组串式与集中式光伏电站安全对比
- 格式:doc
- 大小:2.05 MB
- 文档页数:14
1MW地面光伏电站
集中式方案与组串式方案对比
深圳恒通源环保科技有限公司
2017年5月
1、组串式与集中式技术方案对比
集中式解决方案,一般采用直流汇流箱或是1MW逆变箱(含2台500KW逆变器)来实现单个MW子阵设计。
组串式逆变器方案显著特性:智能、高效、安全和可靠。
组串式逆变器本身IP65防护等级,无熔丝设计,并且可实现对每一路组串电流电压等信息的高精度采集,精确定位组件的故障和其它电气故障;无需安装大量的直流汇流箱,配置少量的交流汇流箱采用无易损元器件如熔丝等,无需定期更换,维护更方便;采用PLC电力载波通信,而PLC的最大特点:不需要重新架设通讯线缆,只要有电线,就能进行数据传递,无疑成为了光伏电站的最佳方案之一。
2、组串式与集中式主要设备材料对比
大型并网光伏电站的主要发电设备为电池组件、逆变器、升压箱变等。
大型并网电站的施工主要包括平整土地、打桩、支架安装、安装组件、安装设备、布线、逆变器室建设等方面。
随着市场竞争的促进,组串式的成本有了快速降低,组串式与集中式的价格差距越来越小。
下面表为组串式1MW方阵与集中式1MW建设设备清单的对比。
1
项目容量为1MW,采用低压380V并网,因此以下为1MW项目集中式方案(SUN8000-1000IS逆变器)与组串式方案(SUN2000-36KTL 逆变器)的设备清单及用量估算对比:
2
综上:
针对本项目,采用集中方案和组串式方案均可,但根据目前行业发展,组串式逆变器引领行业,且组串式逆变器在发电量、运维、安全等方面均有较为突出的优势。
3。
光伏并网逆变器按安装方式,电路结构和功率等级,一般分为3类,集中式逆变器,功率范围为50KW到3.2MW,组串式逆变器,功率范围为1KW到50KW,微型逆变器,功率范围为200W到1000W。
2014年之前,光伏电站逆变器选型设计,逆变器一般都是尽量选功率大的,就是大型地面电站选用集中式500KW,分布式中大型电站选用50—250KW的集中式逆变器,50KW以下选用组串式的逆变器,到了2014年,华为横空出世,以组串式逆变器为切入点,杀入地面电站,在行业内引起了巨大震动。
一时间,有关集中式和组串式逆变器之争,占据了各大光伏网站论坛和行业研讨会头条。
集中式以阳光电源为首,组串式以华为逆变器为首,交战双方从技术方案,价格,系统维护,发电量等角度出发,阐述了各自的优点和对方的缺点,具体内容可参考这篇文章:集中式逆变器和组串式逆变器选型之比较。
这场“战争”持续了近一年,结果令人吃惊:交战的双方主将居然都没有输,阳光电源在集中式逆变器领域继续保持领先优势,同时组串式逆变器的份额也扩大了很多,国家扶贫项目的主要产品3KW逆变器,一度脱销。
华为在很多项目,集中式逆变器也在参与招标,组串式逆变器用于大型地面电站的缺点,例如谐波高,直流分量大,多台逆变器并联环流等问题,都一一解决,目前已有几十个大型地面电站项目,使用组串式组串式逆变器,从运行情况上看,组串式逆变器只要技术处理得好,完全可以用于地面电站。
另一个主要集中式逆变器厂家上能电气,主推集散式逆变器,这种产品融合了集中式逆变器和组串式逆变器的优势,克服了两种逆变器的缺点,经过一段时间的运行,逐渐被各大EPC企业接受,同时又开发了20KW,35KW,46KW组串式逆变器,有源滤波器,储能双高变流器等产品,扩大产品线。
深圳晶福源是一家最善于吸收众家之长的技术型公司,在这场逆变器之争中,充分体现了该公司精准市场定位和快速反应能力的特点,晶福源在逆变器细分市场中,着力开发离网逆变器,2015年继续在离网逆变器保持绝对领先地位,中功率组串式逆变器,适应市场潮流,开发了5KW到28KW无风扇的机型,500KW集中式逆变器,开发了315V的机型,体积更少,价格也很有优势,另外,逆变器的直流汇流箱和光伏扬水逆变器,出货量也进入国内前3名。
集中式光伏逆变器与组串式光伏逆变器优缺点对比分析光伏逆变器是光伏发电系统的重要组成部分,与一般逆变器相比,光伏逆变器具备最大功率点跟踪(MPPT)功能与针对电网平安的低电压穿越力量。
目前常见的光伏逆变器主要分为集中式光伏逆变器与组串式光伏逆变器。
那么集中式光伏逆变器与组串式光伏逆变器哪种好呢?下面一起来看看集中式光伏逆变器与组串式光伏逆变器的优缺点分析。
集中式光伏逆变器集中式光伏逆变器是将光伏组件产生的直流电汇总转变为沟通电后进行升压、并网,因此逆变器的功率都相对较大,光伏电站中一般采纳500kW以上的集中式逆变器。
集中式光伏逆变器的设备功率在50KW到630KW之间,功率器件采纳大电流IGBT,系统拓扑结构采纳DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
集中式光伏逆变器的优点:1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;爱护功能齐全,平安性高;3.有功率因素调整功能和低电压穿越功能,电网调整性好。
集中式光伏逆变器的缺点:1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行状况,因此不行能使每一路组件都处于最佳工作点,组件配置不敏捷;2.集中式逆变器占地面积大,需要专用的机房,安装不敏捷; 3.自身耗电以及机房通风散热耗电量大。
组串式光伏逆变器组串式光伏逆变器是将光伏组件产生的直流电直接转变为沟通电汇总后升压、并网,因此逆变器的功率都相对较小,光伏电站中一般采纳50kW以下的组串式光伏逆变器。
组串式逆变器功率小于100KW,功率开关管采纳小电流的MOSFET 或IGBT,拓扑结构采纳DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外壁挂式安装。
组串式光伏逆变器的优点:1.不受组串间模块差异,和阴影遮挡的影响,同时削减光伏电池组件最佳工作点与逆变器不匹配的状况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加敏捷;在阴雨天,雾气多的部区,发电时间长;3.体积较小,占地面积小,无需专用机房,安装敏捷;4.自耗电低、故障影响小。
集中式和组串式逆变器方案对比1.方案介绍兆瓦级箱式逆变站解决方案:1MV 单元采用一台兆瓦级箱式逆变站,2台500kW 併网逆变器(集成直流配电柜)、交流配电箱等设备,该箱式逆变站箱 体防护等级可达IP54,可直接室外安装,无需建造逆变器室土建房兆瓦级箱式逆变站解决方案集中式解决方案:1MV 单元需建设逆变器室,内置2台500kW 并网逆变器(集成直内部集成111 11 -------------- I11 1 11 1* >1 11 I 1 1亠79世纪新能源网w ww, NG21 ,comVi am流配电柜)、1台通讯柜等设备。
现场需要建造逆变器土建房 组串式解决方案:1MV 单元采用40台28kW 组串式并网逆变器,组串式逆变器防护 等级IP65,可安装在组件支架背后。
iL 朴盅出材. ".'I世纪新能源网2.方案对比 2.1投资成本对比 组串式解决方案:单位 数审 曲梢1万元)0汇1交湍■「斋箱曽 5 0i 45X5^X25 阴画组串式谨变养40 1. LL 1. 11. L-霞鏡组升压变压器台1 怡pvfi^iJE.交瘵践绩115合计y&. sb■ 世?W AT■集中式解决方案:单奋价格(万元116汇】直流汇盜箝140,3X14=4,2 E03kW A 伏井网逆变器台15>:2-30世纪新能源网N€21备注:以上价格来源于各设备厂商及系统集成商,此报价仅供参考。
设备数量均按照1MV单元计算。
2.2可靠性对比(1)元器件对比集中式解决方案:1MV配置2台集中式并网逆变器,单台设备采用单级拓扑设计,共用功率模块6个,2台并网逆变器共12个。
单兆瓦配置设备少、总器件数少,发电单元更加可靠。
另外,集中式逆变器采用金属薄膜电容,MTBF超过10万小时,保证25年无需更换。
组串式解决方案:1MW配置40台组串式并网逆变器,单台设备采用双级拓扑设计,共用功率模块12个,40台并网逆变器共480个。
集中式逆变器和组串式逆变器集中式逆变器与组串式逆变器:哪个更适合你?哎呀,听说你最近在研究太阳能发电系统的事儿?这可是个大好事儿,毕竟绿色能源有利于咱们的地球嘛。
今天咱们就聊聊两种常见的逆变器类型:集中式逆变器和组串式逆变器,看看它们分别有什么特点,哪个更适合你。
1. 集中式逆变器集中式逆变器,顾名思义,就是把所有太阳能板的电流“集中”到一个大逆变器里。
这个大逆变器就像一个老大哥,负责把从太阳能板上来的直流电转换成交流电,然后送到电网里。
这个老大哥的工作非常重要,毕竟它得保证电能转换得又快又好。
1.1 优点首先,集中式逆变器的处理能力特别强。
就像一个全能的工作狂,能处理很多很多的电力。
所以如果你家里太阳能板特别多,集中式逆变器能搞定一切,不需要担心电流过多的问题。
此外,集中式逆变器通常比较耐用,毕竟它不是一个个小玩意儿,而是一个大块头,能承受更多的挑战。
还有一个好处就是维护相对简单。
你只需要定期检查一个逆变器,不需要跑来跑去地检查多个小设备。
真是省心省力啊!而且,一旦集中式逆变器出了问题,虽然修起来可能有点麻烦,但毕竟只有一个大头需要维修,也比多个小头维修要方便一些。
1.2 缺点不过,集中式逆变器也有它的短板。
首先,如果逆变器坏了,那你的整个系统就得停摆。
就像大车开坏了,整车都不能跑了。
这对于依赖太阳能的家庭来说,可能会影响到电力供应。
此外,这种逆变器对太阳能板的布置要求比较高。
如果太阳能板的布置不够均匀,可能会影响发电效率。
2. 组串式逆变器组串式逆变器,这名字听起来是不是有点复杂?其实它的工作原理很简单。
它把太阳能板分成小组,每组的电流都通过一个小逆变器来处理。
这样就像把一大堆活分给几个小伙伴做,每个人负责自己的一部分。
2.1 优点组串式逆变器的最大好处就是灵活性强。
就像一群小伙伴合作,每个人都有自己的工作空间。
如果某一组的逆变器出了问题,其他组的发电不会受到影响。
这样,你的太阳能系统可以继续运转,即使某个小部分出现了小问题,也不会影响整体的电力供应。
集中式光伏项目组串式逆变器vs 集中式逆变器经济性、安全性分析对比前言:对大型光伏电站投资成本和发电效益来说,逆变器作为并网光伏电站关键设备之一,其性能直接影响整个并网光伏电站的发电效益。
2022年组串式逆变器销量市场占比 78.3%,集中式市场占比21.7%。
央国企组串式框采占比89%。
组串式技术路线更符合客户需求,已成为行业主流方案。
综合比较组串式逆变器在安装费、发电量、自耗电、经济性、安全性五大方面综合收益表现更优。
详细对比如下:一、经济性对比:(以100MW广东省集中式地面电站300KW组串式逆变器与3150KW集中式逆变器对比)1、初始安装费对比:初始投资:子阵布局容配比一致情况下,组串式方案单设备价格相对较高。
但考虑线缆、施工成本后,综合系统初始投资成本组串式方案与集中式一体机方案基本持平。
2、发电量对比:组串式比集中式发电量至少高2%集中式(含集中式一体机) 方案只有1/2路MPPT,且MPPT跟踪电压范围窄,启动电压905V , MPPT范围900V-1500V,对光伏阵列一致性要求高。
组串式采用多路MPPT设计,最大化减少组串失配损失;启动电压低,启动电压550VMPPT范围500V-1500V 有效发电时间更长。
(以100MW电站, 25年生命周期,年利用小时1050小时计算:100MW*1050小时*上网电价453元*25年*2%。
多收益2378.25万元)3、自耗电对比:组串式逆变器25年自耗电分析:因设备本体热源分散,待机自耗电5W,散热自耗电低,全场景适配;(外购电价按1.2元/千瓦时)0.005*24*365*25*1.2=1314元。
集中式逆变器再年自耗电分析:因设备本体散热风机等辅助大功率耗电,待机自耗电达到90W,运行自耗电更大;:0.11*24*365*25*1.2=28908元。
集中式较组串式多支出购电费2.76万元。
二、安全性对比:1、并网性能:集中式逆变器单级架构设计,无法满足GB/37408对高电压穿越的要求。
集中式逆变器和组串式逆变器之比较——深圳恒通源1、逆变器方案对比(1)集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
(2)组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
2、系统主要器件对比(1)集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
(2)组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
3、主要优缺点和适应场合(1)集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:●逆变器数量少,便于管理;●逆变器元器件数量少,可靠性高;●谐波含量少,直流分量少电能质量高;●逆变器集成度高,功率密度大,成本低;●逆变器各种保护功能齐全,电站安全性高;●有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:●直流汇流箱故障率较高,影响整个系统。
●集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
●逆变器机房安装部署困难、需要专用的机房和设备。
●逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
●集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
●集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
(2)组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。
2014年慕尼黑Inter Solar论坛上,资深光伏从业人士Manfred Bachler(曾是全球最大EPC厂商Phoenix Solar的首席技术官)提出了用组串式逆变器改造现存的集中式逆变器的方案,给出的结论是5~6年可收回改造成本,主要是因为集中式逆变器维护麻烦、可用性差,仅在可用度方面就比组串式逆变器差6%。
近日,行业内对于组串式与集中式逆变器的故障率、可靠性众说纷纭。
本文将从以下几个角度详细分析,抛砖引玉。
1、系统可靠性基本原理差异组串式方案组件和逆变器直接相连,逆变器输出通过升压变接入电网,输变电链路设备少,直流线缆短,输电主要以交流线缆为主;集中式方案主要设备有直流汇流箱、直流配电柜、逆变器及升压变,输变电链路设备多,输电线路直流线缆较多。
本文将从以下几个方面分析系统方案可靠性原理差异。
1.1、直流和交流线路对系统安全性能的影响直流电特点是易产生拉弧故障且不易熄灭,存在无法扑灭的风险,因为只要有光照,就会有电流产生,危害性大;交流电由于存在过零点,即使发生电弧故障,电弧也会在过零点处熄灭,危害性小。
1.2、系统故障响应时间交流侧出现短路故障时,由于能量来自于电网,能量足够大,电气保护设备可及时跳脱,切断短路路径,保护用电设备;直流侧短路时,由于故障电流小,且断路器常有降额设计,断路器不能快速保护切断短路路径,其间可能出现绝缘老化、软化,进而引发火灾。
1.3、关键设备成熟度由于交流电技术已发展了100多年,发电技术稳定、成熟,应用范围广,与之相关的电器件也已发展成熟。
而光伏直流电保护技术积累少,有很多亟待解决的技术难题;且直流电压范围广,能量差异较大,相关应用器件发展还不成熟,如用于高压直流保护的器件,只有极少数厂家才能提供。
1.4、系统关键器件选型当前,逆变器器件选型时,部分厂家为追求低成本,交流断路器用在集中式逆变器直流侧的现象非常普遍,这样会给系统带来极大的安全隐患。
首先,由于交流电和直流电电压等级不同,交流断路器用于直流场景,工作电压超出器件额定电压,长期使用会造成断路器功能失效,安全隐患大;其次,由于直流电压等级高,工作电流大,断路器切断过程易产生电弧,直流和交流特点不同,断路器灭弧装置设计也势必不同,当交流断路器应用在直流场景时,直流电弧不能有效熄灭,如果电弧持续太久(几十ms),则会产生爆炸事故。
组串式与集中式光伏电站安全对比本文通过分析对比组串式与集中式两种应用广泛的电站解决方案,通过理论与实际案例分析它们的安全性差异,供业界探讨。
1组串式和集中式电站结构对比集中式光伏电站解决方案主要包括组件、直流汇流箱、直流配电柜、逆变器及其配套的逆变器房或集装箱体、箱式升压变等。
与集中式方案相比,组串式方案减少了直流设备和逆变房等配套设施,增加了交流汇流箱,缩短了高压直流的传输距离,国内主流的组串式方案更采用了无熔断器设计,自然散热的简洁方案。
图1组串式和集中式方案电站结构对比主要电气设备对比:电缆对比:2、组串式和集中式安全风险对比本文中分析的安全风险,是指光伏电站中可能引发火灾或对人身安全产生威胁的风险点。
根据前述中关于组串式与集中式的对比,最大差异就是交流和直流电缆距离的不同,而交流输电与直流输电在安全性有显著的差异。
直流供电主要用于于安全电压48V以下的控制系统及后备电源使用,或是特高压长距离直流输电(±400kV以上)工程中。
1000V直流输电是伴随着光伏的发展而兴起,其配套的相关电气设备还有待完善,甚至有部分厂家使用交流断路器充当直流断路器使用的情况。
在开关元件中,在发生故障时能够正确灭弧是衡量开关元器件最重要的一项技术指标。
由于交流系统存在过零点(注释:工业交流电每半周电流要过零一次,交流电流总是在电流过零时熄灭的),开关元件在断开故障电流时,能够利用过电压过零点进行灭弧,而且由于电弧的产生电压要比维持电压高得多,所以,交流电弧在过零点处熄灭后很难再产生。
而直流没有过零点,电压一直存在,电弧持续燃烧,必须拉开足够的弧长距离才能够可靠熄灭。
接线不良、电缆绝缘破损等也会引起拉弧,具有较高热能的电弧的出现使得电站存在一个火灾的隐患,也是光伏电站发生火灾的最主要因素。
从总体上看,交流系统部分相对成熟可靠,电站的安全性风险主要来自直流部分。
必须采取严谨的设计、减少直流系统长度,同时进行精心的电气设备选型,以保障电站安全。
光伏集中式逆变器与组串式逆变器
集中式逆变器是将多个光伏组件的直流电汇流到一个或多个逆
变器中,再将其转换为交流电输出到电网中。
这种逆变器具有高效率、成本低、运行可靠等优点,适用于大规模光伏电站。
组串式逆变器则是将每个光伏组件的直流电分别转换为交流电,再将其串联成一个输出。
这种逆变器具有灵活性强、故障容易定位等优点,适用于小型光伏电站和分布式光伏发电系统。
总的来说,逆变器是光伏发电系统中不可或缺的一部分,不同的逆变器类型适用于不同规模和类型的光伏电站,选择适合自己的逆变器类型是保障光伏发电系统高效稳定运行的重要决策。
- 1 -。
134研究与探索Research and Exploration ·工艺与技术中国设备工程 2018.11 (下)1 逆变器转换效率重要性提高逆变器的转换效率有很大的重要性。
比如我们提高1%的转换效率,500kW 的逆变器,平均每天算4h,逆变器每天可以多发电20kW·h,那么1年就可以多发电7300kW·h,10年即可多发出73000kW·h。
这样就相当于1台5kW 逆变器的发电量。
这样客户可以节省1台5kW 逆变器的电站。
所以为了提高客户的最大利益,我们需要尽可能的提高逆变器的转换效率。
2 逆变器效率的影响因素提高逆变器效率措施就是降低损耗,逆变器的主要损耗来自于IGBT、MOSFET 等功率开关管,以及变压器、电感等磁性器件。
损耗和元器件的电流,电压以及选用的材料采取的工艺有关系,见表1。
表1IGBT 的损耗主要有导通损耗和开关损耗,其中导通损耗和器件内阻、经过的电流有关,开关损耗和器件的开关频率,器件承受的直流电压有关。
电感的损耗主要有铜损和铁损,铜损指电感线圈电阻所引起的损耗,分布式光伏电站中集中式逆变器和组串式逆变器的选择比较贾帅(中电投(深圳)电力销售有限公司,广东 广州 510000)摘要:科学技术的发展,使得光伏发电技术被广泛应用于电力系统之中。
光伏电站环境复杂,气候多变,实际工作中的电压及负载随辐射和温度变化而变化。
“中国效率”评估标准综合考虑了我国光伏发电建设和气候条件的综合影响,准确反映光伏逆变器在实际运行中的转换效率,直接影响系统发电量。
如今的分布式光伏电站为了进一步实现绿色环保,对变电器的选择十分的必要。
本文介绍了分布式光伏电站中集中式、组串式逆变器的结构及特点,并进行了一系列具体的比较和分析,从它们各自的优缺点中选择最适合分布式光伏电站中最经济的使用方法,也为以后更多的地面电站投资建设提供借鉴。
关键词:分布式光伏电站;集中式逆变器;组串式逆变器;逆变器转换效率、逆变器转换效率影响因素、逆变器技术路线中图分类号:TM464 文献标识码:A 文章编号:1671-0711(2018)11(下)-0134-03当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗,由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损,铜损可以通过测量变压器短路阻抗来计算。
集中式、组串式、集散式逆变器的区别
1.集散式逆变器的设计和制造难度较大,成本相对较高;
2.逆变器数量较多,系统监控难度大;
3.由于分散MPPT跟踪,逆变器需要更多的通讯和控制线路,增加了系统的复杂度;
4.逆变器的维护和故障排查需要更专业的技术人员。
XXX是一家专业从事太阳能光伏逆变器研发、生产和销
售的企业。
太阳能光伏逆变器是将太阳能光伏组件产生的直流电转变为交流电的核心设备之一。
在光伏电站中,逆变器的选型和使用对于电站的发电效率和稳定性都有着至关重要的影响。
集中式逆变器的优点在于功率大、数量少、稳定性好、电能质量高、安全性高等方面。
然而,由于其MPPT电压范围
较窄、占地面积大、自身耗电量大等问题,使得组件配置不灵活,安装和维护成本较高。
组串式逆变器则具有体积小、占地面积小、自耗电低、故障影响小等优点。
但是,由于其功率器件电气间隙小、逆变器数量多等问题,使得其不适合高海拔地区,且总故障率会升高。
集散式逆变器是近几年新提出的一种逆变器形式,具有集中式逆变器的低成本和组串式逆变器的高发电量等优点。
但是,由于其设计和制造难度大、逆变器数量较多等问题,使得其成本相对较高,系统监控难度大,维护和故障排查需要更专业的技术人员。
1.相比于前两类,这种形式较新,因此在工程项目方面的
应用相对较少,缺乏工程经验;
2.需要经历工程项目的检验,以确保其安全性、稳定性和
高发电量等特性。
1.相对于前两类,这种形式比较新,因此在实际工程项目
中的应用还比较少,缺乏足够的工程经验。
2.为了确保其安全性、稳定性和高发电量等特性,需要经
过工程项目的检验和实践验证。
【深度图解数据说话】组串式与集中式光伏电站发电量对比在如今的度电补贴时代,评价一个光伏电站的好坏,其实是发电量的角力。
这涉及到光伏电站的各类产品设备选型、系统方案设计、建设、施工、运维等各层面和环节。
受技术水平影响,提高组件发电效率与降低系统成本不可能在短时间内达到和实现。
因此,提升光伏电站的发电量,改善空间就集中在设计更优系统方案、提升建设施工质量、提升运维效率等方面。
目前主流的系统方案有两种:集中式方案和组串式方案。
结合作者长期从事的工作和研究,就两种方案的发电量及影响因素进行比较分析。
1、组串式逆变器与集中式逆变器转换效率比较逆变器将组串发出的直流电转换成交流电,逆变器转换效率的高低直接影响到最终上网电量的多少。
设备方面,在组件效率一定的情况下,提升逆变器的转换效率是提升发电量的关键一环。
当前,不同厂家的逆变器转换效率都达到了相当高的水平。
那么不同逆变器在光伏电站运行过程中的实际表现如何,作者选择了国内知名的集中式和组串式厂家,并结合实际参与的电站项目,对集中式方案和组串式方案两种逆变器的实际效率曲线进行了比较。
实际电站运行效率测试结果表明:在不同负载等级下,组串式逆变器较集中式逆变器转换效率高0.5%~1%。
另外,当组串工作电压升高,组串式逆变器逆变转换效率随之升高;而集中式逆变器随着组串电压升高,效率出现了下降。
基于此,在冬季时,低温导致组串电压升高,组串式逆变器相对集中式逆变器的优势会更加明显,这也与电站实际发电量数据比较结果保持一致。
2、并网发电时长比较根据电站的数据记录,对电站内集中式方案和组串式方案两种逆变器的开关机时间和并网运行时长进行了比较,发现组串式逆变器在实际运行中弱光发电能力相对集中式逆变器更优,具体表现为:早晨开机和发电时间均早于集中式逆变器;傍晚关机和下网时间普遍晚于集中式逆变器。
在不同天气条件下,早晨发电提前的时间从2~30min不等,傍晚关机和下网延后的时间从2~10min不等。
大型光伏电站集中式与组串式经济效益及安全性比较分析摘要:本文针对大型光伏电站主要采用集中式和组串式两种发电方案,从经济效益和安全性的角度出发,结合实际情况,分析比较两者各自的优缺点。
关键词:集中式组串式经济效益安全性1 集中式与组串式系统结构对比1.1 集中式系统集中式光伏电站发电设备主要包括组件、直流汇流箱、逆变器及其配套的逆变器房或集装箱体、箱式变压器等。
图1 集中式光伏系统结构集中式光伏电站一般采用1MW发电单元设置。
由光伏组件串联组成光伏组串,光伏组串并联接入汇流箱,汇流箱接入逆变器。
逆变器将直流电逆变成三相交流电,最后经箱变升压接入电网供电。
集中式光伏电站1MW发电单元一般配置12台16进1出直流汇流箱、2台500kW并网逆变器、1台双分裂箱式变压器等设备。
集中式优点:(1)逆变器数量少,便于管理;(2)逆变器集成度高,功率密度大,成本低;集中式缺点:(1)集中式并网逆变系统中,组件方阵汇流箱到达逆变器,逆变器最大功率跟踪功能(MPPT)范围在450-820V之间,组件配置更为灵活,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件效率偏低时,会影响整个系统的发电效率。
(2)逆变器机房较大,需要专用的机房和设备,安装部署困难。
(3)逆变器自身以及机房通风散热均要耗电,系统维护相对复杂。
(4)在雨雾天气情况下,发电时间较短。
1.2 组串式系统与集中式系统相比,组串式系统减少了直流设备和逆变房等配套设施,增加了交流汇流箱,缩短了高压直流的传输距离。
图2 组串式光伏系统结构组串式光伏电站一般采用1MW发电单元设置,由光伏组件串联组成光伏组串,光伏组串并联接入逆变器,逆变器将直流电逆变成三相交流电后接入交流汇流箱,汇流箱接入箱式变压器,最后经箱式变压器升压接入电网供电。
组串式光伏电站1MW发电单元配置相对灵活,一般配置20台25kW并网逆变器、5台8进1出交流汇流箱、1台双绕组箱变等设备。
组串式及集中式方案比较逆变器方案对比:集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
(4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
(6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
2、组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。
浅析组串式和集中式逆变器的安全可靠性作者:容跃王宏博张振洲来源:《中国化工贸易·下旬刊》2017年第06期摘要:2013年光伏行业提出了用组串式逆变器改造现存的集中式逆变器的方案,给出的结论是7~8年可以收回改造成本,主要的原因是因为集中式逆变器维护麻烦,可用性差。
随着能源结构的不断调整,光伏发电已渐渐的进入人们的日常生活,时至今日,光伏电站依然占据能源结构比重较少,而这其中不可忽视的原因是光伏发电成本较高,所以,平价上网已是光伏发展的主要目标,而光伏电站的安全可靠性才是重中之重,逆变器作为光伏电站的核心发电单元,其安全可靠性更成为了大家关注的热点。
下面我将从光伏电站系统可靠性原理、逆变器失效率、可用度及可维护性几方面对比谈谈集中式逆变器和组串式逆变器的安全可靠性。
关键词:组串式逆变器;光伏发电站1 系统可靠性基本原理差异组串式方案光伏电池组件和逆变器直接相连,逆变器输出通过升压变接入电网,输变电链路设备少,直流线缆短,输电主要以交流线缆为主;集中式方案主要设备有直流汇流箱、直流配电柜、逆变器以及升压变,输变电链路设备多,输电线路直流线缆较多。
我将从以下几个方面分析系统方案可靠性原理差异。
1.1 直流和交流线路对系统安全性能的影响直流电特点是易产生拉弧故障且不易熄灭,存在无法扑灭的风险,因为只要有光照,就会有电流产生,危害性大;交流电由于存在过零点,即使发生电弧故障,电弧也会在过零点处熄灭,危害性小。
1.2 系统故障响应时间交流侧出现短路故障时,由于能量来自于电网,能量足够大,电气保护设备可及时跳脱,切断短路路径,保护用电设备;直流侧短路时,由于故障电流小,且断路器常有降额设计,断路器不能快速保护,切断短路路径,其间可能出现绝缘老化,进而引发火灾。
1.3 系统关键器件选型当前部分厂家为追求低成本,交流断路器用在集中式逆变器直流侧的现象非常普遍,这样会带来极大的安全隐患;首先,交流电和直流电电压等级不同,交流断路器用于直流场景,则工作电压超出器件额定电压,长期使用会造成断路器功能失效,安全隐患大;其次,直流电压等级高,工作电流大,断路器切断过程易产生电弧,直流和交流特点不同,断路器灭弧装置设计也不同,当交流断路器应用在直流场景时,直流电弧不能有效熄灭,如果电弧持续太久(几十毫秒),则会产生爆炸事故。
串式逆变器和集中式逆变器都是光伏发电系统中的核心设备,用于将光伏组件产生的直流电转换为交流电。
它们之间的主要区别在于功率、结构、安装方式和适用场景等方面。
1. 功率:
集中式逆变器:设备功率在50KW到630KW之间,适用于大型光伏电站。
串式逆变器:功率小于30KW,适用于中小型光伏电站和分布式光伏发电系统。
2. 结构特点:
集中式逆变器:功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
串式逆变器:功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC 全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
3. 安装方式:
集中式逆变器:体积较大,室内立式安装。
串式逆变器:体积较小,可室外臂挂式安装。
4. 适用场景:
集中式逆变器:适用于大型光伏电站,可实现高效率、高功率的光伏组件接入。
串式逆变器:适用于中小型光伏电站和分布式光伏发电系统,具有安装灵活、适应性强等优点。
组串式与集中式光伏电站安全对比当今社会传统能源面临枯竭,人类生态环境日益恶化,太阳能光伏发电以资源丰富、清洁、不受资源分布地域的限制等优点成为人们关注的焦点。
近几年我国光伏产业迅猛发展,现今国光伏累计装机容量已超过28GW,并以每年大于10GW的速度增长。
光伏电站建站越来越多,如何提高电站的安全性,如何将各种安全隐患防于未然,也已成为电站业主们首要考虑的问题。
本文通过分析对比组串式与集中式两种应用广泛的电站解决方案,通过理论与实际案例分析它们的安全性差异,供业界探讨。
1 组串式和集中式电站结构对比集中式光伏电站解决方案主要包括组件、直流汇流箱、直流配电柜、逆变器及其配套的逆变器房或集装箱体、箱式升压变等。
与集中式方案相比,组串式方案减少了直流设备和逆变房等配套设施,增加了交流汇流箱,缩短了高压直流的传输距离,国主流的组串式方案更采用了无熔断器设计,自然散热的简洁方案。
2 组串式和集中式安全风险对比本文中分析的安全风险,是指光伏电站中可能引发火灾或对人身安全产生威胁的风险点。
根据前述中关于组串式与集中式的对比,最大差异就是交流和直流电缆距离的不同,而交流输电与直流输电在安全性有显著的差异。
自1882年爱迪生发明了第一盏电灯开始,供电方式就是直流电,但是由于当时直流升压非常困难,供电围限制在较小的区域。
交流电的易用性使之很快形成了供电网络的主流方案,随着多年的技术发展,交流电网从几千瓦发展到几亿千瓦,电压等级从几十伏发展到上百万伏。
科学技术不断在解决着电力发展的难题,也保障了交流输电的安全,使电进入千家万户。
直流供电主要用于于安全电压48V以下的控制系统及后备电源使用,或是特高压长距离直流输电(±400kV以上)工程中。
1000V直流输电是伴随着光伏的发展而兴起,其配套的相关电气设备还有待完善,甚至有部分厂家使用交流断路器充当直流断路器使用的情况。
在开关元件中,在发生故障时能够正确灭弧是衡量开关元器件最重要的一项技术指标。
由于交流系统存在过零点,开关元件在断开故障电流时,能够利用过电压过零点进行灭弧,而且由于电弧的产生电压要比维持电压高得多,所以,交流电弧在过零点处熄灭后很难再产生。
而直流没有过零点,电压一直存在,电弧持续燃烧,必须拉开足够的弧长距离才能够可靠熄灭。
接线不良、电缆绝缘破损等也会引起拉弧,具有较高热能的电弧的出现使得电站存在一个火灾的隐患,也是光伏电站发生火灾的最主要因素。
从总体上看,交流系统部分相对成熟可靠,电站的安全性风险主要来自直流部分。
必须采取严谨的设计、减少直流系统长度,同时进行精心的电气设备选型,以保障电站安全。
2.1 组串式逆变器到交流汇流箱与集中式直流汇流箱到配电柜安全对比在集中式方案中,直流汇流箱到直流配电柜这段电缆,电压高达500~800Vdc,按照16进1出的直流汇流箱进行计算,电流大约在130A左右,长度一般超过100米,在山地光伏电站或建筑光伏系统中,由于地形及建筑物的因素,长度可能会超过300米。
这段电缆是集中式方案较易发生着火事故的一段电缆,且由于能量大,影响围及后果严重。
组串式方案逆变器至汇流箱的电能传输为交流输电,电压变为380 Vac 或480Vac,电流一般控制在50A以,大大降低了发生火灾的可能性。
2.1.1 集中式直流汇流箱到配电柜安全风险分析如图2所示,当短路故障(A点)发生在直流汇流箱和配电柜进线断路器之间时,存在直流回路(红色)和交流回路(蓝色)。
1)直流回路:由于短路电流较小,直流断路器QF3为防止误动作,一般整定电流都较大,使得直流断路器QF3无法跳脱切断回路,从而使得汇流箱输出持续的直流能量到短路点,维持电弧燃烧,使火灾风险持续扩大。
2)交流回路:电流主要来自电网侧,在直流断路器QF1及交流断路器QF2动作前,逆变单元IGBT将承受较大的故障电流,可能会对其产生严重的损坏。
案例:2014年7月,某屋顶光伏电站发生着火,彩钢瓦屋顶被烧穿了几个大洞,厂房设备烧毁若干,损失惨重。
最终分析原因为:由于施工或其他原因导致某汇流箱线缆对地绝缘降低,在环流、漏电流的影响下进一步加剧,最终引起绝缘失效,线槽中的正负极电缆出现短路、拉弧,导致了着火事故的发生。
案例:2014年5月,某山地光伏电站发生着火,当地林业部门立即责令停止并网发电,进行全面风险评估,持续时间三个月,造成了数百万的损失。
最终分析原因为:由于某汇流箱电缆在施工时被拖拽磨损,在运行一段时间后绝缘失效,正负极电缆出现短路、拉弧,导致了着火事故的发生。
2.1.2 组串式逆变器到交流汇流箱安全风险分析如图5所示,当短路故障(A点)发生在组串式逆变器和交流汇流箱之间时,存在逆变器输出的交流回路(红色)和电网侧的交流回路(蓝色)。
1)逆变器输出交流回路:组串式逆变器均具有限流输出功能,在逆变器检测到电网电压异常,会立即控制逆变器脱网,切断故障点的直流侧电流。
2)电网侧交流回路:交流断路器QF1会进行短路保护,切断电网过来的短路回路,不会造成任何影响。
小结:集中式直流汇流箱到配电柜电缆能量大,短路故障时直流源持续时间较长,电弧持续燃烧,事故影响严重,应加强直流电缆的绝缘监测。
组串式逆变器到交流汇流箱发生短路故障时,交直流侧电源均能迅速切除,安全风险较小。
2.2 组串式与集中式方案中组件汇流线缆的安全对比光伏电站的能量来源为太阳能光伏组件,组件电流输出使用小截面直流线缆对于组串式和集中式来说都必不可少。
对组串式来说,一般采取2~3串组件并联。
而对于集中式方案来说,一般采取16路并联后,再经直流汇流箱8路并联,最终并联的组件数可能达到100串组件。
那么两者的安全性方面的对比如下:图6 组串式与集中式方案直流线缆的故障2.2.1 短路故障发生概率对比当组件线缆通过线槽进行汇集时,易发生线间短路故障。
组串式只有并联的2串间会发生短路故障,组合数为2^2,而集中式一台直流汇流箱的16路线缆都会发生短路故障,组合数为2^16,集中式组件线间直接发生短路故障的概率比组串式要高得多。
小结:集中式组件发生短路故障的概率远远高于组串式,短路故障若不能及时切除,将会引起电流反灌。
2.2.2 电流反灌风险对比国主流的组串式方案采用2串组件并联,即使有一串发生短路故障,反灌电流最大也不会超过10A,均在直流线缆和光伏组件承受围以(42mm直流电缆载流能力大于30A,组件耐受反灌电流15A),安全性较高。
而集中式方案组件并联串数多,反灌电流大,超出了线缆和组件的安全要求。
所以,集中式方案必须使用保护器件对线缆和组件进行保护,相比于直流断路器,熔断器因价格低被集中式方案选择。
但使用熔断器作为保护元件又带来了一系列的安全问题,具体安全风险分析如下。
2.3 集中式方案中直流熔断器的安全风险分析2.3.1 熔断器增加了直流节点,埋下安全隐患集中式1MW需要使用熔断器400个,每个熔断器与熔断器盒夹片之间有采用压接的方式。
由于熔断器盒对线缆可靠安装要求高,现场实际不容易做到,可能出现接触不良的现象,是汇流箱着火的主要原因。
图7 直流汇流箱着火图8 熔断器接线不良引发的烧毁着火案例图9 熔断器与底座接触不良而主流组串式方案一般采用无熔断器设计,外部连接一般采用专用光伏连接器,可靠性相对较高,可以有效规避因施工人员能力不同引发的安装隐患。
小结:集中式直流节点多,容易因接触不良引发着火事故,组串式直流节点只有集中式的1/4,且使用专用光伏连接器,安全可靠。
2.3.2 熔断器并不能有效地保护组件从熔断器标准IEC 60269-6中可以看出:15A的熔断器,标准要求在16.95A下,1小时不能熔断,在21.75A下,1小时熔断。
冬天受低温影响,需要熔断的电流更大,时间更长。
图10 标准IEC 60269-6 对熔断器的要求从组件标准IEC 61730-2中可以看出:反向电流15A的组件,标准要求在20.25A下,2小时不能起火。
标准只是要求组件不起火,却不能保证组件不损坏,实际上组件一直在承受反向电流而发生热斑效应,性能会下降,输出功率会降低。
图11 标准IEC 61730-2 对组件的要求熔断器的标准要1.45倍的电流,而组件的标准要1.35倍的电流,那么在1.35至1.45倍额定电流之间就出现了一个保护空挡。
在这个保护空挡,熔断器不能够有效地保护组件,可能造成光伏组件本体损坏。
图12 光伏熔断器熔体结构从光伏熔断器熔体结构上可以看出,熔断器狭径非常细,对制造工艺要求很高,普通厂家很难控制好熔断器的质量。
由于生产工艺的局限,可能造成生产的熔断器额定电流出现一定的偏移,若不能够在规定的电流和时间下及时熔断,更会加剧电池板的损坏,带来火灾风险。
所以,从电站安全的角度出发,为了保护组件,不仅需要增加熔断器,还需要使用带防反二极管的直流汇流箱。
2.3.3 熔断器在过载电流情况下,熔断慢,发热高,易引发着火熔断器的保护原理是利用金属的热熔特性,这一特性决定了熔断器的熔断时间与过电流的大小呈反时限的关系,电流越大,其熔断时间越短,电流越小,其熔断时间越长。
熔断器主要还是用在短路的保护上,而对于过载,熔断器的保护效果将大打折扣,甚至带来负面影响。
因为在过载情况下,尤其是小电流过载,熔断器的熔断将变得很慢,在这种“将断未断”情况下,熔断器将处于一个非常高温的热平衡状态。
图13 熔断器的熔断时间和电流特性曲线光伏熔断器的熔体主要是银,银的熔点高达961℃,为了使熔断器在较低温度时也能够熔断,在银上增加了一个焊锡点,该焊锡的熔点一般在260℃以上。
熔断器的熔断过程是当温度达到熔断器的熔点时,熔断器开始熔化并继续吸收热量进一步熔化变成液态,随后熔断器温度进一步升高直到汽化,熔断器汽化形成断点,开始产生拉弧,拉弧拉到一定距离后熄灭,熔断器熔断。
所以在“将断未断”情况下,熔断器的温度可能高达500℃。
这么高的温度将破坏线缆和熔断器盒的绝缘,最终引发着火事故。
图14 熔断器发热使熔断器盒烧毁另外,部分熔断器在熔断时会出现喷弧现象,电弧温度非常高,会使相邻的塑料元件、线缆绝缘等着火。
图15 熔断器熔断时喷弧烧毁相邻元件小结:集中式方案因使用熔断器增加了直流节点,现场可能发生接线不良而引发的烧毁事故;集中式方案使用熔断器保护组件,但因熔断器和组件之间存在匹配空挡,并不能有效地保护组件;而且在过载电流情况下,熔断器还会因熔断慢,发热高,容易引发着火风险,成为光伏电站安全的重大隐患。
国部分组串式厂家因为采用超过两路组串并联设计,必须外置熔丝保护,因此也存在着熔断器的安全和维护问题。
而主流组串式方案,采用无熔丝的设计方案,不仅从源头解决了组件和线缆的保护问题,而且彻底杜绝了熔断器安全隐患。
2.4 集中式交流断路器代替直流断路器使用风险分析在前文已经分析了高压直流灭弧难的问题,所以1000Vdc的直流断路器在设计上存在一定的难度,目前市场也只有少数厂家能够生产,使得直流断路器的价格也高出交流断路器近2倍。