边形ABCD 各边的长.22.如图,已知矩形ABCD 与矩形DEFC 相似,且AB =2 cm ,BC =5 cm ,求AE 的长.23.如图,在Rt ABC 中,90ABC ∠=,BD 是AC 边上的高,已知5BC =厘米,13AC =厘米.求:()1AB BC; ()2BD AC ; ()3再找两条线段和AB 、BC 构成比例线段.24.已知线段0.3a m =,60b cm =,12c dm =.()1求线段a 与线段b 的比.()2如果线段a 、b 、c 、d 成比例,求线段d 的长.() 3b 是a 和c 的比例中项吗?为什么?25.如图所示,两个四边形相似, 求未知数x ,y 和角度α的大小.26.如图是两个相似圆柱,它们的底面半径和高的尺寸如图所示,求它们的体积之比.参考答案1.B【解析】①两个正方形一定是相似形,正确;②两个矩形的对应边不一定成比例,所以不一定相似;③两个菱形的对应角不一定相等,所以不一定相似;④两个全等的多边形一定是相似形,正确,正确的有2个,故选B.2.B【解析】【分析】根据网格图形用勾股定理求出各边长度,利用三组对应边对应成比例即可解题.【详解】解:如图①,该三角形的三条边长分别是2,如图②该三角形的三条边长分别是3,如图③,该三角形的三条边长分别是:2,,如图④该三角形的三条边长分别是3只有图②中的三角形的三条边与图①中的三条边对应成比例.故选B【点睛】本题考查了相似三角形的判定,属于简单题,求三角形各边长度是解题关键.3.D【解析】【分析】可设CE=x,由四边形EFDC与四边形BEF A相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】设CE=x.∵四边形EFDC与四边形BEF A相似,∴AB CE BE EF=.∵AB=3,BE=2,EF=AB,∴323x=,解得:x=4.5.故选D.【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEF A 相似得到比例式.4.C【解析】①∵MN ∥ BC ,∴ AN :CN = AM :BM ,该项错误;②∵DN ∥ MC ,∴ AD :DM = AN :NC ,再由(1)得 AD :DM = AM :BM ,该项正确;③根据(1)知,此项正确;④根据(2)知,此项正确.所以正确的有3个,故选C .点睛:本题考查平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 5.B【解析】【分析】设AB=1,根据黄金分割的定义可得:PA=352,PB=12,结合正方形、矩形的性质分别求得S 1、S 2 、S 3、S 4的值,比较即可解答.【详解】设AB=1,根据黄金分割的定义可得:35,,∴S 1 =1 ,S 2 =)235,S 3 =1×35=35,S 435×2. 由此可得,选项A 、C 、D 错误;,选项B 正确.故选B .【点睛】本题主要考查了线段的黄金分割点的概念,根据概念表示出比例式,再结合正方形、矩形的面积进行分析计算即可解答.6.D【解析】【分析】利用相似多边形的性质即可解决问题.【详解】解:如图设AD交EF于M,CD交FG于N.由题意,重叠部分四边形MDNF是菱形,菱形MFND∽菱形ABCD,212()S DFS BD∴=,DF:1BF=:3,DF∴:1BD=:4,2121()16S DFS BD∴==,故选D.【点睛】考查菱形的性质、相似多边形的性质等知识,解题的关键是熟练掌握基本知识.7.B【解析】【分析】根据成比例线段概念,对选项一一分析,选择正确答案.【详解】A、2×12.5=5×5,故选项正确;B、0.02×5≠0.3×0.7,故选项错误;C、45×30=2×12,故选项正确;D、3×5=3×5,故选项正确.故选B.【点睛】考查应用比例的基本性质判断成比例线段.将所给的四条线段长度按大小顺序排列,如:a >b >c >d ,若最长a 和最短d 两条线段之积ad 与另两条线b 、c 之积bc 相等,则说明线段a 、b 、c 、d 成比例.8.D【解析】试题解析:A. 两个矩形四个角相等,但是各边不一定对应成比例,所以不一定相似,故本选项错误;B. 两个等腰梯形不一定相似,故本选项错误。
青岛版2020九年级数学上册1.1相似多边形自主学习培优测试题2(附答案详解) 1.如果x y x +=53,那么yx=( ) A .85B .38C .32D .232.若25x y =,则下列式子中正确的是( ) A .2 5x y =B .72x y x += C .5 2xy =D .35x y y -= 3.若234a b c ==,则a bb c+-的值为( ) A .5 B .15C .5-D .15-4.如果3x =4y ,那么下列各式中正确的是( ) A .34x y = B .4xx y=- C .74x y y += D .37x x y =+ 5.甲、乙两地的实际距离是20千米,在比例尺为1:500000的地图上甲乙两地的距离( ) A .40cmB .400cmC .0.4cmD .4cm6.若两个相似多边形的面积之比为1:3,则它们的周长之比为( )A .1:3B .3:1C D :17.已知3x ﹣5y =0,则x yy-的值为( ) A .23B .53C .35D .328.由等积式ma nb =能得到比例式( ) A .a mb n= B .a nb m= C .m n a b= D .m a b n= 9.已知线段b 是线段a 、c 的比例中项,且1a cm =,4c cm =,那么b =____cm . 10.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm ,则蝴蝶身体的长度约为______cm (精确到0.1).11.已知a ,b ,c ,d 是成比例线段,其中a =2 cm ,b =3 cm ,d =6 cm ,则c =____ cm. 12.如图,在ABC △中,4AB=5AC ,AD 为ABC △的角平分线,点E 在BC 的延长线上,EF AD ⊥于点F ,点G 在AF 上,FG=FD ,连接EG 交AC 于点H ,若点H 是AC 的中点,则AGFD的值为___________13.已知点P 是线段AB 上的黄金分割点,AP PB >,且2AP =,那么PB =________. 14.在1:5000的地图上,某两地间距离是30cm ,那么这两地的实际距离为_____千米. 15.如果a b 53=,那么a ba b-+的值等于________. 16.在一张比例尺为1:8000000江苏省地图上,阜宁与南京的距离为3.75cm ,实际上阜宁与南京的距离约为_____km . 17.已知非零实数 a ,b ,c 满足51213a b c==,且 a +b =34,求 c 的值. 18.⑴如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G . ①线段DB 和DG 的数量关系是 ; ②写出线段BE BF 、和DB 之间的数量关系.⑵当四边形ABCD 为菱形,ADC 60∠=,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明;②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若 BE 1,AB 2==,直接写出线段GM 的长度.19.如图,DC EF GHAB ,12AB =,6CD =,::3:4:5DE EG GA =.求EF 和GH 的长.20.已知C 、D 是线段AB 上的点,CD =(﹣2)AB ,AC =BD ,则C 、D 是黄金分割点吗?为什么?21.如图1,在线段AB 上找一点C ,C 把AB 分为AC 和CB 两段,其中BC 是较小的一段,如果BC·AB=AC 2,那么称线段AB 被点C 黄金分割。
1.1 相似多边形1.观察下图,其中形状相同的图形有___________和________,________和________,______和________,________和________,________和________,________和________.2.已知四边形ABCD 与四边形EFGH 相似,∠A =80°,∠B =100°,∠C =120°,AB =2,EF =3,那么,∠E =_______度,∠F =______度,∠G =______度,∠H =______度,BC FG =______,GH CD =______,EHAD ______. 3.矩形ABCD 和矩形EFGH 中,已知AB =4,BC =6,EF =6,FG =9,矩形ABCD 与EFGH 相似吗?为什么?4.生活中存在大量形状相同的图形,试举2例____________5.正方形的对角线的长与它的边长之比是________________________6.等边三角形的高与它的边长之比是_______________.7.两地实际距离是250m ,画在图上距离是5cm ,则图上距离与实际距离的比是( )A.1∶50B.1∶500C.1∶5000D.1∶500008.下列各组线段中,能成比例的是( )A.3,6,7,9B.2,5,8,6C.3,6,9,18D.1,2,3,49.把ab =cd 写成比例线段,写错的是( )A.b dc a = B.c b ad = C.da b c = D.d c b a = 10.已知875c b a ==,且3a -2b +c =3,则2a +4b -3c 等于( ) A.14 B.42 C.7 D.314 11.如下图所示,试着利用格点把下面的图形放大.12.已知四边形ABCD与四边形A1B1C1D1相似,且AB=8,A1B1=4,AD=6,BC=5,CD=10,求A1D1,B1C1,C1D1的长?13.两个相似的矩形中,其中一个矩形的两邻边分别是4 cm和7 cm,另一个矩形有一边长为8cm,求它的周长?参考答案1.1和7.2和10.3和12.4和14.5和9.6和11.8和13 2. 80 100 120 60 323232 3. 相似,它们对应角相等,对应边的比也相等4. 略5. 26.237—DD11. 略 12. 3 25513. 44cm 或7176cm。
新青岛版九年级数学上册第一节相似多边形练习一.选择题(共12小题)1.(2015•普陀区一模)用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍2.(2014•凉山州)如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:3.(2014•毕节地区)两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm4.(2014•台湾)如图,梯形ABCD中,AD∥BC,E、F两点分别在AB、DC上.若AE=4,EB=6,DF=2,FC=3,且梯形AEFD与梯形EBCF相似,则AD与BC的长度比为何?()A.1:2 B.2:3 C.2:5 D.4:95.(2014•烟台)手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.(2014•济宁)如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A.2cm2B.4cm2C.8cm2D.16cm27.(2014•来宾)在下列四个命题中:①所有等腰直角三角形都相似;②所有等边三角形都相似;③所有正方形都相似;④所有菱形都相似.其中真命题有()A.4个B.3个C.2个D.1个8.(2014•乐山)已知平行四边形ABCD与平行四边形A′B′C′D′相似,AB=3,对应边A′B′=4,若平行四边形ABCD的面积为18,则平行四边形A′B′C′D′的面积为()A.B.C.24 D.329.(2014•陕西)要做甲乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为:50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架一共有()A.1种B.2种C.3种D.4种10.(2014•南京)两个相似菱形边长的比是1:4,那么它们的面积比是()A.1:2 B.1:4 C.1:8 D.1:1611.(2014•河北)下列命题:①所有的等腰三角形都相似;②有一对锐角相等的两个直角三角形相似;③四个角对应相等的两个梯形相似;④所有的正方形都相似.其中正确命题的个数为()A.1B.2C.3D.412.(2014•西宁)两个相似多边形的面积之比为1:3,则它们周长之比为()A.1:3 B.1:9 C.1:D.2:3二.填空题(共2小题)13.(2014•梧州)若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.14.(2014•湖南)已知:四边形ABCD∽四边形A′B′C′D′,它们的周长分别为5m和3m,则S四边形ABCD:S四边形A′B′C′D′=.三.解答题(共2小题)15.(2014•常州)如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m ﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于;②当菱形的“接近度”等于时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.16.(2014•宁波)如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.第一章相似三角形第一节相似多边形练习参考答案一.选择题(共12小题)1.A 2.D 3.A 4.D 5.D 6.C 7.B 8.D 9.C 10.D 11.B 12.C二.填空题(共2小题)13.5 14.25:9三.解答题(共2小题)15.400 16.。
青岛版九年级数学上册第1章1.1相似多边形同步训练题(含答案)一.选择题(共10小题)1.(2014秋•遂宁期末)下列判断正确的是()A.所有的直角三角形都相似B.所有的等腰直角三角形都相似C.所有的菱形都相似D.所有的矩形都相似2.(2014秋•滨江区期末)下列各组中的两个图形,一定相似的是()A.有一个角对应相等的两个菱形B.对应边成比例的两个多边形C.两条对角线对应成比例的两个平行四边形D.任意两个矩形3.(2014秋•扬州月考)下列四组图形中,不是相似图形的是()A.B.C.D.4.(2014秋•聊城校级月考)用一个4倍的放大镜去放大△ABC,下列说法正确的是()A.△ABC放大后,∠A是原来的4倍B.△ABC放大后,周长是原来的4倍C.△ABC放大后,面积是原来的4倍D.以上说法都不正确5.(2015•杭州模拟)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B.12 C.D.(5题图)(10题图)6.(2015春•泰山区期末)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.7.(2015•长沙一模)两个相似多边形的面积之比为1:9,则它们的周长之比为()A.1:3 B.1:9 C.1:D.2:3 8.(2014•鄂州三模)如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A.16:9 B.4:3 C.2:3 D.256:81 9.(2015春•高密市期末)已知两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,则它的最长边为()A.15 B.12 C.9D.6 10.(2014•杭州模拟)彼此相似的矩形A1B1C1D1,A2B2C2D2,A3B3C3D3,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2的坐标分别为(1,2),(3,4),则Bn的坐标是()A.(2n﹣1,2n)B.(2n﹣,2n)C.(2n﹣1﹣,2n﹣1)D.(2n﹣1﹣1,2n﹣1)二.填空题(共10小题)11.(2015•江西校级模拟)在一张由复印机通过放大复印出来的纸上,一个面积为2cm2图案的一条边由原来的1cm变成3cm,则这次复印出来的图案的面积是cm2.12.(2015春•庆阳校级月考)图中的两个四边形相似,则x+y=,a=.(12题图)(18题图)(20题图)13.下列图形中是与相似的.(1)(2)(3)(4)14.(2014秋•高密市期中)两个相似的五边形,一个各边长分别为1,2,3,4,5,另一个五边形的最长边为8,则后一个五边形的周长为.15.(2015春•靖远县校级月考)两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则较大的五边形面积是cm2.16.(2015•武威校级模拟)一个四边形的四边长分别是3、4、5、6,另一个和它相似的四边形的最小边长为6,那么后一个四边形的周长为.17.(2015•武威校级模拟)已知两个相似的菱形的相似比为2:3,面积之差为5cm2,则这两个菱形的面积分别是.18.(2015•金堂县一模)如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为s2,s3,…,s n(n为正整数),那么第9个正方形的面积S9=.19.(2015•厦门模拟)在比例尺为1:500的图纸上,一个三角形的面积为120c m2,那么该三角形的实际面积是m2.20.(2015春•桐城市校级期中)如图,一块长3m、宽1.5m的矩形黑板,镶在其外围的木质边框宽7.5cm,边框的内外边缘所成的矩形相似吗?答:.三.解答题(共4小题)21.(2014秋•海口期中)如图,四边形ABCD和四边形EFGH相似,求∠α、∠β 的大小和EH的长度.22.(2012春•新浦区校级期中)如图:矩形草坪的长为a米,宽为b米(a>b),沿草坪四周外围有宽为x米的环形小路.(1)草坪的长与宽的比值m=,外围矩形的长与宽的比值n=.(用含有a、b、x的代数式表示);(2)请比较m与n的大小;(3)图中的两个矩形相似吗?为什么?23.(2007•宁波)如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.24.如图,已知△AEO∽△ABC,△AOF∽△ACD,那么四边形ABCD与四边形AEOF相似吗?请说明你的理由.青岛版九年级数学上册第1章1.1相似多边形同步训练题参考答案一.选择题(共10小题)1.B 2.A 3.D 4.B 5.C 6.B 7.A 8.B 9.A 10.A二.填空题(共10小题)11.18 12.6385°13.(1)(4)14.24 15.54 16.3617.4cm2,9cm218.256 19.3000 20.不相似三.解答题(共4小题)21.解:∵四边形ABCD和四边形EFGH相似,∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°﹣(83°+78°+118°)=81°,EH:AD=HG:DC,∴=,∴EH=28(cm).答:∠α=83°,∠β=81°,EH=28cm.22.解:(1)∵矩形草坪的长为a米,宽为b米(a>b),∴草坪的长与宽的比值m=a:b,外围矩形的长与宽的比值n=(a+2x):(b+2x);(2)m﹣n=﹣==,∵a>b>0,∴m﹣n=>0,∴m>n;(3)若图中的两个矩形相似,则需m=n,∵m>n,∴图中的两个矩形不相似.故答案为:(1)a:b,(a+2x):(b+2x).23.解:(1)由已知得MN=AB,MD=AD=BC,∵矩形DMNC与矩形ABCD相似,,∵MN=AB,DM=AD,BC=AD,∴AD2=AB2,∴由AB=4得,AD=4;(2)矩形DMNC与矩形ABCD的相似比为=.24.解:四边形ABCD与四边形AEOF相似,理由如下:∵△AEO∽△ABC,∴∠2=∠1,∠4=∠3,==,∵△AOF∽△ACD,∴∠6=∠5,∠8=∠7,==,∴∠2+∠6=∠1+∠5,即∠EOF=∠BCD,===.在四边形AEOF与四边形ABCD中,∵∠EAF=∠BAD,∠4=∠3,∠EOF=∠BCD,∠8=∠7,===,∴四边形AEOF∽四边形ABCD,即四边形ABCD与四边形AEOF相似.。
第一章1练习题一、选择题1.如图,在矩形ABCD中,点E,F分别是AD,BC边的中点,连接EF,假设矩形ABFE与矩形ABCD相似,AB=1,那么矩形ABCD的面积为()C. √2D. 2√2A. 1B. √222.如图,把一个矩形分割成四个全等的小矩形,要使小矩形与原矩形相似,那么原矩形的长与宽之比为()A. 2:1B. 4:1C. √2:1D. 1:23.以下图形中一定是相似形的是()A. 两个等边三角形B. 两个菱形C. 两个矩形D. 两个直角三角形4.五边形ANCDE与五边形A1B1C1D1E1相似,五边形ABCDE的最短边为2,最长边为6,五边形A1B1C1D1E1的最长边是12,那么五边形A1B1C1D1E1的最短边是()A. 4B. 5C. 6D. 85.如图,取一张长为a、宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,假设要使小长方形与原长方形相似,那么原长方形纸片的边a,b应满足的条件是()A. a=√2bB. a=2bC. a=√2bD. a=4b6.以下命题中,真命题是()A. 邻边之比相等的两个平行四边形一定相似B. 邻边之比相等的两个矩形一定相似C. 对角线之比相等的两个平行四边形一定相似D. 对角线之比相等的两个矩形一定相似7.以下说法正确的选项是()A. 菱形都是相似图形B. 矩形都是相似图形欢迎下载C. 等边三角形都是相似圈形D. 各边对应成比例的多边形是相似多边形8.如图,一张矩形纸片沿它的长边AD对折(折痕为EF),得到两个全等的小矩形.假设小矩形与原来的矩形相似,那么原来矩形的长边与短边之比为()A. 1:1B. √2:1C. √3:1D. 2:19.如图,四边形ABCD四边的中点分别为E、F、G、H,对角线AC与BD相交于点O,假设四边形EFGH的面积是3,那么四边形ABCD的面积是()A. 3B. 6C. 9D. 1210.以下各组图形中,一定相似的是()A. 所有矩形B. 所有正方形C. 所有菱形D. 所有平行四边形二、填空题11.如图,矩形ABCD中,AD=2,AB=4,剪去一个矩形AEFD后,余下的矩形EBCF∽矩形BCDA,那么CF的长为______.12.如图,把一个长方形划分成三个全等的长方形.假设要使每个小长方形与原长方形相似,那么原长方形的长与宽的比为.13.把一个矩形的硬纸片剪去一个正方形,假设剩下的矩形与原矩形相似,那么原矩形的长边和短边之比为______.14.假设四边形ABCD与四边形A′B′C′D′是相似的图形,且AB:A′B′=2:3,BC=8,那么B′C′的长为.15.矩形的两边长分别为x和6(x<6),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,那么x=______.16.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,那么BC的长为______.三、解答题17.如图,▱ABCD∽▱AEFB,且AB=3cm,BC=6cm.求:(1)AE的长.(2)▱ABCD与▱ABFE的面积比.18.如图,五边形ABCDE∽五边形FGHIJ.求图中未知的边长x,y和∠H的大小.欢迎下载19.四边形EFGH相似于四边形KLMN,各边长如下图,求∠E,∠G,∠N的度数以及x,y,z的值.。
2019年精选数学九年级上册第1章图形的相似1.1 相似多边形青岛版拔高训练【含答案解析】第七十七篇第1题【单选题】如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有( ).A、1个B、2个C、3个D、4个【答案】:【解析】:第2题【单选题】一个矩形的长为a ,宽为b(a>b),如果把这个矩形截去一个最大的正方形后余下的矩形与原矩形相似,则a ,b应满足的关系式为( ).A、^a2+ab-b^2=0B、^a2+ab+b^2=0C、^a2-ab-b^2=0D、^a2-ab+b^2=0【答案】:【解析】:第3题【单选题】如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=( )A、2B、2.4C、2.D、3【答案】:【解析】:第4题【单选题】如图,用放大镜将图形放大,这种图形的改变是( )A、相似B、平移C、轴对称D、旋转【答案】:【解析】:第5题【单选题】小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是( )A、FGB、FHC、EHD、EF【答案】:【解析】:第6题【单选题】下列图形中不一定是相似图形的是( )A、两个等边三角形B、两个等腰直角三角形C、两个长方形D、两个正方形【答案】:【解析】:第7题【填空题】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有______(填序号).【答案】:【解析】:第8题【填空题】两个形状相同的图形,______不一定相等.【答案】:【解析】:第9题【填空题】如图四边形ABCD∽四边形A"B"C"D",则CD=______,∠D=______度.【答案】:【解析】:第10题【解答题】在如图所示的两个相似的四边形中,求x,y,∠α的值.【答案】:【解析】:第11题【解答题】将三角形各边向外平移1个单位并适当延长,得到如图(1)所示的图形,变化前后的两个三角形相似吗?如果把三角形改为正方形、长方形呢?【答案】:【解析】:第12题【作图题】如图,左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同.【答案】:【解析】:第13题【综合题】如图,四边形ABCD∽四边形EFGH,连接相应的对角线AC,EG.求证△ABC∽△EFG;若有误=有误,直接写出四边形ABCD与四边形EFGH的面积比为______.【答案】:【解析】:。
青岛版2020九年级数学上册1.1相似多边形自主学习基础过关测试题3(附答案详解) 1.如图,已知直线a ∥b ∥c ,直线m 、n 分别与直线a 、b 、c 交于点A 、B 、C 、D 、E 、F .若6DE =,8=EF ,则BC AC 的值为( )A .34B .43C .37D .47 2.若3y ﹣6x=0,则x :y 等于( ) A .﹣2:1 B .2:1 C .﹣1:2 D .1:23.点 P 是长度为 1 的线段上的黄金分割点,则较短线段的长度为( )A .512-B .3 -5C .352 D .5-24.下列四组线段(单位:㎝)中,不能..成比例的是( ) A .a=4,b=4,c=5,d=10B .a=3,b=6,c=2,d=4C .a=1,b=2,c=6,d=3D .a=2,b=5,c=15,d=23 5.若23a b =,则下列等式不一定正确的是( ) A .23a b = B .2323a b ++= C .13a b b -= D .32a b =6.如图,△ABC 中,∠C=90°,D 、E 是AB 、BC 上两点,将△ABC 沿DE 折叠,使点B 落在AC 边上点F 处,并且DF ∥BC ,若CF=3,BC=9,则AB 的长是( )A .254B .15C .454D .97.线段12AB cm =,点C 在线段AB 上,且40AC mm =,则:AC BC 等于( ) A .14 B .13 C .34 D .128.如图,直线,直线分别交直线、、于点、、,直线分別交直线,、于点、、,直线、交于点,则下列结论错误的是( )A .B .C .D . 9.已知,则的值为( ) A . B . C .﹣ D .﹣10.已知线段a 是线段b ,c 的比例中项,则下列式子一定成立的是( )A .a b b c =B .a c b a =C .a c c b =D .b c a b= 11.如图,////AD BE CF ,5AB =cm ,8AC =cm ,7DE =cm ,则EF =____________cm .12.如图,点D 在△ABC 的边BC 的延长线上,AD 为△ABC 的外角的平分线,AB =2BC ,AC =3,CD =4,则AB 的长为_____.13.若34ba ,则2ab a b+-=___. 14.已知1(0)2019a c b d b d ==+≠,则a c b d ++的值为______. 15.若235x y z ==-,则232x y z x++=______. 16.如图,直线a∥b∥c,直线l 1,l 2与这三条平行线分别交于点A 、B 、C 和点D 、E 、F ,若AB :AC =1:3,DE =3,则EF 的长为_____.17.如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为_____.18.在Rt △ABC 中,∠=90C ,=5AB ,=3BC ,点D 、E 分别在BC 、AC 上,且=BD CE ,设点C 关于DE 的对称点为F ,若DF ∥AB ,则BD 的长为__________.19.如图,AD ∥BE ∥CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,若AB=1,BC=3,DE=2,则DF 的长为_________20.如图,在ABC 中,AD:DB 2:3=,E 为CD 的中点,AE 的延长线交BC 于点F ,则BF:FC =________.21.已知234x y z ==,6x y z -+=,求:代数式32+x y z -的值. 22.已知023a b =≠,求代数式522a b a b -+的值. 23.已知2a b c d ++=2b a c d ++=2c a b d ++=2d a b c ++=k ,求 k 值.24.如图,已知△ABC ,(1)按如下步骤尺规作图(保留作图痕迹):①作AD 平分∠BAC ,交BC 于D ;②作AD 的垂直平分线MN 分别交AB ,AC 于点E 、F ;(2)连接DE 、DF .若BD =12,AF =8,CD =6,求BE 的长.25.如图:AD EG BC ,EG 分别交AB 、DB 、AC 于点E 、F 、G ,已知6AD =,10BC =,3AE =,5AB =,求EG 、FG 的长.26.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 分别是边BC 、CD 的中点,直线EF 交边AD 的延长线于点M ,交边AB 的延长线于点N ,连接BD .(1) 求证:四边形DBEM 是平行四边形;(2) 连接CM ,当四边形ABCM 为平行四边形时,求证:MN=2DB .27.已知:如图,在ABC ∆中,//DE BC ,//DF AC ,若8AE =,5EC =,4BF =,求:四边形DFCE 的周长.28.材料:思考的同学小斌在解决连比等式问题:“已知正数x ,y ,z 满足y z z x x y k x y z+++===,求2x y z --的值”时,采用了引入参数法k ,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出x ,y ,z 之间的关系,从而解决问题.过程如下: 解;设y z z x x y k x y z+++===,则有: y z kx +=,z x ky +=,x y kz +=,将以上三个等式相加,得()()2x k z k x y z ++=++.x ,y ,z 都为正数,∴2k =,即2y z x+=,. ∴20x y z --=.仔细阅读上述材料,解决下面的问题:(1)若正数x ,y ,z 满足222x y z k y z z x x y===+++,求k 的值; (2)已知()()23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等,求证:8950a b c ++=.参考答案1.D【解析】【分析】根据题意求出DF ,根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵DE=6,EF=8,∴DF=DE+EF=14,∵a ∥b ∥c , ∴84147BC EF AC DF ===, 故选D .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 2.D【解析】【分析】由360y x -=得36y x =,根据比例的性质即可得到:1:2x y =.【详解】解:∵3y ﹣6x=0,∴3y=6x ,∴x :y=1:2.故选D .【点睛】本题考查了比例的性质:若::a b c d =,则ad bc =,熟记比例的性质是解决本题的关键. 3.C【解析】【分析】根据黄金分割的定义即把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值12叫做黄金比,分别进行计算即可.【详解】点P 是长度为 1 的线段上的黄金分割点,∴较长的线段的长度为12,则较短的线段的长度为:1-12=32-; 故选C .【点睛】此题考查了黄金分割,熟记黄金分割的公式:较短的线段==是本题的关键. 4.A【解析】【分析】 根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】A 、∵4×10≠4×5,∴四组线段中不能成比例;符合题意;B 、∵2×6=3×4,∴四组线段中能成比例;不符合题意;C 、∵D 、∵故选:A .【点睛】此题考查比例线段,解题关键在于理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.5.C【解析】【分析】利用比例基本性质,进行化简,即可判断A 、D ,比例基本性质:两内项之积等于两外项之积;将分式进行化简即可判断B 、C 的正确性.【详解】A.23ab=,利用比例基本性质,可得:23a b=, 故A成立;B.2323a b++=化简:123a b+=+1 ,进一步化简,得23a b=,由A可知,成立;C.13a bb-=,化简:113ab-=,则43ab=,题目中23ab=,故C不成立;D.由23ab=利用比例基本性质,可得32.a b=【点睛】本题考查了比例基本性质,以及化简的得方式方法,正确掌握化简,是解答本题的关键. 6.C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.7.D【解析】【分析】根据已知条件计算出BC 的长度,列出对应的比例式求解即可.【详解】412,0AC m m B c m A ==,且点C 在AB 上80mm BC AB AC ∴=-=40mm 1:==80mm 2B AC C ∴ 故选D.【点睛】此题考查比例式的列式和运算,解题关键在于掌握比例关系列式求解.8.C【解析】【分析】根据平行线分线段成比例定理列出比例式,判断即可.【详解】解:∵l 1∥l 2∥l 3,平行线分线段成比例,∴,A 正确,不符合题意;,B 正确,不符合题意;,C 错误,符合题意;,∴,D 正确,不符合题意; 故选择:C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 9.D【解析】【分析】将化简,再将代入即可.【详解】【点睛】本题能将化简为,是解答此题的关键.10.B【解析】【分析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【详解】A选项,由a bb c=得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由a cb a=得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由a cc b=,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由b ca b=得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【点睛】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.11.21 5【解析】【分析】由于AD∥BE∥CF,即可得AB DEBC EF=,进而再由题干中的条件即可得出EF的长.【详解】解:∵AD∥BE∥CF,∴AB DE BC EF=,又AB=5cm,AC=8cm,DE=7cm,即5785EF=-,215EF=cm.故答案为215.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.12.24 5【解析】【分析】如图,作CE∥AD交AB于E.利用平行线分线段成比例定理解决问题即可.【详解】如图,作CE∥AD交AB于E.∵EC∥AD,∴∠1=∠AEC,∠2=∠ACE,∵∠1=∠2,∴∠AEC=∠ACE,∴AE=AC,∵EC∥AD,∴AE:AB=DC:BD,∴AC:AB=DC:BD,∵AB=2BC,设BC=x,则AB=2x,∴3:2x=4:(x+4),∴x=125,∴AB=2x=245,故答案为245. 【点睛】 本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题.13.75. 【解析】【分析】 由34ba,可直接运用设k 法,表示出a =4k ,b =3k ,再代入求值即可. 【详解】 ∵34ba 设b =3k ,a =4k∴2a b a b +-=437=835k k k k +-. 故答案为:75. 【点睛】本题考查了有关比例的计算,解题关键在于,把a 和b 的值用设k 法表示出来,带入值时k 可以约掉.14.12019【解析】 【分析】由等比性质,(0)a c a c b d b d b d +==+≠+,即可得到答案. 【详解】解:根据题意,∵a c b d =, ∴a c a c b d b d+==+, ∴12019a cb d +=+;故答案为:12019. 【点睛】 本题考查了平行线分线段成比例的性质,解题的关键是熟练掌握等比性质.15.-2【解析】【分析】 此题可以先令235x y z k ===-,再由k 表示出x 、y 、z 的值,代入要求的分式即可得出结果.【详解】 设235x y z k ===-,则x =2k ,y =3k ,z =−5k ; 所以()2233523822224k k k x y z k x k k⨯++⨯-++-===-⨯, 故答案为 2.-【点睛】 考查分式的化简求值,设235x y z k ===-,用k 表示出,,x y z 的值是解题的关键. 16.6【解析】【分析】由直线a ∥b ∥c,可推出AB AC =DE DF =13 ,由DE=3即可推出EF 【详解】∵直线a ∥b ∥c ∴AB AC =DE DF =13∵DE =3,∴DF =9,∴EF =DF ﹣DE =9﹣3=6故答案为6【点睛】本题考查平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识17.10【解析】【分析】作AM⊥BC于E,由角平分线的性质得出23AC ADBC BD==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=32x,得出MN∥AE,得出23EN ADBN BD==,NE=x,BE=BN+EN=52x,CE=CN−EN=12x,再由勾股定理得出方程,解方程即可得出结果.【详解】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴23 AC ADBC BD==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=32x,∴MN∥AE,∴23 EN ADBN BD==,∴NE=x,∴BE=BN+EN=52x,CE=CN−EN=12x,由勾股定理得:AE2=AB2−BE2=AC2−CE2,即52−(52x)2=(2x)2−(12x)2,解得:x=10,∴AC=2x=10;故答案为10.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.18.1【解析】【分析】根据题意作出草图,根据勾股定理求出AC,根据轴对称的性质可得EF=CE,根据两直线平行,同位角相等可得∠A=∠EGF,利用相似三角形对应边成比例列式表示出GE,再表示出CG,然后根据平行线分线段成比例定理列式计算即可得解.【详解】如图,设BD=CE=x,∵∠C=90°,AB=5,BC=3,∴AC=22AB BC=225-3=4,∵点C关于DE的对称点为F,∴EF=CE=x,∵DF∥AB,∴∠A=∠EGF,∴△ABC∽△GEF,∴=AB BC GE EF , 即5=3GE x, 解得GE=53x , ∴CG=GE+CE=53x+x=83x , ∵DF ∥AB , ∴=CG CD AC BC, 即3-=4833x x ,解得x=1,即BD=1.故答案为:1.【点睛】此题考查角平分线的性质,平行线分线段成比例,轴对称的性质,解题关键在于作辅助线 19.8【解析】【分析】将DF 平移至A 点构成△ACF ,因为平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似,所以△ACF ∽△ABE ,再根据相似三角形对应比相等算出DF 长度.【详解】因为△ACF ∽△ABE , 所以AB DE AC DF =,1213DF=+,则DF=8 故答案为:8【点睛】本题考察了平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似的定理以及相似三角形对应边比相等的性质.20.52【解析】【分析】根据题意作辅助线,根据已知条件可证明△DGE ≌△CFE ,所以DG =FC ,根据比例关系得知DG ∥FC ,最后根据三角形平行线段成比例关系即可得出答案.【详解】解:在AE 上取点G ,使EG =EF ,∵E 为CD 的中点,∴DE =CE ,又∵EG =EF ,∠DEG =∠CEF , ∴△DGE ≌△CFE ,∴DG =FC ,∠GDE =∠ECF∴DG ∥FC ,∵AD :DB =2:3,∴52BF BF AB FC DG AD ===. 故答案为52. 【点睛】 本题主要考查了全等三角形的证明及性质、平行线分线段成比例关系,难度适中. 21.8【解析】【分析】设234x y z ===k ,将x 、y 、z 用k 表示出来,然后再通过6x y z -+=求出k ,进而确定x 、y 、z 的值,最后代入求解即可.【详解】解:设234x y z ===k ,则x=2k ,y=3k ,z=4k 又6x y z -+=,即2k-3k+4k=6,解得k=2所以x=4,y=6,z=8所以32+x y z -=12-12+8=8【点睛】本题考查了条件代数式求值,解答的关键在于通过设中间量k ,辅助求出x 、y 、z. 22.12【解析】【分析】 由023a b =≠可设a=2k ,b=3k ,代入522a b a b -+计算即可. 【详解】 由023a b =≠可设a=2k ,b=3k , ∴522a b a b -+=106412682k k k k k k -==+. 【点睛】本题考查了比例的性质,已知几个量的比值时,常用的解法是:设一个参,把题目中的几个量用所设的参数表示出来,然后消掉所设的参数,即可求得所给代数式的值,本题较为简单,属于基础题.23.23或﹣2. 【解析】【分析】依据等比性质可得,()()23a b c d a b c d ++++++=k ,分两种情况讨论,即可得到k 的值. 【详解】 ∵2222a b c d k b c d a c d a b d a b c====++++++++, ∴由等比性质可得,()()23a b c d a b c d ++++++=k ,当a+b+c+d≠0时,k=()()23a b c d a b c d ++++++=23; 当a+b+c+d=0时,b+c+d=-a ,∴k=222a ab c d a==-++-;综上所述,k的值为23或-2.【点睛】本题主要考查了比例的性质的运用,解决问题的关键是掌握比例的性质.24.(1)如图,AD和EF为所作;见解析;(2)BE=16.【解析】【分析】(1)①根据尺规作角平分线的方法作图即可;②根据尺规作线段垂直平分线的方法作图即可;(2)先证明四边形AEDF为菱形,得AE=AF=8,DE∥AC,再根据平行线分线段成比例定理即可求得结果.【详解】解:(1)如图,AD和EF为所作;(2)∵EF垂直平分AD,∴EA=ED,F A=FD,AD⊥EF,∵AD平分∠EAF,∴AD平分EF,即AD和EF互相垂直平分,∴四边形AEDF为菱形,∴AE=AF=8,DE∥AC,∴BE BDAE CD=,即1286BE=,∴BE=16.【点睛】本题考查了基本的尺规作图、菱形的判定和平行线分线段成比例定理等知识,正确作图是前提,熟知菱形的判定和平行线分线段成比例定理是解题的关键. 25.6EG =,185FG =【解析】【分析】在△ABC 中,根据平行线分线段成比例求出EG ,在△BAD 中,根据平行线分线段成比例求出EF ,再根据FG=EG-EF 即可求解.【详解】解:∵在ABC △中,EG BC ∥,∴EG AE BC AB=. ∵10BC =,3AE =,5AB =, ∴3105EG =. ∴6EG =.∵在BAD 中,EF AD ∥,∴EF BE AD AB=. ∵6AD =,3AE =,5AB =,∴5365EF -=. ∴125EF =. ∴185FG EG EF =-=. 【点睛】本题考查平行线分线段成比例,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.26.(1)见解析;(2)见解析.【解析】【分析】(1)首先根据三角形中位线定理可得EF ∥BD ,再有条件AD ∥BC ,可根据两边互相平行的四边形是平行四边形,可判定四边形DBEM 是平行四边形;(2) 首先根据平行线分线段成比例定理可得 ,再根据BE=CE ,可得BN=CM ,进而得到AB=BN ,再由EF ∥BD ,可得=,进而得到MN=2DB .【详解】 证明:(1) ∵点E 、F 分别是边BC 、CD 的中点,∴EF ∥BD ,又∵AD ∥BC ,∴四边形DBEM 是平行四边形;(2) ∵四边形ABCM 为平行四边形, ∴AB=CM ,AB ∥CM ,∴,∵BE=CE ,∴BN=CM ,∴AB=BN , ∵EF ∥BD ,∴=.∴MN=2DB .【点睛】本题考查三角形中位线定理,以及平行四边形的判定、平行线分线段成比例定理,关键是熟练掌握平行线分线段成比例定理:定理1:三条平行线截两条直线,所得的对应线段成比例.定理2:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 定理3:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.27.四边形DFCE 的周长1145=. 【解析】【分析】先证明四边形DFCE 为平行四边形得到DE CF =,设DE x =,则CF x =,利用平行线分线段成比例定理得到8485x x =++,再根据比例性质求出x ,然后计算四边形DFCE 的周长.【详解】//DE BC ,//DF AC ,∴四边形DFCE 为平行四边形,DE CF ∴=,设DE x =,则CF x =,//DE BC , ∴DE AE BC AC =,即8485x x =++,解得325x =, ∴四边形DFCE 的周长321142()2(5)55CE CF =+=+=. 【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线分线段成比例定理.28.(1)k=13;(2)见解析. 【解析】【分析】(1)根据题目中的例子可以解答本题;(2)将题目中的式子巧妙变形,然后化简即可证明结论成立.【详解】解:(1)∵正数x 、y 、z 满足222x y z k y z z x x y===+++, ∴x=k (2y+z ),y=k (2z+x ),z=k (2x+y ),∴x+y+z=3k (x+y+z ),∵x 、y 、z 均为正数,∴k=13; (2)证明:设()()23a b b c c a a b b c c a +++==---=k , 则a+b=k (a-b ),b+c=2k (b-c ),c+a=3k (c-a ),∴6(a+b )=6k (a-b ),3(b+c )=6k (b-c ),2(c+a )=6k (c-a ),∴6(a+b)+3(b+c)+2(c+a)=0,∴8a+9b+5c=0.故答案为:(1)k=13;(2)见解析.【点睛】本题考查比例的性质、等式的基本性质,正确理解给出的解题过程是解题的关键.。
青岛版九上数学1.1相似多边形练习题及答案
一、选择题(共6小题;共24分)
1. 下列图形中不具有相似关系的是 ( )
A. B.
C. D.
2. 要做甲、乙两个形状相同的三角形框架,已有三角形框架甲,它的三边长分别是,,
,三角形框架乙的一边长为,那么符合条件的三角形共有 ( )
A. 种
B. 种
C. 种
D. 种
3. 如图,在矩形中,,分别是,的中点,若矩形与矩形是相似的矩
形,则等于
A. B. C. D.
4. 下列命题中,正确的是
A. 对角线相等的四边形是平行四边形
B. 对角线互相平分,互相垂直的四边形是正方形
C. 所有的矩形都是彼此相似的四边形
D. 所有的等边三角形都是彼此相似的三角形
5. 如图,一般书本的纸张是原纸张多次对开得到的,矩形沿对开后,再把矩形沿
对开,依次类推,若各种开本的矩形都相似,那么等于 ( )
A. B. C. D.
6. 如图所示内外两个矩形相似,且对应边平行,则下列结论正确的是 ( )
A. B.
C. D. 以上答案都不对
二、填空题(共4小题;共20分)
7. 观察下面的图形(如图所示),形状相同的有.
8. 已知五边形与五边形相似,相似比为,五边形的周长为,则
五边形的周长是.
9. 如图,,对应边的比例式为.
10. 将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为
.已知,,若以点,,为顶点的三角形与相似,那么的长度是.
三、解答题(共5小题;共56分)
11. 如图所示,,根据图中提供的数据,请求出,的长度和
角的大小.
12. 如图所示,在小区绿化美化过程中,有一个矩形草坪,长为米,宽为米,沿草坪四周要
修一宽度相等的小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;
若不能,请说明理由.
13. 如图 1 中的两个长方形相似吗 ? 如图 2 中的两个长方形相似吗?当,满足什么关
系时,它们相似 ?如图 3 中的长方形与长方形能否相似?若能相似,则值是多少(其中)?
14. 如图所示,,相似比为.
Ⅰ求四边形与四边形的对角线的值.
Ⅱ如果四边形的周长为,四边形四边的比为.求四边形各边的长.
15. 如图所示,在梯形中,,且,试说明
.
答案
第一部分
1. D
2. C
3. B
4. D
5. B
6. C
第二部分
7. ②与⑦,③与⑨,④与⑧
8.
9.
10. 或
第三部分
11. 在四边形中,因为,
所以.
因为,
所以,.
所以,
.
12. 不能.
理由:设小路的宽为米,假设小路内外边缘所成的矩形相似,所以其对应边成比例,即
解得
所以小路内外边缘所成的矩形不相似,所以不能做到.
13. 图 1 中的两个长方形不相似.
理由:如果两长方形相似,可能是,
由此得;
可能是,不成立.
即图 1 中的两个长方形不相似.
图 2 中的两个长方形可以相似.
理由:相似时,应满足的关系为:
(i),
解得;
(ii),
解得.
图 3 中长方形与长方形可能相似.
理由:由相似多边形的判定方法可知,应满足,
解得.
14. (1)因为,相似比为,所以,.
所以,
所以.
(2)因为,
所以.
所以.
设四边形各边的长分别为,,,,
则,
解得.
故四边形各边的长分别为,,,.
15. ,
,,,.
又,
.。