全国1卷理科数学(含答案).pdf
- 格式:pdf
- 大小:888.88 KB
- 文档页数:12
2023届高三冲刺卷(一)全国卷-理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}110,1,2,3,4,1,93xA B x x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭Z ∣ ,则A B = ()A .{}0,2B .{}1,2C .{}0,1,2D .{}1,2,42.已知复数z 满足2i 1iz -=-+,则z 在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.已知1cos 23x =-,则22ππcos cos 66x x ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值为()A .916B .56C .1320D .17244.已知变量x ,y 满足2022000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,则28z x y =-的最大值是()A .4B .6C .8D .125.一个集合中含有4个元素,从该集合的子集中任取一个,则所取子集中含有3个元素的概率为()A .47B .35C .16D .146.某汽车生产厂家研发了一种电动汽车,为了了解该型电动汽车的月平均用电量(单位:度)情况,抽取了150名户主手中的该型电动汽车进行调研,绘制了如图所示的频率分布直方图,其中,第5组小长方形最高点的纵坐标为x ,则该型电动汽车月平均用电量在[)200,280的户主人数为()7.某班学生的一次的数学考试成绩ξ(满分:100分)服从正态分布:()2~85,N ξσ,且()83870.3P ξ<<=,()78830.12P ξ<<=,()78P ξ<=()A .0.14B .0.18C .0.23D .0.268.已知函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .859.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,,F F P 为C 右半支上一点,且212121cos ,24F PF PF PF a ∠=⋅=,则双曲线C 的离心率为()A .2B .4C .6D .910.在等比数列{}n a 中,公比2q =,且291011121011116a a a a a +++=,则9101112a a a a +++=()A .3B .12C .18D .2411.定义在R 上的函数()f x 满足,①对于互不相等的任意1x ,(]20,2x ∈都有()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,且当1x >时,()0f x >,②()()2f x f x +=-对任意x ∈R 恒成立,③()2y f x =+的图象关于直线2x =-对称,则()10f -、92f ⎛⎫- ⎪⎝⎭、()3f 的大小关系为()A .()()91032f f f ⎛⎫-<-< ⎪⎝⎭B .()()93102f f f ⎛⎫-<<- ⎪⎝⎭C .()()9.1032f f f ⎛⎫-<<- ⎪⎝⎭D .()()93102f f f ⎛⎫<-<- ⎪⎝⎭12.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞二、填空题13.若“2,630x x ax a ∃∈-+<R ”为假命题,则实数a 的取值范围为___________.14.43(2)(1)x x +-的展开式中2x 的系数为______________.15.如图所示,△ABC 是边长为8的等边三角形,点P 为AC 边上的一个动点,长度为6的线段EF 的中点为点B ,则PE PF ⋅的取值范围是___________.16.直线:10l x y +-=与椭圆22:142x yC +=交于,A B 两点,长轴的右顶点为点P ,则ABP 的面积为___________.三、解答题17.已知ABC 的角,,A B C 对边分别为,,a b c1cos sin ,3C a C bc +==,0b c +=.(1)求A ;(2)求ABC 外接圆的半径R .18.某农科所统计了单位面积某种化肥实施量x (kg )和玉米相应产量Y (kg )的相关数据,制作了数据对照表:x (kg )1620242936Y (kg )340350362404454若在合理施肥范围内x 与Y 具有线性相关关系,(1)求Y 关于x 的线性回归方程 ˆˆy bxa =+;(2)请利用线性回归方程预测40kg x =时的玉米产量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii xx y ybxx==--=-∑∑,ˆay bx =-.19.已知正三棱柱111ABC A B C -,底面边长为2,D 为AB 的中点.(1)证明:1CD A D ⊥;(2)求二面角1D A C A --的大小;(3)求直线CA 与平面1ACD 所成角的正弦值.20.已知斜率存在的直线l 过点()1,0P 且与抛物线()2:20C y px p =>交于,A B 两点.(1)若直线l 的斜率为1,M 为线段AB 的中点,M 的纵坐标为2,求抛物线C 的方程;(2)若点Q 也在x 轴上,且不同于点P ,直线,AQ BQ 的斜率满足0AQ BQ k k +=,求点Q 的坐标.21.已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.22.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,直线l 的参数方程为1cos ,1sin .x t y t ϕϕ=-+⎧⎨=+⎩(t 为参数).(1)若π4ϕ=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)过点()0,3P -向直线l 作垂线,垂足为Q ,说明点Q 的轨迹为何种曲线.23.已知函数()3f x x =+.(1)解不等式()38f x x +->;(2)若()()39f x m x x ≤-++在(),-∞+∞上恒成立,求实数m 的最小值.参考答案:1.C【分析】由指数函数的性质求解集合B ,结合交集的概念运算可得出结果.【详解】{}{}{}111,02,0,1,2,0,1,293xB x x x x x A B ⎧⎫⎪⎪⎛⎫=≤≤∈=≤≤∈=∴⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭Z Z ∣∣.故选:C 2.B【分析】化简复数z ,结合复数的坐标表示,即可求解.【详解】由题意,复数z 满足2i 1iz -=-+,可得()()()()21i 1i 1i 12i i i=1+2i 1i i z -==-=----++++-+,所以复数z 在复平面内对应的点(1,2)-位于第二象限.故选:B.3.B【分析】利用降幂公式及两角和差的余弦公式化简即可得解.【详解】22ππ1cos 21cos 2ππ33cos cos 6622x x x x ⎛⎫⎛⎫+-++ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭-++=+⎪ ⎪⎝⎭⎝⎭111cos 221cos 22222222x x x x +++-=+11151cos 212236x ⎛⎫=+=+⨯-= ⎪⎝⎭.故选:B.4.A【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义求出最大值作答.【详解】作出不等式组2022000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩表示的平面区域,如图中阴影四边形OABC (含边界),(2,0),(6,4),(0,1)A B C ,目标函数28z x y =-,即148zy x =-表示斜率为14,纵截距为8z -的平行直线系,画直线01:4l y x =,平移直线0l 到直线1l ,当直线1l 过点()2,0A 时,直线1l 的纵截距最小,z 最大,即max 224z =⨯=,所以28z x y =-的最大值为4.故选:A 5.D【分析】结合子集的概念与性质及古典概型的概率公式求解即可.【详解】4个元素的集合所有子集共4216=个,设此集合为{},,,a b c d ,事件A :“所取子集中含有3个元素”,则事件A 的基本事件个数为4个,即{},,a b c ,{},,a b d ,{},,a c d ,{},,b c d ,所以()41164P A ==.故选:D .6.C【分析】由频率和为1列方程求x ,再根据直方图中[)200,280区间频率求样本中对应的户主人数.【详解】由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=,得0.0075x =.月平均用电量在[)200,280的用户()200.0110.01250.00750.005150108⨯+++⨯=户.故选:C 7.C【分析】根据正态分布的对称性计算即可.【详解】因为()2~85,N ξσ,()83870.3P ξ<<=,所以()()81830.358372P P ξξ<-<=<,又()78830.12P ξ<<=,所以()()()7878830.2833P P P ξξξ-<=<<<=.故选:C.8.B【分析】由条件列方程求,a b ,由此可得函数()f x 的解析式,再由基本不等式求其最大值.【详解】因为函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,所以()01f =,()934f =,则394431b a ⎧=⎪⎨⎪=⎩,解得13a =,3b =,故函数()f x 的解析式为:()3113x xf x x =-++.而()()313313311371113133133x x x x x f x x x x +-+⎡⎤=-+=-+=-+≤-=⎢⎥+++⎣⎦,当且仅当2x =时取等号,函数()f x 在区间[]1,4上的最大值为73.故选:B.9.A【分析】根据数量积的定义可得2128PF PF a ⋅= ,结合双曲线的定义可得122PF PF a -= ,进而求解124,2PF a PF a ==,由余弦定理即可求解.【详解】221212122,cos 2PF PF a PF PF F PF a ∠⋅=∴⋅= 可得2128PF PF a ⋅= .又122PF PF a -= ,两式联立可得124,2PF a PF a ==,22222212121221216441cos 2164PF PF F F a a c F PF PF PF a ∠+-+-∴===⋅,整理可得224c a =,2,2c a e ∴==.故选:A .10.B【分析】根据等比数列的性质即可求解.【详解】9121011910111291011122910111291210119121011101110111111112a a a a a a a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫+++++++++++=+++=+== ⎪ ⎪⎝⎭⎝⎭,910111291011122229101112101010111166,,122a a a aa a a a a a a a a a a ++++++=∴=∴+++=.故选:B.11.B【分析】根据函数的三个条件得到函数()f x 为R 上的偶函数,周期为4,且函数()f x 在(0,2]上单调递增,然后将利用周期、奇偶性和单调性即可比较大小.【详解】因为()2y f x =+的图象关于直线2x =-对称,则函数()f x 关于y 轴对称,所以函数()f x 为R 上的偶函数,又因为()()2f x f x +=-对任意x ∈R 恒成立,则函数()f x 的周期为4,又因为对于互不相等的任意1x ,(]20,2x ∈都有()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,且当1x >时,()0f x >,所以对任意1220x x ≥>>,则121x x >,故有1122()()()0xf x f x f x -=>,所以函数()f x 在(0,2]上单调递增,则有(3)(34)(1)(1)f f f f =-=-=,(10)(1034)(2)f f f -=-+⨯=,9911((4)()(2222f f f f -=-+=-=,因为函数()f x 在(0,2]上单调递增,则1()(1)(2)2f f f <<,即()()93102f f f ⎛⎫-<<- ⎪⎝⎭,故选:B.12.D【分析】利用导数结合题意可知()0f x '<,()f x 在(),-∞+∞上单调递减,又()()41f x f <=,结合单调性定义可得不等式的解集.【详解】由()()()1e xx g x f x +=可得()()()()()()()()()()2e 1e 1e e e x x xxxg x x g x x g x xg x g x xg x f x ++-++'-''=='.而()()()0g x xg x xg x ''+-<,∴()0f x '<,∴()f x 在(),-∞+∞上单调递减,又()12e g =,则()()1214e14e eg f ⨯===,所以()()41f x f <=,则1x >,故不等式()4f x <的解集为()1,+∞.故选:D .13.10,3⎡⎤⎢⎥⎣⎦【分析】由“2,630x x ax a ∀∈-+≥R ”为真命题,利用判别式法求解.【详解】解:由条件可知“2,630x x ax a ∀∈-+≥R ”为真命题,则2Δ36120a a =-≤,即103a ≤≤.故答案为:10,3⎡⎤⎢⎥⎣⎦14.24【分析】43(2)(1)x x +-的展开式中2x 来自于三类:①4(2)+x 中的二次项与3(1)x -的常数项的乘积;②4(2)+x 中的常数项与3(1)x -的二次项的乘积;③4(2)+x 中的一次项与3(1)x -的一次项的乘积.【详解】展开式中2x 项为32224123322224343(1)C 22C (1)C 2C (1)24x x x x -⋅+⋅⋅-+⋅⋅-=,∴2x 的系数为24.故答案为:2415.[]39,55【分析】由向量的数量积公式得出29PE PF PB ⋅=- ,求出PB 的最大值和最小值即可得出结果.【详解】由线段EF 的中点为点B ,得出BF BE =-.()()()()22PE PF PB BE PB BF PB BE PB BE PB BE ⋅=+⋅+=+⋅-=- 29PB =-.当点P 位于点A 或点C 时,PB 取最大值8.当点P 位于AC 的中点时,PB 取最小值,即minπ8sin3PB==∴PB的取值范围为⎡⎤⎣⎦,∴PE PF ⋅的取值范围为[]39,55.故答案为:[]39,55.16【分析】根据弦长公式以及点到直线的距离即可结合三角形面积公式进行求解.【详解】直线l 与椭圆C 联立221,4210,x y x y ⎧+=⎪⎨⎪+-=⎩得23420x x --=.设点()()1122,,,A x y B x y ,则121242,33x x x x +==-.所以AB ===由椭圆C 知点()2,0P ,故点P 到直线:10l x y +-=的距离:d ==所以ABP的面积为11222S AB d =⋅=故答案为3.17.(1)π3【分析】(1)根据正弦定理边角互化以及和差角公式化简可得sin A A =,结合三角函数同角关系即可求解,(2)由余弦定理代入已知关系即可得1a =,由正弦定理即可求解.【详解】(1)cos sin C a C+=cos sin sin A C A C B +=,πA B C++=,())cos sin sin sin cos cos sin A C A C A C A C A C +++,sin sin sin A C AC ∴,sin 0,tan C A ≠∴= ()π0,π,3A A ∈∴=.(2)1,03bc b c =+-=222222222()213cos 22223a a b c a b c bc a A bc bc --+-+--∴====,整理得21a =,1a ∴=.由正弦定理可得2,sin 33a R R A ==∴=18.(1) 5.893234.675y x =+(2)470.395kg【分析】(1)利用最小二乘法求解;(2)将40kg x =代入回归方程求解.【详解】(1)解:由表中数据计算得,25x =.382y =,()()511438i i i x x y y =--=∑,()521244i i x x =-=∑,()()()51521 5.893i i i i i x x y y b x x ==--=≈-∑∑, 382 5.89325234.675ay bx =-=-⨯= .所以回归方程为 5.893234.675y x =+.(2)将40kg x =代入回归方程得 5.893234.675y x =+.故预测40kg x =时,玉米产量约为5.89340234.675470.395kg ⨯+=.19.(1)证明见解析;(2)π4【分析】(1)由正三棱柱的性质可得1BB ⊥平面ABC ,再利用线面垂直的判定定理即可证明CD ⊥平面11ABB A ,即可得1CD A D ⊥;(2)以11A C 的中点O 为坐标原点,建立空间直角坐标系利用空间向量与二面角的几何关系即可求得二面角1D A C A --的大小为π4;(3)根据(2)中结论,利用线面角与空间向量的关系即可得直线CA 与平面1ACD 所成角的正弦值【详解】(1)由111ABC A B C -为正三棱柱可知,1BB ⊥平面ABC ,又CD ⊂平面ABC ,所以1BB CD ⊥,由底面是边长为2的正三角形,D 为AB 的中点,所以CD AB ⊥;又1BB AB B ⋂=,1,BB AB ⊂平面11ABB A ,所以CD ⊥平面11ABB A ;又1A D ⊂平面11ABB A ,所以1CD A D ⊥;(2)取线段11,AC AC 的中点分别为,O E ,连接1,OB OE ,易知11,,OB OE OC 两两垂直,以O 为坐标原点,分别以11,,OC OE OB 所在直线为,,x y z 轴建立空间直角坐标系O xyz -,如下图所示;,底面边长为2可得,()()()((111,0,0,1,,1,,0,0,0,A C A B B --,由D 为AB的中点可得12D ⎛- ⎝⎭,所以()13,,0,2AC DC ⎛== ⎝⎭uuu r uuu r ,设平面1DAC 的一个法向量为(),,n x y z = ,则120302n AC x n DC x ⎧⋅=+=⎪⎨⋅=-=⎪⎩,令1x =,可得y z =即(1,n =r ;易得(1OB =uuu r即为平面1A CA 的一个法向量,所以111cos ,2n OB n OB n OB ⋅==r uuu r r uuu r r uuu r ,设二面角1D A C A --的平面角为θ,由图可知θ为锐角,所以1cos cos ,2n OB θ==r uuu r ,即π4θ=;即二面角1D A C A --的大小为π4.(3)由(2)可知()2,0,0CA =-uu r ,平面1DAC的一个法向量为(1,n =r ,设直线CA 与平面1ACD 所成的角为α,所以sin cos ,n CA n CA n CAα⋅===r uu r r uu r r uu r ,即直线CA 与平面1ACD20.(1)24y x=(2)Q ()1,0-【分析】(1)由题知直线l 的方程,联立抛物线,利用韦达定理以及中点公式即可求解;(2)设出直线l 的方程及Q 的坐标,联立方程组,消元,韦达定理,利用直线斜率公式写出AQ BQ k k +将韦达定理代入0AQ BQ k k +=,化简求出参数即可得点Q 的坐标.【详解】(1)因为直线l 的斜率为1且过点()1,0P ,所以直线l 的方程为:1y x =-,设()()1122,,,A x y B x y ,由221y px y x ⎧=⎨=-⎩,得:()22210x p x -++=,所以121222,1x x p x x +=+=,所以121222y y x x p +=+-=,因为M 为线段AB 的中点,M 的纵坐标为2,所以1222y y p +==,所以抛物线的方程为:24y x =.(2)设直线l 的方程为:()1y k x =-,()(),01Q m m ≠,()221y px y k x ⎧=⎪⎨=-⎪⎩,得:()2222220k x k p x k -++=,所以21212222,1k p x x x x k ++==,由()()()()()()122112121211AQ BQ k x x m k x x m y y k k x m x m x m x m --+--+=+=----()()()12122121222kx x km km k x x x x m x x m +-++=-++()222222222122k p k km k km k m p m k k+-+⋅+-⋅++=()()22222222202222k km km p k k k k k p k m m k ⎡⎤+-+⋅⎢⎥⎣⎦=-++=+由0k ≠,所以()2202222k k km km k p k +-++=⋅,即220mp p k k--=,所以1m =-,所以点Q 的坐标为()1,0-.21.(1)2210x y --=(2)12【分析】(1)求导,利用导数求解斜率,由点斜式即可求解直线方程,(2)将问题等价转化成22ln 20x a x ax --=在()0,∞+有唯一实数解.构造函数()22ln 2g x x a x ax =--,和()2ln 1,h x x x =+-利用导数求解单调性,进而确定方程的根,即可求解.【详解】(1)当1a =时,()111221f =-+=,且()()11,11f x x f x=-+'∴=',∴函数()f x 在点()()1,1f 处的切线方程112y x -=-,即2210x y --=.(2)()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,∴方程21ln 02x x x a-+=,即22ln 20x a x ax --=在()0,∞+有唯一实数解.设()22ln 2g x x a x ax =--,则()2222x ax a g x x --'=.令()0g x '=,即20.0,0,x ax a a x --=>> 20x ax a ∴--=的两个根分别为102a x =<(舍去),22a x =当()20,x x ∈时,()()0,g x g x '<在()20,x 上单调递减,当()2,x x ∈+∞时,()()0,g x g x '>在()20,x 上单调递增,当2x x =时,()()0,g x g x '=取最小值()2g x ,要使()g x 在()0,∞+有唯一零点,则须()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x a x ax x ax a ⎧--=⎨--=⎩()22222ln 0,0,2ln 10.*a x ax a a x x ∴+-=>∴+-= 设函数()2ln 1,h x x x =+-当0x >时()h x 是增函数,()h x ∴至多有一解.⋅()10,h =∴ 方程()*的解为21x =,即12a =,解得12a =,∴实数a 的值为12.【点睛】思路点睛:利用导数求解函数零点时,需要利用导数求解函数的单调性,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:直接求最值和等价转化.22.(1)2y x =+,224x y x+=(2)Q 的轨迹为以点1,12⎛⎫-- ⎪⎝⎭为圆心,2为半径的圆【分析】(1)根据直线l 的参数方程和π4ϕ=求解;利用ρcos x θ=,222x y ρ+=求解;(2)在0ϕ=时直接求出Q 的坐标,在0ϕ≠时,写出过点P 且与直线l 垂直的直线方程,与直线l 的方程联立消参求得Q 的轨迹方程,然后检验,进而得到答案.【详解】(1)解:由直线l 的参数方程为1cos ,1sin ,x t y t ϕϕ=-+⎧⎨=+⎩∵π4ϕ=,1,21,2x y ⎧=-+⎪⎪⎨⎪=+⎪⎩∴直线l 的普通方程为11y x -=+,即2y x =+.由4cos ρϕ=得24cos ρρθ=,因为cos x ρθ=,222x y ρ+=,所以曲线C 的直角坐标方程为224x y x +=.(2)若0ϕ=,由1·tan 1y t ϕ=+=,可知直线l 的方程为1y =,于是过点()0,3P -向直线l 作垂线,垂足为()0,1Q .若0ϕ≠,由直线l 的参数方程可知直线l 的斜率为tan ϕ,∴过点()0,3P -且与直线l 垂直的直线方程为13tan y x ϕ=--.联立方程组()tan 11,13,tan y x y x ϕϕ⎧=⋅++⎪⎨=--⎪⎩整理得2223y y x x +-=--,∴点Q 的轨迹方程为22230x y x y +++-=,即()22117124x y ⎛⎫+++= ⎪⎝⎭,显然,点()0,1也在()22117124x y ⎛⎫+++= ⎪⎝⎭上,所以动点Q 的轨迹为以点1,12⎛⎫-- ⎪⎝⎭为圆心,2为半径的圆.23.(1)()(),44,∞∞--⋃+(2)12【分析】(1)分3x ≤-、33x -<<、3x ≥三种情况解不等式即可;(2)由()()39f x m x x ≤-++,可得339x m x x +≥-++,由3923x x x -++≥+可得31392x x x +≤-++在(),-∞+∞上恒成立,进而求解.【详解】(1)因为()333f x x x x +-=++-,所以解不等式338x x ++->,而2,333=6,332,3x x x x x x x -≤-⎧⎪++--<<⎨⎪≥⎩,当3x ≤-时,不等式为2x ->8,解得<4x -;当33x -<<时,不等式为68>不成立,不等式无解;当3x ≥时,不等式为28x >,解得>4x .综上所述,不等式()38f x x +->的解集为()(),44,∞∞--⋃+.(2)由()()39f x m x x ≤-++,可得339x m x x +≥-++,因为3923x x x -++≥+,当且仅当()()390x x -+≥,即9x ≤-或3x ≥时等号成立.所以31392x x x +≤-++在(),-∞+∞上恒成立,故要使()()39f x m x x ≤-++在(),-∞+∞上恒成立,只须12m ≥,即实数m 的最小值为12.。
09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则A .()2211x y ++=B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-。
若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x+=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为()A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .86πB .46πC .26πD 6π二、填空题:本题共4小题,每小题5分,共20分。
2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是(A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A) )20)(1arccos(≤≤--=x x y (B) )20)(1arccos(≤≤--=x x y π (C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A) 43(B) 32 (C) 21 (D) 41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b (A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f(x)、g(x)都是单调函数,有如下四个命题:①若f(x)单调速增,g(x)单调速增,则f(x)-g(x))单调递增;②若f(x)单调速增,g(x)单调速减,则f(x)-g(x))单调递增;③若f(x)单调速减,g(x)单调速增,则f(x)-g(x))单调递减;④若f(x)单调速减,g(x)单调速减,则f(x)-g(x))单调递减;其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B) P3>P2=P1(C) P3=P2>P1(D) P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26(B)24(C)20(D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+yx的两个焦点为F1、F2,点P在双曲线上.若PF⊥PF2,则点P到x轴的距离为_________。
绝密★启用前2022年普通高等学校招生全国统一考试数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈ B.3M∈ C.4M∉ D.5M∉【答案】A 【解析】【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A2.已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A.1,2a b ==- B.1,2a b =-= C.1,2a b == D.1,2a b =-=-【答案】A 【解析】【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12iz =+12i (12i)(1)(22)iz az b a b a b a ++=-+++=+++-由0z az b ++=,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A3.已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅=()A.2-B.1- C.1D.2【答案】C 【解析】【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅ a b a b ,∴1a b ⋅= 故选:C.4.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A.15b b < B.38b b < C.62b b < D.47b b <【答案】D 【解析】【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】解:因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.故选:D.5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A.2B. C.3D.【答案】B 【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==.故选:B6.执行下边的程序框图,输出的n =()A.3B.4C.5D.6【答案】B 【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>;执行第二次循环,2347b b a =+=+=,725,13a b a n n =-=-==+=,222271220.01525b a -=-=>;执行第三次循环,271017b b a =+=+=,17512,14a b a n n =-=-==+=,2222171220.0112144b a -=-=<,此时输出4n =.故选:B7.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A.平面1B EF ⊥平面1BDD B.平面1B EF ⊥平面1A BD C.平面1//B EF 平面1A ACD.平面1//B EF 平面11AC D【答案】A 【解析】【分析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD ,所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ,所以EF BD ⊥,又1BD DD D = ,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA ==,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=-设平面1B EF 的法向量为()111,,m x y z =,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =--,平面1A AC 的法向量为()21,1,0n =,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n uu r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A.14 B.12C.6D.3【答案】D 【解析】【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列{}n a 的公比为,0q q ≠,若1q =,则250a a -=,与题意矛盾,所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩,所以5613a a q ==.故选:D .9.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.33D.22【答案】C 【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则212327O ABCDV r h -=⋅⋅=当且仅当222r h =即h =时等号成立,故选:C10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大D.该棋手在第二盘与丙比赛,p 最大【答案】D 【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p 乙;该棋手在第二盘与丙比赛且连胜两盘的概率p 丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p 甲则2132131231232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-甲记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙则1231232131232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-乙记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙则1321323121232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-丙则[]()1231232131231232()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<甲乙[]()2131233121232312()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<乙丙即p p <甲乙,p p <乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选:D11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A.2B.32C.2D.2【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF α∠=,21F F N β∠=,即可求出sin α,sin β,cos β,在21F F N 中由()12sin sin F F N αβ∠=+求出12sin F F N ∠,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a =,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos b c β=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c cF F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率221312c b e a a ==+=故选:C12.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑()A.21-B.22-C.23-D.24-【答案】D 【解析】【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31014.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【解析】【分析】设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;15.记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据()32f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2π3cos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+==⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0>ω,所以当0k =时min 3ω=;故答案为:316.已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】【分析】由12,x x 分别是函数()22e xf x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln x g x a a =⋅,根据导数的结合意义结合图象即可得出答案.【详解】解:()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e xf x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾,故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,令()ln xg x a a =⋅,则()2ln ,01xg x a a a '=⋅<<,设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln x x a a ⋅,则切线的斜率为()020ln xg x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-,则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=,则切线的斜率为122ln ln eln aa aa ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11ea <<,综上所述,a 的范围为1,1e ⎛⎫ ⎪⎝⎭.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解.【小问1详解】证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅,即()22222222222a cb a bc b c a +-+--+-=-,所以2222a b c =+;【小问2详解】解:因为255,cos 31a A ==,由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-,则50502531bc -=,所以312bc =,故()2222503181b c b c bc +=++=+=,所以9b c +=,所以ABC 的周长为14a b c ++=.18.如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为7【解析】【分析】(1)根据已知关系证明ABD CBD ≌△△,得到AB CB =,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE DE ⊥,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,BE =,因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =,则()n = ,又因为()31,0,0,0,44C F ⎛⎫- ⎪ ⎪⎝⎭,所以31,,44CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以43cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤⎪⎝⎭,所以43sin cos ,7n CF θ== ,所以CF 与平面ABD 所成的角的正弦值为437.19.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积i x 0.040.060.040.080.080.050.050.070.070.060.6材积量i y 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数iii=122iii=1i=1( 1.896 1.377)()()nn nx x y y r x x y y --=≈--∑∑∑.【答案】(1)20.06m ;30.39m (2)0.97(3)31209m 【解析】【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x ==样本中10棵这种树木的材积量的平均值 3.90.3910y ==据此可估计该林区这种树木平均一棵的根部横截面积为20.06m ,平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---=∑∑0.01340.970.01377=≈则0.97r ≈【小问3详解】设该林区这种树木的总材积量的估计值为3m Y ,又已知树木的材积量与其根部横截面积近似成正比,可得0.06186=0.39Y,解之得3=1209m Y .则该林区这种树木的总材积量估计为31209m 20.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)-【解析】【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【小问1详解】解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.【小问2详解】3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N -,代入AB 方程223y x =-,可得263,)3T ,由MT TH =得到265,3H +.求得HN 方程:26(223y x =--,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x =(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0)11(),(0)21ex xf x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x xxa xa x f x x x '+--=+=++设()2()e 1xg x a x=+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20xg x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1xx g x a x ∈-=+-设()()e 2x h x g x ax'==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为322sin x t y t⎧=⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m πρθ⎛⎫ ⎪⎝+⎭+=.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.【答案】(1320++=y m (2)195122-≤≤m 【解析】【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可.【小问1详解】因为l :sin 03m πρθ⎛⎫ ⎪⎝+⎭+=,所以13sin cos 022ρθρθ⋅+⋅+=m ,又因为sin ,cos y x ρθρθ⋅=⋅=,所以化简为13022++=y x m ,整理得l 20++=y m 【小问2详解】联立l 与C 的方程,即将2=x t ,2sin y t =代入20++=y m 中,可得3cos 22sin 20++=t t m ,所以23(12sin )2sin 20-++=t t m ,化简为26sin 2sin 320-+++=t t m ,要使l 与C 有公共点,则226sin 2sin 3=--m t t 有解,令sin =t a ,则[]1,1a ∈-,令2()623=--f a a a ,(11)a -≤≤,对称轴为16a =,开口向上,所以(1)623()5=-=+-=max f f a ,min 11219(()36666==--=-f f a ,所以19256-≤≤m m 的取值范围为195122-≤≤m .[选修4-5:不等式选讲]23.已知a ,b ,c 都是正数,且3332221a b c ++=,证明:(1)19abc ≤;(2)a b c b c a c a b ++≤+++;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【小问1详解】证明:因为0a >,0b >,0c >,则320a >,320b >,320c >,所以3332223a b c++≥,即()1213abc ≤,所以19abc ≤,当且仅当333222a b c ==,即a b c ===时取等号.【小问2详解】证明:因为0a >,0b >,0c >,所以b c +≥,a c +≥a b +≥,所以32a b c ≤=+32b a c ≤=+32c a b ≤=+333333222222a b c b c a c a b ++≤+++当且仅当a b c ==时取等号.。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)第I 卷(选择题)一、单选题1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+= C .22(1)1x y +-= D .22(+1)1y x +=3.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入A.A=12A+B.A=12A+C.A=112A+D.A=112A+9.记n S为等差数列{}n a的前n项和.已知4505S a==,,则A.25na n=-B.310na n=-C.228nS n n=-D.2122nS n n=-10.已知椭圆C的焦点为121,01,0F F-(),(),过F2的直线与C交于A,B两点.若222AF F B=││││,1AB BF=││││,则C的方程为A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+=11.关于函数()sin|||sin|f x x x=+有下述四个结论:①f(x)是偶函数②f(x)在区间(2π,π)单调递增③f(x)在[,]ππ-有4个零点④f(x)的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为 A .86π B .46πC .26πD .6π第II 卷(非选择题)13.曲线23()e xy x x =+在点(0,0)处的切线方程为___________.14.记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F B F B ⋅=u u ur u u u r ,则C 的离心率为____________.17.V ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .18.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A-MA 1-N 的正弦值.19.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u r u u u r,求|AB |.20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++ 参考答案1.C【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 2.C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C . 【详解】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1x y +-=.故选C .【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题. 3.B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题. 4.B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解. 【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm,则262611052x x y +==+,得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题. 5.D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题. 6.A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算. 【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题. 7.B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π. 8.A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择. 【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+. 9.A【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断. 10.B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =.【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos4,422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得3n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.C【解析】【分析】化简函数()sin sinf x x x=+,研究它的性质从而得出正确答案.【详解】()()()()sin sin sin sin,f x x x x x f x f x-=-+-=+=∴Q为偶函数,故①正确.当2xππ<<时,()2sinf x x=,它在区间,2π⎛⎫π⎪⎝⎭单调递减,故②错误.当0xπ≤≤时,()2sinf x x=,它有两个零点:0,π;当0xπ-≤<时,()()sin sin2sinf x x x x=--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k*∈ππ+π∈N时,()2sinf x x=;当[]()2,22x k k k*∈π+ππ+π∈N时,()sin sin0f x x x=-=,又()f x为偶函数,()f x∴的最大值为2,故④正确.综上所述,①④正确,故选C.【点睛】画出函数()sin sinf x x x=+的图象,由图象可得①④正确,故选C.12.D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得2PA PB PC ===,从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解. 【详解】解法一:,PA PB PC ABC ==∆Q 为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,PB ⊥平面PAC ,2PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++=,即364466,62338R V R =∴=π=⨯=ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆Q 为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D. 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 13.30x y -=. 【解析】 【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程 【详解】详解:/223(21)3()3(31),x x xy x e x x e x x e =+++=++所以,/0|3x k y ===所以,曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求. 14.1213. 【解析】 【分析】本题根据已知条件,列出关于等比数列公比q 的方程,应用等比数列的求和公式,计算得到5S .题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误. 15.0.216. 【解析】 【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查. 【详解】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯= 前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯= 综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+= 【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 16.2. 【解析】 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 60ba==. 【详解】 如图,由1,F A AB =u u u r u u u r 得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =u u u r u u u u rg ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 603ba==率为221()1(3)2c be a a==+=+=. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题. 17.(1)3A π=;(2)62sin C +=【解析】 【分析】(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(22sin 2sin A B C +=,利用()sin sin B A C =+、两角和差正弦公式可得关于sin C 和cos C 的方程,结合同角三角函数关系解方程可求得结果. 【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,πA ∈Q 3A π\=(2)22a b c +=Q 2sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C ++=整理可得:3sin C C -=22sin cos 1C C +=Q (()223sin 31sin C C ∴=-解得:sin 4C =4因为sin 2sin 2sin 0B C A C ==->所以sin C >,故sin C =(2)法二:2b c +=Q sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C ++=整理可得:3sin C C -=,即3sin 6C C C π⎛⎫=-= ⎪⎝⎭sin 62C π⎛⎫∴-=⎪⎝⎭ 由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()46C ππ=+=. 【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.18.(1)见解析;(2)5. 【解析】 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)以菱形ABCD 对角线交点为原点可建立空间直角坐标系,通过取AB 中点F ,可证得DF ⊥平面1AMA ,得到平面1AMA 的法向量DF uuu r;再通过向量法求得平面1MA N 的法向量n r,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值. 【详解】(1)连接ME ,1B CM Q ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C =又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C =//ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE Ì平面1C DE //MN ∴平面1C DE(2)设AC BD O =I ,11111AC B D O =I 由直四棱柱性质可知:1OO ⊥平面ABCDQ 四边形ABCD 为菱形 AC BD ∴⊥则以O 为原点,可建立如下图所示的空间直角坐标系:则:()3,0,0A,()0,1,2M ,)13,0,4A ,D (0,-1,0)31,222N ⎛⎫-⎪ ⎪⎝⎭取AB 中点F ,连接DF,则01,22F ⎛⎫ ⎪ ⎪⎝⎭Q 四边形ABCD 为菱形且60BAD ∠=o BAD ∴∆为等边三角形 DF AB ∴⊥又1AA ⊥平面ABCD ,DF ⊂平面ABCD 1DFAA ∴⊥DF ⊥∴平面11ABB A ,即DF ⊥平面1AMADF ∴u u u r为平面1AMA的一个法向量,且3,022DF⎛⎫= ⎪ ⎪⎝⎭u u u r 设平面1MA N 的法向量(),,n x y z =r,又)11,2MA =-u u u u r,3,022MN ⎛⎫=-⎪ ⎪⎝⎭u u u u r1203022n MA y z n MN x y ⎧⋅=-+=⎪∴⎨⋅=-=⎪⎩u u u u v r u u u u v r,令x =1y =,1z =-)1n ∴=-rcos ,5DF n DF n DF n ⋅∴<>===⋅u u u r ru u u r r u u u r rsin ,DF n ∴<>=u u u r r∴二面角1A MA N --【点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型. 19.(1)12870x y --=;(2)3. 【解析】 【分析】(1)设直线l :3y =x m 2+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得121x x =+;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =u u u r u u u r 可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+=联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB =u u u r u u u rQ 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 20.(1)见解析;(2)见解析 【解析】 【分析】(1)求得导函数后,可判断出导函数在1,2π⎛⎫- ⎪⎝⎭上单调递减,根据零点存在定理可判断出00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,进而得到导函数在1,2π⎛⎫- ⎪⎝⎭上的单调性,从而可证得结论;(2)由(1)的结论可知0x =为()f x 在(]1,0-上的唯一零点;当0,2x p 骣÷ç西ç÷ç÷桫时,首先可判断出在()00,x 上无零点,再利用零点存在定理得到()f x 在0,2x π⎛⎫⎪⎝⎭上的单调性,可知()0f x >,不存在零点;当,2x ππ⎡⎤∈⎢⎥⎣⎦时,利用零点存在定理和()f x 单调性可判断出存在唯一一个零点;当(),x π∈+∞,可证得()0f x <;综合上述情况可证得结论.【详解】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +Q在1,2π⎛⎫- ⎪⎝⎭上单调递减,1111,7n n a a +-=在1,2π⎛⎫- ⎪⎝⎭上单调递减()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.21.(1)见解析;(2)(i )见解析;(ii )41257p =. 【解析】 【分析】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p . 【详解】(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=Q ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅Q即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i i i i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.【点睛】本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题.本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题能力要求较高.22.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【解析】【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭ 整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈- 又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d =【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.23.(1)见解析;(2)见解析【解析】【分析】(1)利用1abc =将所证不等式可变为证明:222a b c bc ac ab ++≥++,利用基本不等式可证得()2222222a b c ab bc ac ++≥++,从而得到结论;(2)利用基本不等式可得()()()()()()3333a b b c c a a b b c c a +++++≥+++,再次利用基本不等式可将式转化为()()()333a b b c c a +++++≥.【详解】 (1)1abc =Q 111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++Q当且仅当a b c ==时取等号 ()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (2)()()()()()()3333a b b c c a a b b c c a +++++≥+++Q ,当且仅当a b c ==时取等号又a b +≥b c +≥,a c +≥a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc = ()()()33324a b b c c a ∴+++++≥【点睛】 本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.。
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙理科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i2.设集合U =R ,集合M ={x x <1 },N ={x -1<x <2 },则{x x ≥2 } =()A.C U (M ∪N )B.N ∪C U MC.C U (M ⋂N )D.M ∪C U N3.3、如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知f (x )=xe x e ax -1是偶函数,则a =()A.-2B.-1C.1D.25.设O 为平面坐标系的坐标原点,在区域{(x ,y )1≤x 2+y 2≤4 }内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.126.已知函数f (x )=sin (ωx +φ)在区间(π6,2π3)单调递增,直线x =π6和x =2π3为函数y =f (x )的图像的两条对称轴,则f (-5π12)=()A.-32B.-12C.12D.327.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120∘,若△PAB的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π9.已知△ABC 为等腰三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150° ,则直线CD 与平面ABC 所成角的正切值为()A.15B.225C.35D.2510.已知等差数列{a n }的公差为2π3,集合S =cosa n n ∈ N * ,若S ={a b },则ab =()A.-1B.-12C.D.1211.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.(-1,1)B.(-1,2)C.(1,3)D.(-1,-4)12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA ∙PD的最大值为()A.1+22B.1+222C.1+2D.2+2二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则MN =A .}{43xx -<<B .}42{xx -<<- C .}{22x x -<< D .}{23xx <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π62sin cos ++x xxx8.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为n SA .B .C . D二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512 C.514+ D.512+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2024年高考真题汇编数学(新课标卷+全国卷)目录2024年普通高等学校招生全国统一考试(新课标I卷)数学2024年普通高等学校招生全国统一考试(新课标II卷)数学2024年普通高等学校招生全国统一考试(全国甲卷)理科数学2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f >C.(10)1000f <D.(20)10000f <二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2024年普通高等学校招生全国统一考试(新课标II 卷)数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件 D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间262450乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001 k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C.D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学参考答案一、单项选择题【答案】1.A 【解析】【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.【答案】2.C 【解析】【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.【答案】3.D 【解析】【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.【答案】4.A 【解析】【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.【答案】5.B 【解析】【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.【答案】6.B【解析】【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.【答案】7.C【解析】【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C【答案】8.B【解析】【详解】因为当3x<时()f x x=,所以(1)1,(2)2f f==,又因为()(1)(2)f x f x f x>-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f>+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f>+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.二、多项选择题【答案】9.BC 【解析】【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .【答案】10.ACD 【解析】【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.【答案】11.ABD 【解析】【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.三、填空题【答案】12.32【解析】【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:32【答案】13.ln 2【解析】【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 2【答案】14.12【解析】【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.四、解答题【答案】15.(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a c b c +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得2338c =,所以c =【答案】16.(1)由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,352AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k ----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.【答案】17.(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,2DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.【答案】18.(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【答案】19.(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.2024年普通高等学校招生全国统一考试(新课标II 卷)数学参考答案一、单项选择题【答案】1.C 【解析】【详解】若1i z =--,则z ==.故选:C.【答案】2.B 【解析】【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.【答案】3.B 【解析】【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.【答案】4.C 【解析】【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.【答案】5.A 【解析】【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 【答案】6.D 【解析】【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.【答案】7.B 【解析】【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,。
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =−<<=−−<,,则MN =A .}{43x x −<<B .}42{x x −<<−C .}{22x x −<<D .}{23x x <<2.设复数z 满足=1i z −,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=−C .22(1)1y x +−=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512−(512−≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512−.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]−ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()−a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =−B . 310n a n =−C .228n S n n =−D .2122n S n n =− 10.已知椭圆C 的焦点为121,01,0F F −(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]−ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序, 可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; 底面三角形斜边长为6,高为3的等腰直角三角形,,12ω>∴,验证三角函数的角的范围,排除选项,得到结果.的范围即可.【解析】由已知得22222(2)44|a b|a b a a b b -=-=-+224||4||||cos45||a a b b =-︒+24|||10b b =-+=,解得||32b =【提示】由已知可得,2||||cos45||2b a a b b =︒=,代入 2222(2)44a b|a b a a b b -=-=-+242||||10b b =-+=可求14.【答案】[]3,3-60(a ++-117++=59(a +++,sin 0C >,0πA <<π5π66A -<法二:由正弦定理可得sin a 222a b c a ab+-,0πA <<)ABC S =△,2a A =,,直又1DC BD ⊥1DC D =2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.x 轴,(,DB a =-,1(,0,DC a =-的法向量为11(,n x y =111n DB ax n DC ax ⎧=-⎪⎨=-⎪⎩,故可取1(1,2,1)n =的一个法向量2(1,1,0)n =设1n 与2n 的夹角为1212||||6n n n n =⨯30.由图可知,二面角的大小为锐角,故二面角1A -'=h x()eh x→-∞()(2)当aa+>,10,所以当x ∥CF AB∥CF AB(Ⅱ)由(Ⅰ)知,∴△∽△BCD。
2020年全国1卷理科数学真题(解析版)一、选择题:(每小题5分,共60分)1.若z=1+i ,则|z 2–2z |=()A.0B.1C.D.2【答案】D【详解】由题得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.考点:复数的运算2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B【详解】由题得:{}2|2A x x -=≤≤,|2a B x x ⎧⎫=≤-⎨⎬⎩⎭∴12a-=,解得:2a =-.故选:B.考点:集合的运算3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.14B.12- C.14+ D.12+【答案】C【详解】如图,设,CD a PE b ==,则PO ==,由题意212PO ab =,即22142a b ab -=,化简得24(210b b a a -⋅-=,解得154b a =(负值舍去).故选:C.考点:正四棱锥4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A.2B.3C.6D.9【答案】C 【详解】设焦点为F ,由题知||122A p AF x =+=,即1292p=+,解得6p =.故选:C.考点:抛物线5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A.y a bx=+ B.2y a bx =+ C.e xy a b =+ D.ln y a b x=+【答案】D 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,.故选:D.考点:散点图与曲线拟合6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A.21y x =--B.21y x =-+ C.23y x =- D.21y x =+【答案】B【详解】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.考点:导数的几何意义与切线方程7.设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A.10π9B.7π6C.4π3D.3π2【答案】C【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 考点:三角函数的图像与性质8.25()x x y xy ++的展开式中x 3y 3的系数为()A.5B.10C.15D.20【答案】C【详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=故选:C 考点:二项式定理9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A.3B.23C.13D.59【答案】A【详解】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3απα∈∴== .故选:A.考点:三角函数给值求值10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A.64π B.48πC.36πD.32π【答案】A【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据圆截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A考点:外接球11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为()A.210x y --=B.210x y +-=C.210x y -+=D.210x y ++=【答案】D【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以12222PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .考点:解析几何直线与圆12.若242log 42log a ba b +=+,则()A.2a b >B.2a b< C.2a b > D.2a b <【答案】B【详解】设2()2log x f x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+所以()(2)f a f b -=2222log (2log 2)a b a b +-+=22222log (2log 2)b bb b +-+21log 102==-<,所以()(2)f a f b <,所以2a b <.2()()f a f b -=22222log (2log )a b a b +-+=222222log (2log )b b b b +-+=22222log b b b --,当1b =时,2()()20f a f b -=>,此时2()()f a f b >,有2a b >当2b =时,2()()10f a f b -=-<,此时2()()f a f b <,有2a b <,所以C 、D 错误.故选:B.考点:指数与对数二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm 5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212xy += B .22132x y += C .22143x y+= D .22154x y+= 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为 A .6πB .64πC .6πD 6π二、填空题:本题共4小题,每小题5分,共20分。
XXXX 年普通高等学校招生全国统一考试
理科数学
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x |x <1},B ={x |31x <},则( ) A .{|0}A
B x x =< B .A B =R
C .{|1}A B x x =>
D .A B =∅
2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
A .
1
4
B .
π8
C .
12
D .
π4
3.设有下面四个命题
1p :若复数z 满足1
z
∈R ,则z ∈R ;
2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;
4p :若复数z ∈R ,则z ∈R .
其中的真命题为( ) A .13,p p
B .14,p p
C .23,p p
D .24
,p p
4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )
A .1
B .2
C .4
D .8
5.函数()f x 在(,)−∞+∞递减,且为奇函数.若(11)f =−,则满足21()1x f −−≤≤的x 的取值范围是( ) A .[2,2]−
B .[1,1]−
C .[0,4]
D .[1,3]
6.62
1(1)(1)x x
+
+展开式中2
x 的系数为( ) A .15
B .20
C .30
D .35
7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,
A .10
B .12
C .14
D .16
8.右面程序框图是为了求出满足3n
−2n
>1000的最小偶数n ,那么在
和
两个空白框中,可以分别填入( )
A .A >1000和n =n +1
B .A >1000和n =n +2
C .A ≤1000和n =n +1
D .A ≤1000和n =n +2
9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +
2π
3
),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π
6
个单位长度,得到曲线C 2
B .把
C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π
12
个单位长度,得到曲线C 2
C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π
6
个单位长度,得到曲线C 2
D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π
12
个单位长度,得到曲线C 2
10.已知F 为抛物线C :y 2
=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2
与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16
B .14
C .12
D .10
11.设x 、y 、z 为正数,且235x y z ==,则( )
A .2x <3y <5z
B .5z <2x <3y
C .3y <5z <2x
D .3y <2x <5z
12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学
题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20
,接下来的两项是20
,21
,再接下来的三项是20
,21
,22
,
( ) A .440
B .330
C .220
D .110
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .
14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪
+≥−⎨⎪−≤⎩
,则32z x y =−的最小值为 .
15.已知双曲线C :22
221x y a b
−=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一
条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为____ ____.
16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,
△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3
)的最大值为_______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必
须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为2
3sin a A
(1)求sin B sin C ;
(2)若6cos B cos C =1,a =3,求△ABC 的周长.
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.
19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
2(,)N μσ.
(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ−+之外的零件数,求
(1)P X ≥及X 的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ−+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,0.212s ==
≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.
用样本平均数x 作为μ的估计值ˆμ
,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μ
σμσ−+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2
(,)N μσ,则(33)0.9974P Z μσμσ−<<+=,
160.99740.9592=0.09≈.
20.(12分)已知椭圆C :22
22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1中恰有三点在椭圆C 上. (1)求C 的方程;
(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.
21.(12分)已知函数2()(2)x x f x ae a e x =+−−. (1)讨论()f x 的单调性;
(2)若()f x 有两个零点,求a 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为
3cos
sin
x
y
θ
θ
=
⎧
⎨
=
⎩
(θ为参数),直线l的参数方程为
4
1
x a t
t
y t
=+
⎧
⎨
=−
⎩
(为参数).
(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x) = –x2+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x) ≥ g(x)的解集;
(2)若不等式f(x) ≥ g(x)的解集包含[–1,1],求a的取值范围.
参考答案(理科数学)
一、选择题
1 2 3 4 5 6 7 8 9 10 11 12 A B
B
C
D
C
B
D
D
A
D
A
二、填空题 13.23
14.5−
15.
23
3
16.415
三、解答题。