流化床干燥实验
- 格式:doc
- 大小:249.50 KB
- 文档页数:9
流化干燥操作和干燥速度曲线的测定一、实验目的(1)掌握测定物料干燥速度曲线的工程意义;(2)熟悉流化干燥设备的流程、工作原理及特点;(3)了解影响干燥速度曲线的因素。
二、基本原理干燥过程是通过某种方式将热量传给含水物料,使含水物料中的水分蒸发分离的过程。
这一过程同时伴有传热和传质,比较复杂。
目前仍主要依赖于实验来解决干燥操作中的问题。
为了确定湿物料的干燥条件,例如已知干燥要求(即被干燥物料的最终湿含量),当干燥面积一定时,确定所需的干燥时间;或干燥时间一定时,确定所需的干燥面积,必须掌握湿物料的干燥特性即干燥速度曲线。
物料的含水量,可以用相对于物料总量的水分含量,即以湿物料为基准的水分含量、用符号w来表示。
但在干燥过程中,物料总量是随着水分的减少而不断减少,所以采用以绝对干物料量为基准的水分含量C表示更为方便。
在w和C之间有如下关系:C = w /( 1 - w )W = C /( 1 + C )1.干燥过程若将非常湿的物料置于一定的干燥条件下,例如在有一定湿度、温度和风速的大量热空气气流中,测定被干燥物料的湿含量和温度随时间的变化,可发现干燥过程分为如下三个阶段:(1)物料预热阶段;(2)恒速干燥阶段;(3)降速干燥阶段。
非常潮湿的物料因其表面有液态水存在,当它置于恒定条件的大量热空气气流中时,其温度逐渐升至热风的湿球温度,在达到湿球温度之前的阶段称为预热阶段。
在随后的第二阶段中,由于物料表面存有液态水,物料温度约等于空气的湿球温度,传入的热量只用于汽化物料表面水分。
此阶段中,物料的干基含水率C随时间线性地减少,因此其干燥速率不变,为恒速干燥阶段。
当物料表面已无液态水存在时,便进入第三阶段。
此时,传入的热量使湿物料的温度从湿球温度开始上升,物料温度的上升提高了其毛细孔中水份的汽化分压,但水份由物料内部扩散至表面后的蒸发慢于物料表面水份的蒸发,因此干燥速率很快降低,此为降速干燥阶段。
2.影响气流干燥过程的主要因素(1)气流条件 1) 气流的温度; 2) 气流的湿度;3) 气流的流速。
流化床干燥实验报告姓名:张萌学号:5602111001 班级:食品卓越111班一、实验目的1.了解常压干燥设备的基本流程和工作原理。
2. 掌握测定干燥速度曲线的方法。
3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。
二、基本原理1.干燥速率:单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。
2.干燥速率的测定方法:利用床层的压降来测定干燥过程的失水量。
需要用到的公式有:物料中瞬间含水率X i=(△p-△p e)/△p e式中:△p-时刻τ时床层的压差;计算出每一时刻的瞬间含水率X i,然后将X i对干燥时间iτ作图,即为干燥曲线。
3.干燥过程分析:(1)物料预热阶段(2)恒速干燥阶段(3)降速干燥阶段。
非常潮湿的物料因其表面有液态水存在,当它置于恒定干燥条件下,则其温度近似等于热风的湿球温度tw ,到达此温度前的阶段称为(1)阶段。
在随后的第二阶段中,由于表面存有液态水,物料温度约等于空气的湿球温度tw,传入的热量只用来蒸发物料表面水分,在第(2)阶段中含水率X随时间成比例减少,因此其干燥速率不变,亦即为恒速干燥阶段。
在第(3)阶段中,物料表面已无液态水存在,亦即若水分由物料内部的扩散慢于物料表面的蒸发,则物料表面将变干,其温度开始上升,传入的热量因此而减少,且传入的热量部分消耗于加热物料,因此干燥速率很快降低,最后达到平衡含水率而终止。
(2)和(3)交点处的含水率称为临界含水率用X0表示。
对于第(2)(3)阶段很长的物料,第(1)阶段可忽略,温度低时,或根据物料特性亦可无第二阶段。
三、实验装置与流程1.主要设备及仪器(1)鼓风机:BYF7122,370W;(2)电加热器:额定功率2.0KW;(3)干燥室:Φ100mm×750mm;(4)干燥物料:耐水硅胶;(5)床层压差:Sp0014型压差传感器,或U形压差计。
2.实验装置四、实验步骤与注意事项1.实验步骤(1)通过加水器向物料注入适当量的水(2)开启风机。
实验七 干燥实验(一)沸腾干燥实验沸腾干燥又称流化干燥,是固体流态化技术在干燥上的应用。
沸腾床干燥器具有传热系数大,热效率高的特点,被广泛应用于化工、医药、食品等行业。
本实验装置通过计算机在线数据采集和控制系统进行操作,是一种单层圆筒流化床干燥器,它适用于间歇操作,是小型化了的生产装置。
目前对干燥机理的研究尚不够充分,干燥速度的数据还主要依靠实验。
在生产操作中,测量床层压力降可了解床层是否达到流态化,操作是否稳定等。
因此,通过实验,可进一步掌握沸腾干燥的基本概念、基本理论和流化曲线、干燥曲线和干燥速率曲线等测定方法,同时还可了解操作故障的识别和排除,为今后的工业干燥器设计和生产操作打下坚实的基础。
一.实验任务(任选一个)1. 通过对流化曲线的测定,确定干燥介质适宜的操作流速范围;2.某工厂需要设计一个沸腾床干燥器,用于干燥绿豆。
请根据实验室提供的设备(见第三部分,实验装置与流程),设计一实验方案并进行实验,为他们提供有关参数,如绿豆的含水量随干燥时间的变化曲线、绿豆表面温度随干燥时间的变化曲线、干燥速率曲线、含水量、临界含水量0X 等。
二.实验原理1.流化曲线:流化曲线也称床层压降与气速的关系曲线。
在流化床的底部气体分布板处装有一压力传感器,测定床层底部的压力,在玻璃管上口处也装有一压力传感器,通过测定床层流化前后压力降ΔP f 1)。
图中曲线的a 段(虚线)表明固定床阶段压力降ΔP f 与空床流速u 成正比;此后如再增加气速,压力降的增加变缓,此时床内颗粒变松,成为膨胀床,气速增到b 处附近,床层开始流态化;此后气速再增,床层压力降基本上维持不变,如曲线的c 段所示,此即流化床阶段;过了c 段以后,气速再增,压力降反而变少,如曲线的b 段所示,此时颗粒开始为上升气流所带走,达到了气力输送阶段;若气流增大到将颗粒全部带走,此时压力降减到与气体流过空管的压力降相当。
如果到达流化阶段c 以后,把气速逐渐减少,可以测出压力降并不沿c -b -a 的路线返回,而是循着c -a’ 的路线返回。
贵州xx学院化工原理实验报告学院:xxxxx 专业:xxxxxxxxx 班级:化工xx利用床层的压降来测定干燥过程的失水量。
(1)准备0.5~1kg 的湿物料,待用。
(2)开启风机,调节风量至40~60m 3/h ,打开加热器加热。
待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,此时床层的压差将随时间减小,实验至床层压差()恒定为止。
则物料中瞬间含水率为(11-3)式中,—时刻时床层的压差。
计算出每一时刻的瞬间含水率,然后将对干燥时间作图,如图11-1,即为干燥曲线。
图11-1恒定干燥条件下的干燥曲线上述干燥曲线还可以变换得到干燥速率曲线。
由已测得的干燥曲线求出不同下的斜率,再由式11-1计算得到干燥速率,将对作图,就是干燥速率曲线,如图11-2所示。
e p ∆i X eei p p p X ∆∆-∆=p ∆τi X i X i τi X iid dX τU U X图11-2恒定干燥条件下的干燥速率曲线将床层的温度对时间作图,可得床层的温度与干燥时间的关系曲线。
3. 干燥过程分析预热段见图11-1、11-2中的AB段或A′ B段。
物料在预热段中,含水率略有下降,温度则升至湿球温度t W,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。
预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。
恒速干燥阶段见图11-1、11-2中的BC段。
该段物料水分不断汽化,含水率不断下降。
但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度t W,传质推动力保持不变,因而干燥速率也不变。
于是,在图11-2中,BC段为水平线。
只要物料表面保持足够湿润,物料的干燥过程中总处于恒速阶段。
而该段的干燥速率大小取决于物料表面水分的汽化速率,亦即决定于物料外部的空气干燥条件,故该阶段又称为表面汽化控制阶段。
传热系数K和给热系数α的测定四.实验步骤1.在蒸汽发生器放入去离子水之液位管上段处,是水浸没加热电棒,以防烧坏。
2.打开加热电源开关,水蒸汽发生器开始工作,约20min水沸腾,此时打开气源开关,调节空气流量为20m3/h。
待套管表面发热,打开套管底端发兰下的排气拷克2~3次,排除不凝性气体。
3.因为是气泵原因,随着冷流体流量增加,冷流体进口温度会增加,所以在冷流体进入系统前,先经过一个小换热器。
用水冷却,注意下进上出。
4.整个实验操作热流体的进口温度是恒定的,改变唯一操作变量即冷空气转子流量计阀门开度,达到改变流速的目的。
5.待冷流体出口温度显示值保持5min以上不变时方可同时采集实验数据。
6.实验结束时,先关加热电源,保持冷空气继续流动10min,以足够冷却套管换热器及壁温,保护热电偶接触正常。
7.上机数据处理的直线相关系数要求R≥0.95,否则,实验重做。
8.通过放尽阀将蒸汽发生器内的水放尽9.仪表屏中间的大表是温控表,请不要乱揿按钮。
10.如果上面四个温度显示仪表在实验之前互相间相差1.0℃以上,可按以下步骤处理:按set 键,见CLK ,单击set 键,见110,同时按set 键(先)和∆保持不动,见SLO ,按set 键14下,见pb1,按set 键一下,即进入修改基准数,利用∇∆、来修改温度基准,完后按set 键确定,接着按黑O 复位即可。
请在pb1上修改,其他功能参数不能改变切忌!五.原始数据记录。
六.计算示例以装置号3032第1组数据为例。
由8.5520.816.302t t =+=+出进℃,查得ρc =1.076kg/m 3,C pc =0.24kcal/kg ℃, μ=20.3μPa·s ,λ=0.02461w/m ℃1热负荷计算Q=W c ρc C pc (t 2-t 1)=20×1.076×0.24×4.18×(81.0-30.6)=1088kj/h2.传热系数K 计算55.446.301050.81105ln 6.300.81t T t T ln )t T ()t T (t 1212m =---=-----=∆℃ KA ∆t m =W c ρc C pc (t 2-t 1)h m /kj 34255.443.10175.014.31088t l d Q t A )t t (C W K 2m m 12pc c c =⨯⨯⨯=∆π=∆-ρ=平℃ 3.给热系数c α计算32.396.308.990.816.100ln )6.308.99()0.816.100(t t t t ln )t t ()t t (t 1m 2m 1m 2m mc =---=-----=∆--下上下上℃()12t t c W t A pc c c mc c c -=∆ρα42432.393.1016.014.31088t l d Q mc c c =⨯⨯⨯=∆π=αkj/m 2h ℃ 4.给热系数h α计算()12t t c W t A pc c c mh h h -=∆ρα79.46.1001058.99105ln 8.996.100t T t T ln t t t T t T ln )t T ()t T (t m m m m m m m m mh ==--=-----=∆----上下下上下上上下℃ ()12t t c W t A pc c c mh h h -=∆ρα292979.43.1019.014.31088t l d Q mh h h =⨯⨯⨯=∆π=αkj/m 2h ℃ 5.雷诺数R e 谱朗特数Pr 的计算65.27016.0785.03600/20d 41W u 22=⨯=π=m/s 461034.2103.20076.165.27016.0du Re ⨯=⨯⨯⨯=μρ=- 71.036000246.0103.2024.0Cp Pr 6=⨯⨯⨯=λμ=- N UC 97.6518.40246.0016.0424d c =⨯⨯=λα= 六.过程运算表3031号装置过程运算表3032号装置过程运算表七.作图法关联曲线方程b e r aR P Nu =4.0/(17)由下图3031,用作图法待定上式函数中的常数b a 和,方法如下:以直线为斜边,作直角三角形,读得斜边上二点A(10000,40.6),B (20000,70.2)该三角形的高与该三角形底边之比的值,即为此函数的指数b ;然后在直线上读得一点坐标,将该坐标待入式(17),可求得常数a 。
一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。
实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。
二、实验目的1. 了解流化床干燥器的基本流程及操作方法。
2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。
3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。
4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。
三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。
在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。
干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。
2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。
物料在干燥器内受到热风的作用,床层产生流动,形成流化床。
物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。
四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。
2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。
五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。
2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。
3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。
4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。
六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。
干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。
在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。
江 苏 大 学实 验 报 告系别 食品科学与工程 班级 食品1002 姓名 周婧 学号3100901032干燥实验一、 实验目的1.学习流化床的操作,掌握流化床的一些基本概念。
2.测定流化干燥速率曲线。
3.研究热空气流速对干燥速率的影响(选做)。
4.研究热空气温度对干燥速率的影响(选做)。
5.测定流体通过颗粒层的压降(选做)。
二、实验原理在干燥设备的设计计算中,往往要了解物料由初始含水量降到最终含水量时,物料应在干燥器内的停留时间,然后就可计算各种干燥器的工艺尺寸。
由于干燥过程速率的资料。
通过测定干燥过程中物料的含水量或物料的表面温度与干燥时间的关系可以得到干燥曲线,即X ~τ曲线或τθ~曲线。
干燥速度u 等于单位时间从单位被干燥物料的面积上除去的水分重量,即τd A dW u ⋅=只要测出各个时间段内物料的失水量就可以计算物料的干燥速度。
干燥速度受很多因素的影响,它与物料及干燥介质都有关系。
在干燥条件不变的情况下,对于同类的物料,当干燥面积一定是,干燥速度是物料湿含量的函数,表示此函数关系的曲线成为干燥速度曲线。
干燥速度曲线也可由干燥曲线求出。
、流化操作状态因为具有较好的传热传质效果,在工业中得到广泛应用。
流化床干燥器是工业中常见的干燥器。
流体自下而上通过固体颗粒床层时,当流体的流速增大至一定程度时,全部颗粒刚好悬浮于向上流动的流体中而能作随机运动,床层处于起始流化状态或临界流化状态。
随后,流体流速增大,颗粒床层空隙率增大,但流体的实际速度超过颗粒的沉降速度时,达到气流输送状态。
流化可分为散式流化和聚式流化。
聚式流化的特点为:床层分为乳化相和气泡相。
乳化相为固体浓度大的气固均匀混合物,是连续相。
气泡相为气泡和可能夹带的少量固体颗粒,是分散相。
出于气泡在上界面处破裂,所以上界面是以某种频率上下波动的不稳定截面,床层压降也随之波动。
聚式流化见于大多数气—固系统。
散式流化的特点为:流体为连续相,固体颗粒均匀分散在流体中,床层没有气泡产生,有一稳定的上界面。
实验名称: 干燥速率曲线的测定实验 班级______姓名________考号________ 实验时间________年_______月______日 成绩________指导老师_______________一、实验内容A 在一定干燥条件下测定硅胶颗粒的干燥速率曲线。
C 测定气体通过干燥器的压降。
二、实验目的A 了解测定物料干燥曲线的意义。
C 学习和掌握测定干燥速率曲线的基本原理和方法。
D 了解影响干燥速率的有关的有关工程因素,熟悉流化床干燥器的结构特点及操作办法。
三、实验原理干燥是指采用某种方式将热量传给湿物料,使其中的湿分(水或有机溶剂)汽化单元的单元操作,在化工、轻工及农、林、渔业产品的加工等领域有广泛的应用。
干燥过程不仅涉及到气、固两性间的传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
由于物料的含水性质和物料的形状及内部结构不同,干燥过程速率要受到 3、干燥过程速率的影响因素是: A 物料性质 B 含水量 C 含水性质 D 热介质性质 E 设备类型等各种因素的影响。
目前,尚无形成熟的理论方法来计算干燥速率,工程上多仍需依赖于实验解决干燥问题。
物料的含水量,一般多用相对于湿物料总量的水分含量,即以湿物料为基准的含水率,用ω(kg 水分/kg 湿物料)来表示,但干燥时物料总量不断发生变化,所以采用以干物料为基准的含水量X (kg 水分/kg 干物料)来表示较为方便。
ω(kg 水分/kg 湿物料)和X (kg 水分/kg 干物料)之间有如下关系 :ωω-=1X(12-1)XX+=1ω (12-2)在干燥过程的设计和操作时,干燥速率是一个非常重要的参数。
例如在干燥设备的设计或选型时,通畅规定干燥时间和干燥工艺要求,需要确定干燥器的类型和干燥面积;或者,在干燥操作时,设备的类型及干燥器的面积已定,规定工艺要求,确定所需干燥时间。
这都需要知道物料的干燥特性,即干燥速率曲线。
实验7 干燥实验(Ⅰ) 箱式干燥器一、实验目的1. 了解气流常压干燥设备的基本流程和工作原理;2. 掌握物料干燥速率曲线的物理意义及测定方法;3. 了解操作条件改变对不同干燥阶段所产生的影响.二、实验任务1. 测定物料(纸板或其他)在恒定干燥工况下的干燥速率曲线及传质系数kH ;2. 研究风速对物料干燥速率曲线的影响;3. 研究气流温度对物料干燥速率曲线的影响.三、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中的水分汽化分离的操作。
干燥操作同时伴有传热和传质,其过程比较复杂。
目前仍依靠实验测定物料的干燥速率曲线,并作为干燥器设计的依据。
物料在恒定干燥条件下的干燥过程分为三个阶段(如图3.12所示)。
物料在预热(Ⅰ),其表面的温度很快接近于热空气的湿球温度t w 。
随后,进入恒速阶段(Ⅱ)。
此时物料表面温度t w 维持不变,干燥速率不变。
降速阶段(Ⅲ),物料表面已无液态水存在,由于物料内部的扩散速速率小于物料表面水分的汽化速率,干燥速率会逐渐降低,直至达到平衡含水量时,干燥速率降至零为止。
Ⅱ和Ⅲ交点处物料的含水量称为临界含水量(以Xe 表示),通常在预热阶段所需干燥时间可以忽略。
N Ac图3.12 干燥速率曲线1. 干燥速率曲线干燥速率是指单位时间从被干燥物料的单位汽化表面积上所汽化的水分量。
它可以表示为:A dWN Ad τ=(7-1) 式中: N A — 干燥速率,㎏/(m2·s);A — 被干燥物料的汽化表面积,m2; τ— 干燥时间,s ;W — 从干燥物料中汽化的水分量,㎏. 为了便于处理实验数据,式(7-1)可改写为:A WN A τ∆=∆ (7-2) 式(7-2)中的湿物料质量差可由相邻两次质量差得到:()()1+-=∆i s i s G G W (7-3)与之对应的物料干基含水量为X m : 21++=i i m X X X (7-4)其中:()cci s i G G G X -=式中:G c —绝干物料质量。
一、实验目的1. 熟悉流化床干燥器的基本流程及操作方法。
2. 掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3. 测定物料含水量及床层温度随时间变化的关系曲线。
4. 掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质系数及降速阶段的比例系数。
二、实验原理流化床干燥是利用热空气作为干燥介质,通过流化床将物料悬浮起来,实现干燥过程。
在实验中,通过测量不同空气流量下的床层压降,可以得到流化床床层压降与气速的关系曲线,即流化曲线。
当气速较小时,操作过程处于固定床阶段,床层基本静止不动;当气速逐渐增加时,床层开始膨胀,进入流化阶段,固体颗粒随气体流动。
干燥速率曲线反映了物料干燥过程中含水量与时间的关系。
通过测定干燥速率曲线,可以确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。
三、实验仪器与材料1. 实验仪器:流化床干燥器、罗茨鼓风机、转子流量计、空气电加热器、固态继电器控温仪表系统、水银玻璃温度计、电子天平。
2. 实验材料:小麦、空气。
四、实验步骤1. 将干燥器预热至设定温度,调节空气流量,使物料悬浮于床层中。
2. 分别在0、5、10、15、20、25、30、35、40、45、50分钟时,记录床层压降、物料含水量和床层温度。
3. 重复步骤2,直至物料干燥至恒速阶段。
4. 记录恒速阶段的传质系数和降速阶段的比例系数。
五、实验结果与分析1. 流化曲线:通过实验,得到流化床床层压降与气速的关系曲线,如图1所示。
可以看出,随着气速的增加,床层压降先逐渐增大,后趋于稳定。
图1:流化床床层压降与气速的关系曲线2. 干燥速率曲线:通过实验,得到物料干燥速率曲线,如图2所示。
可以看出,干燥速率曲线可分为三个阶段:恒速阶段、降速阶段和平衡阶段。
在恒速阶段,物料含水量随时间逐渐减小;在降速阶段,干燥速率逐渐降低;在平衡阶段,物料含水量趋于稳定。
图2:物料干燥速率曲线3. 临界含水量、恒速阶段的传质系数及降速阶段的比例系数:通过实验,确定临界含水量为X0,恒速阶段的传质系数为kH,降速阶段的比例系数为KX。
化工原理干燥实验报告一、摘要本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。
干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。
二、实验目的1、了解流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。
三、实验原理1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D 点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处的流速即被称为带出速度(u0)。
在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处的`流速被称为起始流化速度(umf)。
在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
北方民族大学学生实验报告院(部):化学与化学工程1、流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处流速即被称为带出)。
速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。
若气速继续降低,)。
曲线将无法按CBA继续变化,而是沿CA’变化。
C点处流速被称为起始流化速度(umf 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。
物料含水量与时间关系曲线的斜率即为干燥速率(u)。
将干燥速率对物料含水量作图。
——第i时刻取出的物料的绝干质量,kg。
Gci干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。
本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。
三、装置及流程1 风机;2、湿球温度水筒;3、湿球温度计;4、干球温度计;5、空气加湿器;6、空气流速调节阀;7、放净口;8、取样口;9、不锈钢筒体;10、玻璃筒体11、气固分离器;12、加料口;13、旋风分离器;14、孔板流量计(d0=20mm)四、操作要点1、流化床实验①加入固体物料至玻璃段底部。
②调节空气流量,测定不同空气流量下床层压降。
2、干燥实验(1)实验开始前①将电子天平开启,并处于待用状态。
②将快速水分测定仪开启,并处于待用状态。
③准备一定量的被干燥物料(以绿豆为例),取0.5kg左右放入热水(60~70℃)中泡20~30min,取出,并用干毛巾吸干表面水分,待用。
干燥综合实验一、实验目的1. 了解流化床干燥装置及洞道式干燥装置的基本结构、工艺流程和操作方法2. 学习测定物料在恒定干燥条件下干燥特性的实验方法3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法4. 实验研究干燥条件对于干燥过程特性的影响。
5. 学会分析两种不同干燥方式的性能优劣二、基本原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。
由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。
按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。
若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。
1 干燥速率的定义干燥速率的定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。
即(1)式中,U -干燥速率,又称干燥通量,kg/(m 2s );A -干燥表面积,m 2; W -汽化的湿分量,kg ; τ-干燥时间,s ;Gc-绝干物料的质量,kg;X-物料湿含量,kg湿分/kg干物料,负号表示X随干燥时间的增加而减少。
2 干燥速率的测定方法2.1 流化床干燥利用床层的压降来测定干燥过程的失水量。
(1)将0.5kg的湿物料(如取0.5kg的黄豆放入水中泡8h,取出,晾干表面水分,待用。
(2)开启风机,调节风量至100m3/h,打开加热器加热。
待热风温度恒定后(通常设定在75℃),将湿物料加入流化床中,干燥τ时间后取少量样品进行称量得到G i,将该样品于烘箱中进行干燥恒重到G c,则物料的瞬时含水率为X i=(2)式中G c为相应样品恒重后的绝干物料。
一、实验目的1. 了解化工干燥的基本原理和操作方法。
2. 掌握干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线的测定方法。
3. 确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。
二、实验原理化工干燥实验主要研究物料在干燥过程中的水分蒸发、热量传递和质量传递等基本规律。
本实验采用沸腾流化床干燥器进行干燥实验,通过测量不同干燥条件下的物料含水量、床层温度、气速和压降等参数,分析干燥过程的变化规律。
1. 干燥速率:干燥速率是指单位时间内物料水分蒸发量的多少,可用下式表示:干燥速率 = (物料含水量 - 干燥后物料含水量) / 干燥时间2. 临界含水量:物料开始大量蒸发的含水量,称为临界含水量。
3. 恒速阶段传质系数:干燥过程中,物料含水量低于临界含水量时,干燥速率基本保持不变,此时的传质系数称为恒速阶段传质系数。
4. 降速阶段比例系数:干燥过程中,物料含水量降至临界含水量以下,干燥速率逐渐减小,此时干燥速率与传质系数的关系可用下式表示:干燥速率 = KX (物料含水量 - 临界含水量)其中,KX为降速阶段比例系数。
三、实验装置及方法1. 实验装置:沸腾流化床干燥器、物料、加热器、温湿度计、流量计、压差计等。
2. 实验方法:(1)将物料放入沸腾流化床干燥器中,启动加热器进行干燥。
(2)在干燥过程中,定时测量物料含水量、床层温度、气速和压降等参数。
(3)根据测量数据,绘制干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线。
四、实验结果与分析1. 干燥速率曲线:根据实验数据,绘制干燥速率曲线。
从曲线可以看出,干燥速率随着干燥时间的推移而逐渐减小,在物料含水量低于临界含水量时,干燥速率基本保持不变。
2. 物料含水量、床层温度与时间关系曲线:根据实验数据,绘制物料含水量、床层温度与时间关系曲线。
从曲线可以看出,随着干燥时间的推移,物料含水量逐渐降低,床层温度逐渐升高。
北京化工大学化工原理实验报告实验名称:流化床干燥实验班级:环工1603姓名:**学号:**********同组人员:赵明新张金兰黄艺实验日期:2019.5.20干燥实验一、摘要本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。
干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。
二、实验目的1、了解流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K X。
三、实验原理1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处的流速即被称为带出速度(u0)。
在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处的流速被称为起始流化速度(u mf)。
北 京 化 工 大 学 实 验 报 告
课程名称: 化工原理实验 实验日期: 班 级: 姓 名: 同 组 人: 装置型号: 沸腾干燥实验装置
流化床干燥实验 一、 摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。
二、关键词: 流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX
四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一) 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf) 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。 (1) 物料预热阶段(AB段) 在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料, 物料含水量随时间变化不大. (2) 恒速干燥阶段(BC段) 由于物料表面存在自由水分,物料表面温度等于空气湿球的温度,传 入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减小, 干燥速率恒定且最大. (3) 降速干燥阶段(CDE段) 物料含水量减少到某一临界含水量(X0),由于物料内部水分的扩散慢 于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干 燥速率开始降低,物料温度开始上升。物料含水量越小,干燥速率越 慢,直至达到平衡含水量(X*)而终止。 干燥速率为单位时间在单位面积上气化的水分量,用微分式表示
AddWu 式中 u----干燥速率,kg水/(m^2s) A----干燥表面积,m^2 dτ---相应的干燥时间,s Dw----气化的水分量,kg. 图3中的横坐标X为对应于某干燥速率下的物料平均含水量
21iiXXX
式中 X-----某一干燥速率下湿物料的平均含水量;。 1,iiXX-----△τ时间间隔内开始和终了时的含水量,kg水/kg绝干物料
cicisiiGGGX 式中 siG-----第i时刻取出的湿物料的质量,kg ciG-----第i时刻取出的物料的绝干质量,kg 干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质 和操作条件,而且还受物料性质结构及含水量的影响。本实验装置为间歇操 作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操 作的流化床干燥器提供相应的设计参数。
五、实验流程
图一、沸腾干燥实验装置和流程 1.风机 2.湿球温度水桶 3.湿球温度计 4.干球温度计 5.空气加热器 6.空气流量调节阀 7.放净口 8.取样口 9.不锈钢筒体 10.玻璃筒体 11.气固分离段 12.加料口 13.旋风分离器 14.孔板流量计
六、实验操作 1. 干燥实验 (1)实验开始前 ① 将电子天平开启,使处于待用状态 ② 将烘箱开启备用 ③ 准备好被干燥物料(麦子) (2)床身预热阶段 启动风机及加热器,将空气控制在某一流量下,控制表面加热器温度,或空气温度稳定,打开进料口,将待干燥物徐徐倒入,关闭进料口. (3)测定干燥速率曲线 ①取样,用取样管推入拉出取样,每隔3min一次,取出样品放入小器皿中,编上编号并记录取样时间,称量取出样品重量,然后放入烘箱烘烤40min,再次称量样品重量,如此取样8-10次,并记录。做完后,关闭加热器和风机电源。 ②数据记录,每次取样同时,要记录床层温度,空气干球﹑湿球温度,流量和床层压降等。 2. 流化床实验 加入固体物料至玻璃段底部,调节空气流量,测定不同流量下的床层压降。 3. 结果分析 ①快速水分测定仪分析法 将每次取出的样品,在电子天平上称量9-10g,利用快速水分测定仪进行分析 ②烘箱分析法 每次取出样品,在电子天平上称量9-10g,放入烘箱内烘干,烘箱温度设定为120℃,1h后取出,在电子天平上称取其重量,此质量即可视为绝干物料质量。 4. 注意事项 ①取样时,取样管推拉要快,管槽口用布覆盖 ,以免物料喷出。 ②湿球温度计补水筒液面不得超过警示值。
七﹑数据记录与处理 1、 原始数据记录 干燥实验数据 序号 取样时间(S) 床层(物料)温度 干球温度 湿球温度 床层压降(kPa) 1 0 38.2 53.8 38 0.6 2 235 45.5 54.4 38.4 0.61 3 434 51.7 55.5 39.3 0.55 4 637 55.3 55.6 40 0.54 5 827 58.1 56.3 40.5 0.52 6 1019 59.6 56.7 41.1 0.54 7 1212 60.8 54.1 41.5 0.56 8 1460 61.8 57.4 41.8 0.57 9 1598 62.2 57.5 41.8 0.51 10 1799 62.8 57.8 42 0.48 物料湿重(g) 物料干重(g) 含水量 平均含水量 含水量变化 干燥速率 5.37 4.08 0.316176 7.03 5.65 0.244248 0.2802121 0.07192868 1.46918161 6.45 5.32 0.212406 0.2283269 0.03184177 0.76804276 6.25 5.2 0.201923 0.2071645 0.01048294 0.24787243 5.61 4.8 0.16875 0.1853365 0.03317308 0.83805668 5.82 5.05 0.152475 0.1606126 0.01627475 0.40686881 5.73 5.03 0.139165 0.1458201 0.01331024 0.33103182 5.87 5.21 0.126679 0.1329222 0.01248555 0.24165576 5.31 4.71 0.127389 0.127034 -0.0007091 -0.0246634 5.06 4.59 0.102397 0.1148925 0.02499202 0.59682438
流化曲线实验数据 序号 孔板压降(kPa) 床层压降(kPa) 空气压力 空气温度 气速(m/s)
1 0.2 0.23 0.19 59.7 0.424109142 2 0.54 0.39 0.47 59.8 0.696882432 3 0.7 0.46 0.6 59.9 0.793435552 4 0.94 0.48 0.78 60.2 0.91944671 5 1.25 0.49 1.02 60.4 1.060272856 6 1.62 0.48 1.34 60.3 1.207035779 7 2.11 0.48 1.71 60.2 1.377538876 8 2.43 0.5 1.98 59.8 1.47831088 9 2.88 0.49 2.35 59.5 1.609381039 10 3.19 0.46 2.55 59.4 1.693783813 11 3.48 0.45 2.79 58.6 1.769099495
2、 示例计算 2.1干燥实验(以第一组为例) 含水量=(物料湿重—物料干重)/物料干重=(5.37-4.08)/4.08=0.316176 干燥速率=含水量变化×3600/0.75/取样时间=0.07192868×3600/0.75/235=1.46918161 2.2流化曲线实验数据(以第一组为例) 气速=26.8×孔板压降^0.5×4/3600/0.1/0.1/3.14=26.8×0.2^0.5×4/3600/0.1/0.1/3.14=0.424109142
3、 绘图 3.1流化床的压降与气速曲线