大学物理一计算题111
- 格式:doc
- 大小:570.00 KB
- 文档页数:18
大学物理(下)练习题大学物理习题集第六章 光的干涉6.1 在空气中做杨氏双缝干涉实验,缝间距为d = 0.6mm ,观察屏至双缝间距为D = 2.5m ,今测得第3级明纹与零级明纹对双缝中心的张角为2.724×10-3rad ,求入射光波长及相邻明纹间距.[解答]根据双缝干涉公式sin θ = δ/d ,其中sin θ≈θ,d = kλ = 3λ,可得波长为 λ = d sin θ/k = 5.448×10-4(mm) = 544.8(nm).再用公式sin θ = λ/d = Δx/D ,得相邻明纹的间距为 Δx = λD/d = 2.27(mm).[注意]当θ是第一级明纹的张角时,结合干涉图形,用公式sin θ = λ/d = Δx/D 很容易记忆和推导条纹间隔公式.6.2 如图所示,平行单色光垂直照射到某薄膜上,经上下两表面反射的两束光发生干涉,设薄膜厚度为e ,n 1>n 2,n 2<n 3,入射光在折射率为n 1的媒质中波长为λ,试计算两反射光在上表面相遇时的位相差.[解答]光在真空中的波长为λ0 = n 1λ. 由于n 1>n 2,所以光从薄膜上表面反射时没有半波损失;由于n 1>n 2,所以光从薄膜下表面反射时会产生半波损失,所以两束光的光程差为 δ = 2n 2e +λ0/2,位相差为:21012/222n e n n λδϕππλλ+∆==.6.3用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.[解答]加上介质膜之后,就有附加的光程差δ = (n – 1)e , 当δ = 5λ时,膜的厚度为:e = 5λ/(n – 1) = 5080(nm) = 5.08(μm).6.4 为测量在硅表面的保护层SiO 2的厚度,可将SiO 2的表面磨成劈尖状,如图所示,现用波长λ = 644.0nm 的镉灯垂直照射,一共观察到8根明纹,求SiO 2的厚度.[解答]由于SiO 2的折射率比空气的大,比Si 的小,所以半波损失抵消了,光程差为:δ = 2ne . 第一条明纹在劈尖的棱上,8根明纹只有7个间隔,所以光程差为:δ = 7λ. SiO 2的厚度为:e = 7λ/2n = 1503(nm) = 1.503(μm).6.5 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?[解答]空气的折射率用n 0表示,相邻明纹之间的空气的厚度差为Δe 0 = λ/2n 0;明纹之间的距离用ΔL 0表示,则:Δe 0 = θΔL 0, 因此:λ/2n 0 = θΔL 0.当劈尖内充满液体时,相邻明纹之间的液体的厚度差为:Δe = λ/2n ; 明纹之间的距离用ΔL 表示,则:Δe = θΔL ,n 1 n 2 λ n 3(1) (2)图6.2n 1=1.00 n 2=3.42 λn =1.50 Si SiO 2图6.4因此:λ/2n = θΔL .由题意得Δl = ΔL 0 – ΔL ,所以劈尖角为00()11()22n n l n nlnn λλθ-=-=∆∆= 7.14×10-4(rad).6.6 某平凹柱面镜和平面镜之间构成一空气隙,用单色光垂直照射,可得何种形状的的干涉条纹,条纹级次高低的大致分布如何?[解答]这种情况可得平行的干涉条纹,两边条纹级次低,越往中间条纹级次越高,空气厚度增加越慢,条纹越来越稀.6.7设牛顿环实验中平凸透镜和平板玻璃间有一小间隙e 0,充以折射率n 为1.33的某种透明液体,设平凸透镜曲率半径为R ,用波长为λ0的单色光垂直照射,求第k 级明纹的半径.[解答] 第k 级明纹的半径用r k 表示,则 r k 2= R 2 – (R – e )2 = 2eR .光程差为δ = 2n (e + e 0) + λ0/2 = kλ0,解得0012()22e k e n λ=--, 半径为: 001[()2]2k r k e R nλ=--.6.8 白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为:δ = 2nd cos γ + δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ = 0;由于肥皂膜上下两面都是空气,所以附加光程差δ` = λ/2.对于黄色的明条纹,有δ = kλ,所以膜的厚度为:(1/2)2k d nλ-=.当k = 1时得最小厚度d = 111(nm).6.9光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜n = 1.30),观察到λ1 = 400nm 和λ2 = 560nm 的光在反射中消失,中间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为;δ = 2nd cos γ + δ`,其中γ = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差δ` = 0.对于暗条纹,有δ = (2k + 1)λ/2, 即 2nd = (2k 1 + 1)λ1/2 = (2k 2 + 1)λ2/2.由于λ2 > λ1,所以k 2 < k 1,又因为两暗纹中间没有其他波长的光消失,因此k 2 = k 1 – 1.光程差方程为两个:2nd /λ1 = k 1 + 1/2,2nd /λ2 = k 2 + 1/2, 左式减右式得:2nd /λ1 - 2nd /λ2 = 1,解得:12212()d n λλλλ=-= 535.8(nm).6.10 牛顿环实验装置和各部分折射率如图所示,试大致画出反射光干涉条纹的分布. [解答]右边介质的折射率比上下两种介质的折射率大,垂直入射的光会有半波损失,中间出现暗环;左边介质的折射率 介于上下两种介质的折射率之间,没有半波损失, 平面镜 柱面镜图6.6λ 图6.71.621.50 1.75 1.62 1.50 图6.10λR r e 0e中间出现明环.因此左右两边的明环和暗是交错的, 越往外,条纹级数越高,条纹也越密.6.11 用迈克尔逊干涉仪可测量长度的微小变化,设入射光波长为534.9nm ,等倾干涉条纹中心冒出了1204条条纹,求反射镜移动的微小距离.[解答]反射镜移动的距离为Δd = mλ/2 = 3.22×105nm = 0.322(mm).6.17 在迈克尔逊干涉仪一支光路中,放入一折射率为n 的透明膜片,今测得两束光光程差改变为一个波长λ,求介质膜的厚度.[解答]因为δ = 2(n – 1)d = λ,所以d = λ/2(n – 1).第七章 光的衍射7.1 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? [解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),当条纹重合时,它们对应同一衍射角,因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2, 所以 k 2` = 3k 1`.7.2 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离; (2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动? [解答](1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…),当k` = 1时,y 1 = fλ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`-1 - y k` = fλ/a = 1.4725(mm). (3)当入射光斜射时,光程差为 δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…). 当k` = 1时,可得 sin θ1 = sin φ ± λ/a = 0.5015和0.4985, cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm). 当k` = 2时,可得sin θ2 =a sin φ ± λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2= 0.8642和0.8677. 两条二级暗纹距中心的距离分别为:y 2 = f tan θ2 = 581.9(mm)和572.8(mm).φ θ a O第二明纹的宽度都为Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.3 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.[解答]除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…).当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.4 以某放电管发出的光垂直照射到一个光栅上,测得波长λ1 = 669nm 的谱线的衍射角θ = 30º.如果在同样的θ角处出现波长λ2 = 446nm 的更高级次的谱线,那么光栅常数最小为多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2,方程可化为两个:(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为:212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 3/2,所以当k 1 = 2时,. k 2 = 3,因此光栅常数最小值为:2112()sin a b λλλλθ+=-= 2676(nm).7.5 一衍射光栅,每厘米有400条刻痕,刻痕宽为1.5×10-5m ,光栅后放一焦距为1m 的的凸透镜,现以λ = 500nm 的单色光垂直照射光栅,求:(1)透光缝宽为多少?透光缝的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几条光栅衍射主极大明纹? [解答](1)光栅常数为:a + b = 0.01/400 = 2.5×10-5(m), 由于刻痕宽为b = 1.5×10-5m ,所以透光缝宽为:a =(a + b ) – b = 1.0×10-5(m).根据单缝衍射公式可得中央明纹的宽度为:Δy 0 = 2fλ/a = 100(mm). (2)由于:(a + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各有两根在单缝衍射的中央明纹和一级明纹中,因此单缝衍射的中央明纹宽度内有5条衍射主极大明纹,其中一条是中央衍射明纹.7.6 波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现在sin θ = 0.2及sin θ = 0.3处,第四级缺级,求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)屏上一共能观察到多少根主极大明纹? [解答](1)(2)根据光栅方程得:(a + b )sin θ2 = 2λ; 由缺级条件得(a + b )/a = k/k`,其中k` = 1,k = 4.解缺级条件得b = 3a ,代入光栅方程得狭缝的宽度为:a = λ/2sin θ2 = 1500(nm). 刻痕的宽度为:b = 3a = 4500(nm), 光栅常数为:a + b = 6000(nm).(3)在光栅方程(a + b )sin θ = kλ中,令sin θ =1,得:k =(a + b )/λ = 10. 由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.7.7 以氢放电管发出的光垂直照射在某光栅上,在衍射角θ = 41º的方向上看到λ1 =656.2nm 和λ2 = 410.1nm 的谱线重合,求光栅常数的最小值是多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2, 方程可化为两个(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为;212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 1.6 = 16/10 = 8/5,所以当k 1 = 5时,. k 2 = 8,因此光栅常数最小值为:21123()sin a b λλλλθ+=-= 5000(nm).其他可能值都是这个值的倍数.7.8 白光中包含了波长从400nm 到760nm 之间的所有可见光谱,用白光垂直照射一光栅,每一级衍射光谱是否仍只有一条谱线?第一级衍射光谱和第二级衍射光谱是否有重叠?第二级和第三级情况如何?[解答]方法一:计算法.根据光栅方程(a + b )sin θ = kλ,对于最短波长λ1 = 400nm 和最长波长λ2 = 760nm 的可见光,其衍射角的正弦为sin θ1 = kλ1/(a + b )和sin θ2 = kλ2/(a + b ),数值如下表所示.可见第一级衍射光谱与第二级衍射光谱没有重叠,第二级衍射光谱与第三级衍射光谱从量值1200到1520是重叠的,第三级衍射光谱与第四级衍射光谱从量值1600到2280是重叠的.方法二:曲线法。
一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分)1* 某间接测量量的测量公式为4323y x N -=,直接测量量x 和y 的标准误差为x ∆和y ∆,则间接测量量N 的标准误差为?BN ∆=;4322(2)3339N x x y x x x ∂∂-==⨯=∂∂, 3334(3)2248y N y y y y x ∂∂==-⨯=-∂∂- ()()[]21232289yxN y x ∆+∆=∆2*。
用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ∆时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C )(A) ρ=(8.35256 ± 0.0653) (gcm – 3),(B) ρ=(8.352 ± 0.065) (gcm – 3),(C) ρ=(8.35 ± 0.07) (gcm – 3),(D) ρ=(8.35256 ± 0.06532) (gcm – 3) (E) ρ=(20.083510⨯ ± 0.07) (gcm – 3),(F) ρ=(8.35 ± 0.06) (gcm– 3),4*以下哪一点不符合随机误差统计规律分布特点 ( C )(A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5*某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B )A . 用它进行多次测量,其偶然误差为mm 004.0;B . 用它作单次测量,可用mm 004.0±估算其误差; B =∆==∆C. 用它测量时的相对误差为mm 004.0±。
吉林大学《大学物理(一)》2017-2018学年第二学期期末考试卷考试形式闭卷年月院系年级专业学号姓名成绩一、填空题:(每空2分,共40分。
在每题空白处写出必要的算式)1、一飞轮的角速度在5s 内由190-⋅s rad 均匀地减到180-⋅s rad ,那么飞轮的角加速度β=,在此5s 内的角位移θ∆=。
2、两个相互作用的物体A 和B 无摩擦地在一条水平直线上运动,A 的动量为bt p p A -=0,式中0p 和b 都是常数,t 是时间。
如果t=0时B 静止,那末B 的动量为;如果t=0时B 的初始动量是-0p ,那末B 的动量为。
3、光滑的水平桌面上有一长2l ,质量为m 的均质细杆,可绕通过其中点,垂直于杆的竖直轴自由转动,开始杆静止在桌面上,有一质量为m 的小球沿桌面以速度v 垂直射向杆一端,与杆发生完全非弹性碰撞后,粘在杆端与杆一起转动,那末碰撞后系统的角速度ω=。
4、振幅为0.1m ,波长为2m 的一简谐余弦横波,以1m/s 的速率,沿一拉紧的弦从左向右传播,坐标原点在弦的左端,t=0时,弦的左端经平衡位置向正方向运动,那末弦左端质点的振动方程为,弦上的波动方程为。
5、在边长为a 的等边三角形的三个顶点上分别放置一个电量为-q 和两个电量为+q 的点电荷,则该三角形中心点处的电势为。
6、如图,若V U F C F C F C 100,4,5,10321====μμμ,则电容器组的等效是容C=,电容器3C 上的电压3U =。
7、两个点电荷+q 和+4q 相距为l ,现在它们的连线上放上第三个点电荷-Q ,使整个系统受力平衡,则第三个点电荷离点电荷+q 的距离为;其电量大小为。
8、若一球形高斯面内的净电量为零,能否说该高斯面上的场强处处为零?(填“能”或“不能”)9、真空中均匀带电的球面和球体,如果两者的半径和总电量都相等,设带电球面的电场能量为1W ,带电球体的电场能量为2W ,则1W W (填<、=、>)10、如图所示,两个半径为R 的相同的金属环在a 连线为环直径),并相互垂直放置,电流I 由a 则环中心O 点的磁感强度的大小为。
《大学物理简明教程》课后答案习题11-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即td d r==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即tva d d=,t v d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵ xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-7 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2亦即 t t 18)9(22=则解得 923=t 于是角位移为rad 67.29232323=⨯+=+=t θ习题22-3 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k mv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-= 分离变量,得m t k v v d d -= 即 ⎰⎰-=v v t mtk v v 00d d kt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞, 故有 ⎰∞-=='00d km v t ev x tm k (4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1.2-6 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==2-7 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r++-=时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F为恒力,∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k2-8 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。
大学物理A1期末考试题及答案一、选择题(每题5分,共20分)1. 光的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积为常数答案:D2. 根据牛顿第二定律,作用力与物体的加速度成正比,与物体的质量成反比。
下列说法正确的是:A. 力是改变物体速度的原因B. 力是维持物体运动的原因C. 力是产生加速度的原因D. 力是产生速度的原因答案:C3. 电磁波的传播不需要介质,下列说法正确的是:A. 电磁波只能在真空中传播B. 电磁波只能在介质中传播C. 电磁波可以在真空和介质中传播D. 电磁波不能在真空中传播答案:C4. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以被转移答案:C二、填空题(每题5分,共20分)1. 根据欧姆定律,电阻R、电压V和电流I之间的关系是:\[ R =\frac{V}{I} \]。
2. 光的折射定律,即斯涅尔定律,可以表示为:\[ n_1\sin(\theta_1) = n_2 \sin(\theta_2) \],其中\( n_1 \)和\( n_2 \)分别是两种介质的折射率,\( \theta_1 \)和\( \theta_2 \)分别是入射角和折射角。
3. 根据牛顿第三定律,作用力和反作用力的大小相等,方向相反,并且作用在不同的物体上。
4. 热力学第二定律指出,不可能把热从低温物体传到高温物体而不产生其他影响。
三、计算题(每题10分,共20分)1. 一个质量为2kg的物体从静止开始下落,受到重力加速度g=9.8m/s²的作用,忽略空气阻力,求物体下落10秒后的速度。
答案:物体下落10秒后的速度为\[ v = g \times t = 9.8\text{m/s}^2 \times 10 \text{s} = 98 \text{m/s} \]。
【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。
4、高斯定理表明磁场是 无源 场,而静电场是有源场。
任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。
现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S S E d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。
5、静电场的场线只能相交于___电荷或无穷远________。
6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。
7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。
9、静电场中场强环流为零,这表明静电力是__保守力_________。
10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。
2022年大学物理课外复习题一、计算题1、如图1.43所示,质量为M=1.5kg的物体,用一根长为L=1.25m的细绳悬挂在天花板上,今有一质量为m10g的子弹以V0=500m/的水平速度射穿物体,刚穿出时子弹的速度大小V=30m/。
设穿透时间极短,求:(1)子弹刚穿出时绳中的张力;(2)子弹在穿透过程中所受的冲量。
[(1)26.5N;(2)4.7i,子弹运行方向相反;]2、一个质量M=10kg的物体放在光滑水平面上,并与一个水平轻弹簧联结如图1.44所示,弹簧的劲度系数k=1000N/m。
今有一质量m=1kg的小球以水平速度V0=4m/飞来,与物体M相碰后以V=2m/的速度弹回,求:(1)M起动后,弹簧将被压缩,弹簧最大可压缩多少?(2)小球m和物体M的碰撞是弹性碰撞吗?恢复系数e=?(3)如果小球上涂有沾性物质,相碰后与M粘在一起,则(1)、(2)的结果如何?[(1)0.06m;(2)不是弹性碰撞e0.65;(3)某0.038m,e0;]3、质量为m的物体,在原点从静止开始在力FAe的作用下,沿某轴正向运动(式中A,a为常数)。
在物体移动距离为L的过程中,动量的增量是多少?[](eaL1)4、在惯性系S中同一地点发生的两事件A和B,B晚于A4;在另一惯性系S`中观察,B晚于A5发生,求S`系中A和B两事件的空间距离?[在S系中的两事件A和B在同一地点发生,时间差Δt=4是本征时,而S`系中观察A和B两事件肯定不在同一地点,Δt`=5是运动时,根据时间膨胀公式t`a某2Amat1(v/c)2,即541(v/c)2,可以求两系统的相对速度为v=3c/5.在S`系中A和B两事件的空间距离为Δl=vΔt`=3c=9某108(m).]5、一根直杆在S系中观察,其静止长度为l,与某轴的夹角为θ,S`系沿S系的某轴正向以速度v运动,问S`系中观察到杆子与某`轴的夹角若何?[直杆在S系中的长度是本征长度,两个方向上的长度分别为l某=lcoθ和ly=linθ.在S`系中观察直杆在y方向上的长度不变,即l`y=ly;在某方向上的长度是运动长度,根据尺缩效应得`l某l某1(v/c)2,因此tan``lyl`某tan1(v/c)2,可得夹角为`arctan{[1(v/c)2]1/2tan}]3-16、如图所示,质量为10g的子弹以速度v=10m·水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k=8某10N·m,木块的质量为4.99kg,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[(1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv=(m+M)v0.解得子弹射入后的速度为v0=mv/(m+M)=2(m·),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m+M)v0/2=kA/2,所以振幅为Av022-13-1mvMkmM-2=5某10(m).kk-1=40(rad·).取木块静止的位置为原点、向右的方向为位mM(2)振动的圆频率为移某的正方向,振动方程可设为某=Aco(ωt+φ).当t=0时,某=0,可得φ=±π/2;由于速度为正,所以取负的初位相,因此振动方程为某=5某10co(40t-π/2).]7、两相干波源S1与S2相距5m,其振幅相等,频率都是100Hz,位相差为π;波在媒质中的传播速度为400m·,试以S1S2连线为坐标轴某,以S1S2连线中点为原点,求S1S2间因干涉而静止的各点的坐标.lS1O某S2某[如图所示,设S1在其右侧产生的波的波动方程为-1-2某l/2)]u5Aco(2t某),24y1Aco[2(t那么S2在其左侧产生的波的波动方程为y2Aco[2(t某l/2)]Aco(2t某).u24两个振动的相差为Δφ=π某+π,当Δφ=(2k+1)π时,质点由于两波干涉而静止,静止点为某=2k,k为整数,但必须使某的值在-l/2到l/2之间,即-2.5到2.5之间.当k=-1、0和1时,可得静止点的坐标为某=-2、0和2(m).]8、白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ=590.5nm),问膜的最小厚度是多少?[等倾干涉光程差为δ=2ndcoγ+δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ=0;由于肥皂膜上下两面都是空气,所以附加光程差δ`=λ/2.对于黄色的明条纹,有δ=kλ,所以膜的厚度为d(k1/2).当k=1时得最小厚度d=111(nm).]2n9、以某放电管发出的光垂直照射到一个光栅上,测得波长λ1=669nm的谱线的衍射角θ=30o.如果在同样的θ角处出现波长λ2=446nm的更高级次的谱线,那么光栅常数最小为多少?[根据光栅方程得(a+b)inθ=k1λ1=k2λ2,方程可化为两个(a+b)inθ/λ1=k1和(a+b)inθ/λ2=k2,解得光栅常数为ab(k2k1)21.由于k2/k1=λ1/λ2=3/2,所以当k1=2时,.k2=3,因(12)in此光栅常数最小值为ab21=2676(nm).](12)in10、以氢放电管发出的光垂直照射在某光栅上,在衍射角θ=41o的方向上看到λ1=656.2nm和λ2=410.1nm的谱线重合,求光栅常数的最小值是多少?[根据光栅方程得(a+b)inθ=k1λ1=k2λ2,方程可化为两个(a+b)inθ/λ1=k1和(a+b)inθ/λ2=k2,解得光栅常数为ab(k2k1)21.由于k2/k1=λ1/λ2=1.6=16/10=8/5,所以(12)in321=5000(nm).其他可能值都是(12)in当k1=5时,.k2=8,因此光栅常数最小值为ab这个值的倍数.]11、三个偏振片堆叠在一起,第一块与第三块偏振化方向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所示.设入射自然光的光强为I0,试求此自然光通过这一系统后出射光强度.[自然光通过偏振片P1之后,形成偏振光,光强为I1=I0/2.经过时间t,P3的偏振化方向转过的角度为θ=ωt,根据马吕斯定律,通过P3的光强为I3=I1coθ.由于P1与P2的偏振化方向垂直,所以P2与P3的偏振化方向的夹角为φ=π/2–θ,再根据马吕斯定律,通过P2的光强为I=I3coφ=I3inθ=I0(coθinθ)/2=I0(in2θ)/8=I0(1–co4θ)/16,即I=I0(1–co4ωt)/16.]222222二、选择题1、在相对论的时空观中,以下的判断哪一个是对的?(C)(A)在一个惯性系中,两个同时的事件,在另一个惯性系中一定不同时;(B)在一个惯性系中,两个同时的事件,在另一个惯性系中一定同时;(C)在一个惯性系中,两个同时又同地的事件,在另一惯性系中一定同时又同地;(D)在一个惯性系中,两个同时不同地的事件,在另一惯性系中只可能同时不同地;(E)在一个惯性系中,两个同时不同地的事件,在另一惯性系中只可能同地不同时。
大学物理及实验复习题A注:可利用查找功能复制部分题干查询对应题目和解析。
查找按键:Ctrl+F 超越高度(一)名词解释(3分*5=15分)1. 多普勒效应2.波的干涉3.自由度4.功能原理5. 刚体(二)填空题(1分*15=15分)1. 大学物理实验课程的教学主要由三个环节构成;;。
2. 数据处理最基本的有如下三种方法、、。
3. 分光计由;;;主要部件构成。
4. 当光照射在物体上时,光的能量转换为物体某些电子的能量,使这些电子逸出物体表面,这种现象称为效应,利用这一效应测定了常数。
5. 在科学实验中,一切物理量都是通过测量得到的,测量结果应包括、、三者缺一不可。
(三)判断题(-超-越-高-度)(2分*10=20分)1. 误差是指测量值与真值之差,即误差 =测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。
()2. 残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。
()3. 精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。
()4. 测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。
()5.分光计设计了两个角游标是为了消除视差()6. 调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。
()7. 系统误差的特征是它的有规律性,而随机的特怔是它的无规律性。
()8. 算术平均值代替真值是最佳值,平均值代替真值可靠性可用算术平均偏差、标准偏差和不确定度方法进行估算和评定。
()9. 在测量钢丝的杨氏弹性模量实验中,预加 1Kg 砝码的目的是增大钢丝伸长量。
()10. 系统误差在测量条件不变时有确定的大小和正负号,因此在同一测量条件下多次测量求平均值能够减少或消除系统误差。
()(四)选择题(超越高度)(1分*10=10分)1 . 用螺旋测微计测量长度时,测量值 =末读数—初读数(零读数),初读数是为了消除 ( )A.系统误差B.偶然误差C.过失误差D.其他误差2. 以下哪一点不符合随机误差统计规律分布特点 ( )A. 单峰性B. 对称性C. 无界性有界性D. 抵偿性3. 在气体比热容比测定实验中,由于大气压强变大 , 则小球的振动周期将 ( )A. 变大B. 变小C. 不变D. 不确定4. 分光计采用双游标读数的原因是( )A. 消除视差引起的系统误差B. 消除视差引起偶然误差C. 消除偏心差引起的系统误差D. 消除偏心差引起的偶然误差5. 扭摆仪上只有圆盘时,其摆动周期为 T1 ,放上待测物体后,摆动周期为 T2 ,则 ( )A. T1 <T2B. T1 = T2C.T1 >T2D. 不能确定6. 下列哪些概念不适用拉伸法测杨氏模量实验。
大学物理上册习题Last revision on 21 December 2020练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) m/s . (C) m/s .(D) m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D)t 1时刻质点的加速度不等于零.图5. 质点沿XOY平面作曲线运动,其运动方程为:x=2t, y=19-2t2.则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和秒.(B)秒.(C)秒和3秒.(D)0秒和3秒.二. 填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cos t i+B sin t j, A, B ,为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为(斜向上),山坡与水平面成角. (1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s; (2) 如果值与v0值一定,取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度=1rad/s,角加速度=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cos ,0 , v02 cos2/g.(B) g cos , g sin, 0.(C) g sin, 0, v02/g.(D) g , g , v 02sin 2 /g . 二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 .2. 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是运动; 任意时刻a =0的运动是 运动; 任意时刻a t =0, a n =常量的运动是 运动.3. 已知质点的运动方程为r =2t 2i +cos t j (SI), 则其速度v = ;加速度a = ;当t =1秒时,其切向加速度a t = ;法向加速度a n = . 三.计算题1. 一轻杆CA 以角速度绕定点C 转动,而A 端与重物M 用细绳连接后跨过定滑轮B ,如图.试求重物M 的速度.(已知CB =l为常数,=t,在t 时刻∠CBA =,计算速度时作为已知数代入).2. 升降机以a =2g 的加速度从静止开始上升,机顶有一螺帽在t 0=时因松动而落下,设升降机高为h =,试求螺帽下落到底板所需时间t 及相对地面下落的距离s .练习三 牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.图2. 如图(A)所示,m A >m B 时,算出m B向右的加速度为a ,今去掉m A 而代之以拉力T = m A g , 如图(B)所示,算出m B 的加速度a ,则(A) a > a . (B) a = a . (C) a < a . (D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.(D) 无法判断斜面是否运动.4. 如图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.5. 如图所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动.图图图 < < < < < 图am 图(C) 立即处于静止状态.(D) 在重力作用下向上作减速运动. 二.填空题1. 如图所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos mg = 0 (1)也有人在沿绳子拉力方向求合力写出T mg cos = 0 (2)显然两式互相矛盾,你认为哪式正确答 . 理由是 .2. 如图所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为,圆盘绕中心轴OO 转动,当其角速度 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为 m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为的匀速圆周运动,如图所示.则l 1, l 2两绳上的张力T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少环与绳之间的摩擦力多大a 2图图A图2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大;(B) 小力的冲量有可能比大力的冲量大;(C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体(A) 动量守恒,合外力为零.(B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.(C) 此过程动量守恒,合外力的冲量为零.(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A) MV +mv = 0. (B) MV = m (v +V ). (C) MV = mv .(D) MV +m (v +V ) = 0. (E) mv +(M +m)V = 0. (F) mv =(M +m)V .5. 长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A) 0, mv 0(h/l -1). (B) 0, 0. (C) mv 0(l -h ), 0. (D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填、、), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m . 三.计算题A图m 图1. 一质点作半径为r ,半锥角为的圆锥摆运动,其质量为m ,速度为v 0如图所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒; (D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;图(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则(A) A 1 > A 2. (B) A 1 < A 2. (C) A 1 = A 2. (D) 无法确定.5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小; (D) 汽车的动能与它通过的路程成正比. 二.填空题1. 如图所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O 点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O 点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O 点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .<图置图图B2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图所示, 一半径R =的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos = mg sin (如图示C 点)答 . 三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F = x + (SI)求:(1) 将弹簧从定长 x 1 = 拉伸到定长x 2 = 时,外力所需做的功.(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为的物体,然后将弹簧拉伸到一定长x 2= ,再将物体由静止释放,求当弹簧回到x 1 = 时,物体的速率.(3) 此弹簧的弹力是保守力吗为什么 2. 如图所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O .整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(=60)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是图(A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动. 2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为,求摩擦力矩M . 先取微元细杆d r ,其质量d m = d r = (m /l )d r .它受的摩擦力是d f = (d m )g =(mg /l )d r ,再进行以下的计算,(A) M =r d f =⎰lr r lmgd μ=mgl/2.(B) M =(d f )l/2=(⎰l r l mgd μ)l/2=mgl/2. (C) M =(d f )l/3=(⎰l r l mg0d μ)l/3=mgl/3.(D) M =(d f )l =(⎰l r lmg0d μ)l =mgl .4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图所示.宽圆环的质量面密度为 = m /S =m /[ (R 22-R 12)],细圆环的面积为d S =2r d r ,得出微元质量d m = d S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰.图(B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) .(G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B .. (B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B . 二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m , r = R , 则I 1 I 2 .2. 如图所示,两个质量和半径都相同的均匀滑轮,轴处无摩2(填 ) .擦, 1和2分别表示图(1)、图(2)中滑轮的角加速度,则1 3. 如图所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度A :B = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B = ;法向加速度a n A :a n B = .图(1)(2)图三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60角时的角加速度和角速度.2. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为 ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 3. 质量相同的三个均匀刚体A 、B 、C(如图所示)以相同的角速度绕其对称轴旋转, 己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则图图(A) A 先停转. (B) B 先停转. (C) C 先停转. (D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变.(D) 转速可能不变,也可能改变.5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边小于右边. (C) 右边小于左边. (D) 无法判断. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8 rad/s ,则主动轮在这段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 =2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-图图2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA 转动,如图所示,则此情况下盘的转动惯量I AA = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力2. 飞轮为质量m = 60kg , 半径r = 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图所示, 闸瓦与飞轮的摩擦系数 = , 飞轮的转动惯量可按圆盘计算.(1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转. (2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;图图(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒; (D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒. 2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小. (B) 自转周期变小,动能增大. (C) 自转周期变大,动能增大. (D) 自转周期变大,动能减小. (E) 自转周期不变,动能减小. 3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同; (D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同. 4. 如图所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足图(A) 1一定大于2.(B) 1一定等于2.(C)1一定小于2.(D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m=可在一绕光滑竖直轴转动的水平平台上(平台半径为R=1m,质量M=2kg)作半径为r=的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v=5m/s的匀速圆周运动时,平台转动的角速度为1 = ;当小车急刹车停下来时,平台的角速度= ;当小车从静止开始在平台上运行一周时,平台转动的角度2= .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R1速率为v1的圆周运动,今用力F慢慢往下拉绳子,当圆周运动的半径减小到R2时,则小球的速率为 , 力F做的功为.3. 转动着的飞轮转动惯量为J , 在t =0时角速度为0, 此后飞轮经历制动过程,阻力矩M 的大小与角速度的平方成正比, 比例系数为k (k 为大于0的常数), 当 =0/3 时, 飞轮的角加速度= , 从开始制动到 =0/3 所经过的时间t = . 三.计算题1. 落体法测飞轮的转动惯量,如图所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度将(A) 增大. (B) 不变. (C) 减小. (D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为(A) 20 .图图(B) 20 . (C) 40 . (D) 0/2 . (E) 0/2.3. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为1和2.则以下说法不正确的是(A) 1可能大于2 ; (B) 1可能小于2 ; (C) 1可能等2 ; (D) 1一定大于2 .4. 一圆锥摆,如图,摆球在水平面内作圆周运动.则 (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒. (B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.守恒. (C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒. (D) 摆球的动量守恒, 摆球与地球组成系统的机械能不5. 如图,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量、机械能都守恒.图图二.填空题1. 铀238的核(质量为238原子质量单位),放射一个粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,粒子射出时速度大小为×107m/s,则钍核的速度大小为 ,方向为 .2. 如图所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .3. 最大摆角为0的摆在摆动进程中,张力最大在 = 处,最小在 = 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为, 0≤≤0)绳子的张力为 . 三.计算题1. 如图,一块宽L =、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO 自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg 的子弹垂直击中木板A 点,A离转轴OO 距离为l =,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求(1) 子弹给予木板的冲量; (2) 木板获得的角速度.(已知:木板绕OO 轴的转动惯量J =ML 2 / 3)2. 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深设铁锤两次击钉的速度相同.图图。
第七单元7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R iT T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热75.1038)300350(31.825=-⨯⨯=Q J)(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功7-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功21112ln lnp pV p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V = 57=γ 由绝热方程 γγ2211V p V p =γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以)(12molT T C M MA V --=RT M MpV mol=,)(2512111T T R RT V p A --=35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J7-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη答:等体过程 吸热)(12V 1T T C Q -='υ)(1221V 11R V p R V p C Q Q -='= 绝热过程 03='Q等压压缩过程 放热)(12p 2T T C Q -='υ)(2212P R V p R V p C -=循环效率 121Q Q-=η)1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图7-19 如题7-19图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=ηAB 等压过程 )(12P 1T T C Q -='υ 吸热)(P mo 1A B lT T C M MQ -=CD 等压过程 )(12P 2T T vC Q -=' 放热 )(P mol 22D C T T C M M Q Q -='-=)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--=根据绝热过程方程得到AD 绝热过程 γγγγ----=D D A A T p T p 11BC 绝热过程 γγγγ----=C C B B T p T p 111又B C D DC BA T T T T p p p p ===231T T -=η(2)不是卡诺循环,因为不是工作在两个恒定的热源之间.7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图 解:21→熵变等温过程 A Q d d =, V p A d d =,RT pV =⎰⎰==-21111221d 1d V V VV RT T T Q S S76.52ln ln !212===-R V VR S S J 1K -⋅321→→熵变⎰⎰+=-312312d d T QT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C T TC S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V V T T = 23→等体过程 2233T p T p =3232p p T T = 1232p p T T =12V 12P 12ln ln p pC V V C S S +=-在21→等温过程中 2211V p V p =所以2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===-241→→熵变⎰⎰+=-412412d d T QT Q S S41p 42p p 12ln lnd 024T TC T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V T γγγγ/121/141144411)()(,p pp p V V V p V p ===在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ7-22 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为mol C ). 解:两个容器中的总熵变⎰⎰+=-TT T T lT T C T T C S S 12d d mo mol 0 212mol 21mol ln)ln (ln T T T C T T T T C =+=因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=-得212T T T +=21212mol 04)(lnT T T T C S S +=-第八单元8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m-3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E )(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,rd r d⋅+⋅=⎰⎰∞∞rrE E U 外内两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F第九单元9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B 方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m9-16 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题9-16图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202RIrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题9-16图题9-20图9-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩. 解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯= ∵ 线圈与导线共面∴ B P m//0=M.9-26 一电子在B =20×10-4TR =2.0cmh=5.0cm ,如题9-26图.(1)求这电子的速度; (2)磁场B的方向如何?解: (1)∵ eBmv R θcos =θπcos 2v eB mh =题9-26 图∴ 6221057.7)2()(⨯=+=meBh m eBR v π1s m -⋅ (2)磁场B的方向沿螺旋线轴线.或向上或向下,由电子旋转方向确定9-30 螺绕环中心周长L =10cm ,环上线圈匝数N =200匝,线圈中通有电流I =100 mA .(1)当管内是真空时,求管中心的磁场强度H和磁感应强度0B ;(2)若环内充满相对磁导率r μ=4200的磁性物质,则管内的B和H 各是多少?*(3)磁性物质中心处由导线中传导电流产生的0B 和由磁化电流产生的B′各是多少?解: (1) I l H l∑=⋅⎰dNI HL = 200==LNI H 1m A -⋅400105.2-⨯==H B μT(2)200=H 1mA -⋅05.1===H HB o r μμμ T (3)由传导电流产生的0B即(1)中的40105.2-⨯=B T∴由磁化电流产生的05.10≈-='B B B T第十单元10-1 一半径r =10cmB =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势.解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题10-8图题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →0-19图10-18 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=。
大学物理实验考试题及知识点公共实验知识点1. 主要仪器的结构、 1. 测量量、测1. 仪器原理;特点、各元件的空间量方法及有2. 测量原理分布 ( 构造关系 ) ;效数据; 2.测(公式推导、3.仪器的精度、调量先后顺序;图、测量方案节及使用细节、注意 3. 故障的分描述)事项等析和解决测量的定义;有效数字及其运算法则;误差的定误差四种数据处义&分类;不确定度(直接测量量&间接测量量)理论理方法&结果表达1.千分尺、游标卡尺和读数显微镜读数原理; 2. 圆柱筒含金属体积的1.千分尺、游标卡尺计算公式和不 1. 千分尺、游和读数显微镜构造确定度公式的标卡尺和读(图)和个主要元件推导; 3. 测量数显微镜的直接测量、间名称及用途;2. 千分的定义以及阿调节、读数及接测量(多长度尺、游标卡尺和读数贝定则(阿贝有效位数;2.次)不确定度显微镜读数精度、调原则是仪器设读数显微镜(保留计算节及使用细节、注意计中一个非常十字叉丝和过程)事项 ( 零点偏差 / 回重要的设计原缝的排放问程误差 ) 等则。
古典的阿题。
贝原则是阿贝于 1890 年提出的一项测量仪设计的指导性原则。
他说:要是测量已给出精确的测量结果,必须将被测件布置在基准元件沿运动方向的延长线上。
因此可以称为共线原则。
阿贝原则:被测量轴线只有与标准量的测量轴线重合或在其延长线上时,测量才会的到精确地结果。
阿贝原则是长度计量的最基本原则,其意义在于它避免了因导轨误差引起的一次测量误差。
在检定和测试中遵守阿贝原则可提高测量的准确度,特别是在使用不符合阿贝原则的仪器时,更要注意阿贝原则的应用。
例:千分尺,内径千分尺等符合;游标卡尺不符合。
)1.流体静力称衡法测铜块密度的测量原理和公式; 2. 比复秤法的读重瓶法测铅粒数问题;快速密度的测量原调节天平底1.物理天平的构造理和公式;(3. 座水平、横梁(图)和个主要元件两者的区分、平衡和检测名称及用途;2. 物理适用性)流体灵敏度。
一、选择题(每题 4 分,打“* ”者为必做,再另选做 4 题,并标出选做记号“ * ”,多做不给分,共40 分)1 *某间接丈量量的丈量公式为N 3x32y 4,直接丈量量x和y的标准偏差为x和y ,则间接测量量 N 的标准偏差为? BN2N2 N;xyyxN(3x3 2 y4 )33x29 x2,N(3x3 2 y4 )2 4 y38 y3 x x y y2219x28y32N x y2 *。
用螺旋测微计丈量长度时,丈量值 =末读数—初读数(零读数),初读数是为了除去(A)( A )系统偏差( B)有时偏差( C)过错偏差( D)其余偏差3 *在计算铜块的密度ρ和不确立度时,计算器上分别显示为“8.35256 ”和“”则结果表示为:(C)(A)ρ =(±)( gcm–3),(B)ρ =(± 0.065 )( gcm–3),(C)ρ =(±)( gcm–3),(D)ρ =(± 0.06532 )( gcm –3)(E)ρ =(102± 0.07 )–3),( gcm(F) ρ =(±)(gcm–3),4 *以下哪一点不切合随机偏差统计规律散布特色(C)(A )单峰性( B)对称性( C)无界性有界性( D)赔偿性*某螺旋测微计的示值偏差为0.004mm ,选出以下丈量结果中正确的答案:(B)5A .用它进行多次丈量,其有时偏差为;B .用它作单次丈量,可用估量其偏差;2202A B B BC.用它丈量时的相对偏差为 0.004mm 。
相对偏差: E100% 无单位;绝对偏差:=x X 有单位。
X*在计算数据时,当有效数字位数确立此后,应将剩余的数字舍去。
设计算结果的有效数字取 4 位,6则以下正确的弃取是:(B)四舍六入逢单配双A :→;B:→C:→D:→7、在气体比热容比测定实验中,因为大气压强变大, 则小球的振动周期将(B)(A)变大(B)变小(C)不变(D)不确立8、分光计采纳双游标读数的原由是(C)A:除去视差惹起的系统偏差B:除去视差惹起有时偏差C :除去偏爱差惹起的系统偏差D :除去偏爱差惹起的有时偏差9、扭摆仪上只有圆盘时,其摇动周期为T 1,放上待测物体后,摇动周期为T2,则(A)(A) T 1 <T2(B) T1= T2(C) T1 >T2(D) 不可以确立10、若给示波器y 轴输入一个周期性三角波电压,在x 轴输入一个直流电压,则示波器显示的波形为(A)( A )11、牛顿环是一种:( B)( C)( D )(D)A .不等间距的衍射条纹;干预B.等倾干预条纹; 迈克尔孙干预仪C.等间距的干预条纹;中间疏外边密D.等厚干预条纹。
⼤学物理课后习题答案详解第⼀章质点运动学1、(习题 1.1):⼀质点在xOy 平⾯内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道⽅程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置: 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2):质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动⽅程)(t x x =.解:kv dtdv -= ??-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -??=000 )1(0t k e k v x --=3、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ?=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020= x 2= t 3 /3+10 (SI)4、⼀质量为m 的⼩球在⾼度h 处以初速度0v ⽔平抛出,求:(1)⼩球的运动⽅程;(2)⼩球在落地之前的轨迹⽅程;(3)落地前瞬时⼩球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联⽴式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = ⽽落地所⽤时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、已知质点位⽮随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任⼀时刻的速度和加速度;(2)任⼀时刻的切向加速度和法向加速度。
第三次作业 刚体力学基础一、选择题1.AEG ; 2.AE ;3.C; 4.CD ;5.C ; 6.E;7.C ;8.C 。
二、填空题1. -2s 0.8rad ⋅; -1s 0.8rad ⋅; 1s m 51.0 -⋅。
2. 4104⨯; 6108⨯。
3.bFRlμ。
4.912ml ;l g 2cos 3θ。
5. s rad 81.251-⋅。
6.lg θsin 23; θsin 23mgl ; θsin 23mgl 。
7. 22sin 2R J m kx mgx +-θ或265.212.3x x -; 0.59m 。
8. 02ωmRJ J+; 4.49 三、回答题1. 答:质点:合力为零;刚体:合外力、合外力矩均为零。
2. 答:转动惯量J 是描述刚体在转动中转动惯性大小量度的物理量。
影响刚体转动惯量的因素有三个:(1)刚体的转轴位置;(2)刚体的总质量;(3)在总质量一定的情况下,质量相对转轴的分布。
四、计算与证明题1.解:① 设此题中定滑轮顺时针转动为正,根据牛顿定律和转动定律列出方程组:ma mg-T =1 ①J βR -T T =)(21 ② (注意:这里有个力矩与角加速度正负的设定问题,若设顺时针为正,则如本题解;但若学生按逆时针为正也可,只是题解中力矩符号相反,答案中a 和β则为负,只意味着顺时针转动,后续计算中要取掉负号)。
02=-kx T ③βR a = ④联立求解得:2RJ m mg-kxa +=而 2d d d d d d d d R Jm mg-kxx t x x t a +==⋅==υυυυ ⎰⎰-+=h x kx mg RJ m d 002d )(1υυυ 解上式得: 22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ ② 系统机械能守恒,取初始位置的势能为零点,则0212121222=-++mgh kh J ωm υ 且 Rωυ= 解上式得:22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ,结果同上。
Y R0 iO图图13 图12 练习一库伦定律电场强度一.选择题1•关于试验电荷以下说法正确的是 (A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小, 以至于它不影响产生原电场的电荷分布, 从而不影响原电 场侗时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相 对问题而言的)•2•关于点电荷电场强度的计算公式 E = q r / (4二;o J),以下说法正确的是 (A) r T 0 时,E is ;(B) r T 0时,q 不能作为点电荷,公式不适用; (C) r T 0时,q 仍是点电荷,但公式无意义;(D) r T 0时,q 已成为球形电荷,应用球对称电荷分布来计算电场 • 3•关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统; (B) 一个正点电荷和一个负点电荷组成的系统; (C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统 (E) 两个等量异号的点电荷组成的系统4•试验电荷q o 在电场中受力为f ,其电场强度的大小为f / q o ,以下说法正确的是 (A) E 正比于f ;(B) E 反比于q 。
;(C) E 正比于f 且反比于q °;(D) 电场强度E 是由产生电场的电荷所决定的 ,不以试验电荷q 0及其受力的大小决定• 5•在没有其它电荷存在的情况下 ,一个点电荷q i 受另一点电荷q 2的作用力为f i2当放入 第三个电荷Q 后,以下说法正确的是(A) f i2的大小不变,但方向改变,q i 所受的总电场力不变; (B) f i2的大小改变了,但方向没变,q i 受的总电场力不变;(C) f i2的大小和方向都不会改变,但q i 受 的总电场力发生了变化;(D) f i2的大小、方向均发生改变,q i 受的总 电场力也发生了变化•二•填空题 i •如图i.i 所示,一电荷线密度为丸的无限长 带电直线垂直通过图面上的 A 点,一电荷为Q 的均匀球体,其球心为O 点,△ AOP 是边长为a 的 等边三角形,为了使P 点处场强方向垂直于 OP,则■和Q 的数量关系式为 _____ 且■与 Q 为—号电荷(填同号或异号)•2•在一个正电荷激发的电场中的某点 A ,放入一个正的点电荷 q ,测得它所受力的大小为 f i ;将其撤走,改放一个等量的点电荷 -q ,测得电场力的大小为f 2 ,则A 点电场强度E 的大小满 足的关系式为 _______________ •3•—半径为R 的带有一缺口的细圆环,缺口宽度为d (d<<R)环上均匀带正电,总电量为 q ,如图i.2所示,则圆心O 处的场强大小 E = ______ ,场强方向为三•计算题i •一 “无限长”均匀带电的半圆柱面 ,半径为R,设半圆柱面沿轴线单位长度上的电量为 •,如图i.2 所示•试求轴线上一点的电场强度 •2•一带电细线弯成半径为 R 的半圆形,电荷线密度为'='0 sin •:式中'0为一常数,::为 半径R 与X 轴所成的夹角,如图i.3所示,试求环心O 处的电场强度•1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小; (B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致2. 在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法 正确的是E 处处不等;E 处处相等,故球面上的电场是匀强电场; E 的方向一定指向球心;E 的方向一定沿半径垂直球面向外 . 3. 关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行; (A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合; (D)在无电荷的电场空间,电场线可以相交 . 4. 如图2.1,一半球面的底面园所在的平面与均强电场 E 的夹角为30° ,球面的半径 为R ,球面的法线向外,则通过此半球面的电通量为(A) 二 R 2E/2 . 2(B) T R E/2.2 (C) 二 RE. (D) -二 R 2E.25. 真空中有AB 两板,相距为d ,板面积为S(S >> d ),分别带+q 和-q ,在忽略边缘 效应的情况下,两板间的相互作用力的大小为2 2(A) q /(4 二;o d ). 2 (B) q/( o S). (C) 2q 2/( o S). 2 (D) q /(2 o S). 二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+'和-■,点P i和P 2与两带电线共面,其位置如图2.2所示,取向右为坐标 X 正向,则-:= ________ , 2= ______ .2. _____________________________________________________________________ 为求半径为R 带电量为Q 的均匀带电园盘中心轴线上 P 点的电场强度,可将园盘 分成无数个同心的细园环,园环宽度为d r ,半径为r ,此面元的面积dS= ________________________ , 带电量为dq = _________ ,此细园环在中心轴线上距圆心 x 的一点产生的电场强度 E3. _______ 如图2.3所示,均匀电场E 中有一袋形曲面,袋口边缘线在一平面 S 内,边缘线所围面 积为S o ,袋形曲面的面积为 S ,法线向外,电场与 S 面的夹角为二,则通过袋形曲面的电 通量为 __________ . 三.计算题1. 一带电细棒弯曲线半径为 R 的半圆形,带电均匀,总电量为 Q ,求圆心处的电场强度 E ..选择题练习二电场强度(续)电通量(A) 球面上的电场强度矢量(B) 球面上的电场强度矢量 (C) 球面上的电场强度矢量(D) 球面上的电场强度矢量2.真空中有一半径为R的圆平面,在通过圆心0与平面垂直的轴线上一点P处,有电量为q的点电何,0、P间距离为h,试求通过该圆平面的电诵量. 练习三咼斯定理.选择题口 III-2 口1111.如 图31为S 面上的E 必定为零; S 面内的电荷必定为零; 空间电荷的代数和为零; S 面内电荷的代数和为零r ■ ■■是(A) (B) (C) (D) 果对某一闭合曲面的电通量後=0,以下说法正确的图3.1o£-dS2•如果对某一闭合曲面的电通量旷学0,以下说法正确的是(A) S 面上所有点的E 必定不为零; (B) S 面上有些点的E 可能为零; (C) 空间电荷的代数和一定不为零; (D) 空间所有地方的电场强度一定不为零•3•关于高斯定理的理解有下面几种说法,其中正确的是 (A) 如高斯面上E 处处为零,则该面内必无电荷; (B) 如高斯面内无电荷,则高斯面上E 处处为零; (C) 如高斯面上E 处处不为零,则高斯面内必有电荷; (D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场 4•图3.1示为一轴对称性静电场的 E 〜r 关系曲线 请指出该电场是由哪种带电体产生的r 表示离对称轴的距离) “无限长”均匀带电直线; 半径为R 的“无限长”均匀带电圆柱体; 半径为R 的“无限长”均匀带电圆柱面 半径为R 的有限长均匀带电圆柱面(E 表示电场强度的大小 (A) (B) (C) (D) 5•如图3.2 所示,一个带电量为 场强度通量等于:q 的点电荷位于立方体的 A 角上,则通过侧面a b c d 的电 图3.5川区E 的大小 __________ (B) q / 12q. (C) q / 6 0 . (D) q / 48 二.填空题1•两块“无限大”的均匀带电平行平板 ,其电荷面密度 分别为(二0)及-2-,如图3.3 所示,试写出各区域的电场 E[区E 的大小 _________ ,方向 ________ ; n 区E 的大小 __________ 方向 __________ ;,方向 _______2•如图3.4 所示,真空中两个正点电荷,带电量都为Q ,相距2R ,若以其中一点电荷所在处 O 点为中心,以R 为半径作高斯球面 S ,则通过该球面的电场强度通量 「= _________;若以r 0表示 高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度的矢量式分别 为 , •3.点电荷q i 、q 2、q 3和q 4在真空中的分布如图 3.5 所示,图中S 为闭合曲面,则通过该闭AS合曲面的电通量犷3 = ___________ 式中的E 是哪些点电荷在闭合曲面上任一点产生的场强 的矢量和?答:是 _______ •三.计算题1•厚度为d 的无限大均匀带电平板,带电体密度为 笃试用高斯定理求带电平板内外的 电场强度•为0',两球心间距离= d,如图3.6所示,求: (1)在球形空腔内,球心0处的电场强度 E 0 ;⑵ 在球体内P 点处的电场强度 E .设0 1 0、P 三点在同一直径上,且:P = d.练习四静电场的环路定理电势.选择题1•真空中某静电场区域的电力线是疏密均匀方向相同的平行直线 度E 和电位U 是(A) 都是常量. (B) 都不是常量.(C) E 是常量,U 不是常量. (D) U 是常量,E 不是常量.2•电量Q 均匀分布在半径为 R 的球面上,坐标原点位于球心处,现从球面与X 轴交点处 挖去面元.S,并把它移至无穷远处(如图4.1),若选无穷远为零电势参考点,且将AS 移走后球面上的电荷分布不变,则此球心0点的场强E 0与电位U o 分别为(注:i 为单位矢量)2 2 2(A )- i Q . S[(4 二 R ) o ]; [Q/(4 二;o R )][1 — . S (4 二R )]. 2 2 2(B ) i Q. S[(4 二 R ) 0 ] ; [Q/(4 二;o R )][1 - . S (4 二R )].2 2 2(C )i Q S/[(4 二 R ) 0 ] ; [-Q/(4 二;o R )][1 - . S/(4 r:R )]. 2 2 2(D )- i Q S[(4 二 R ) 0 ]; [—Q/(4 二;o R )][1 - S/(4 二R )].3•以下说法中正确的是(A )沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强; (C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷,仅在电场力作用下,总是从高电位处向低电位运动; (E) 场强处处相同的电场中,各点的电位也处处相同.4•如图4.2,在点电荷+q 的电场中,若取图中P 点处为电势零点,则M 点的电势为(A) 沢 f(B)(B) ^1'■ ■■] <.(C) -g 伽也).5.—电量为-q 的点电荷位于圆心 0处,A 、B 、C 、D 为同一圆周上的四点,如图 所示,现将一试验电荷从 A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大 (B) 从A 到各点,电场力作功相等 (C) 从A 到D ,电场力作功最大(D) 从A 到C ,电场力作功最大 .填空题M图42R体 分 2. 内布图3.6 均匀分布着电荷体密度为 不变,在该球体内挖去半径半径为R 的一球 的正电荷,若保持电荷 r 的一个小球体,球心,则在该区域内电场强4.31•电量分别为q i , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图4.4所示,设无穷远处为电势零点,圆半径为R,则b点处的电势U = __________ .2•如图4.5,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致,从5.质点沿XOY平面作曲线运动,其运动方程为:x=2t, y=19-2t2则质点位置矢量与速度矢量恰好垂直的时刻为A点经任意路径到B点的场强线积分3.如图4.5所示,BCD是以0点为圆心,以R为半径的半圆弧,在A点有一电量为+q的点电荷,0点有一电量为-q的点电荷,线段= R,现将一单位正电荷从B点沿半圆弧轨道BCD移到D 点,则电场力所作的功为____________________________ .三.计算题1.电量q均匀分布在长为2 I的细杆上,求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点).2.—均匀带电的球层,其电荷体密度为「,球层内表面半径为R i ,外表面半径为R2 ,设无穷远处为电势零点,求空腔内任一点的电势练习一质点运动的描述一.选择题1.以下四种运动,加速度保持不变的运动是(A)单摆的运动;图11(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动2.质点在y轴上运动,运动方程为y=4『-2t3,则质点返回原点时的速度和加速度分别为2(A) 8m/s, 16m/s .(B) -8m/s, - 16m/s2.2(C) - 8m/s, 16m/s .2(D) 8m/s, -16m/s .3.物体通过两个连续相等位移的平均速度分别为运动,则在整个过程中物体的平均速度为I11=10m/s,…2=15m/s,若物体作直线(A) 12 m/s.(B) 11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.4.质点沿X轴作直线运动,其v- t图象为一曲线,如图1.1,则以下说法正确的是(A) 0〜t3时间内质点的位移用v- t曲线与t轴所围面积绝对值之和表示,路程用v- t 曲线与t轴所围面积的代数和表示;(B) 0〜t3时间内质点的路程用V- t曲线与t轴所围面积绝对值之和表示,位移用V- t 曲线与t轴所围面积的代数和表示;(C) 0〜t3时间内质点的加速度大于零;(D) t时刻质点的加速度不等于零.(A)0秒和3.16秒.(B) 1.78 秒.(C) 1.78秒和3秒(D)0秒和3秒..填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t (SI),则小球运动到最高点的时刻为t= ______ 秒.2. 一质点沿X轴运动,v=1+3t2 (SI),若t=0时,质点位于原点.则质点的加速度a= ________ (SI);质点的运动方程为x= __________ (SI).3. 一质点的运动方程为r= Acos ■ t i+ Bsi• t j,其中A, B ,••为常量•则质点的加速度矢量为a= __________ ,轨迹方程为_______________ .三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为V。
吉林大学《大学物理(一)》2019-2020学年第二学期期末考试卷考试形式闭卷年月院系年级专业学号姓名成绩一、填空题:(每空2分,共40分。
在每题空白处写出必要的算式)1、一个半径R=1.0m 的圆盘,可以绕一水平轴自由转动。
一根轻绳绕在盘子的边缘,其自由端拴一物体A (如图),在重力作用下,物体A 从静止开始匀加速地下降,在t=2.0s 内下降距离h=0.4m 。
物体开始下降后t '=3s 末,轮边缘上任一点的切向加速度a t =,法向加速度a n =。
2、一质量m=50g ,以速率v=20m/s 作匀速圆周运动的小球,在1/4周期内向心力加给它的冲量的大小是。
3、一个沿x 轴作简谐运动的弹簧振子,劲度系数为k ,振幅为A ,周期为T ,其振动方程用余弦函数表示,当t=0时,振子过2Ax =处向正方向运动,则振子的振动方程为x=,其初始动能E k =。
4、一横波沿绳子传播的波动方程为)410cos(05.0x t y ππ-=,式中各物理量单位均为国际单位制。
那么绳上各质点振动时的最大速度为,位于x=0.2m 处的质点,在t=1s 时的相位,它是原点处质点在t 0=时刻的相位。
5、一空气平行板电容器两极板面积均为S ,电荷在极板上的分布可认为是均匀的。
设两极板带电量分别为±Q ,则两极板间相互吸引的力为。
6、一同轴电缆,长m l 10=,内导体半径mm R 11=,外导体内半径mm R 82=,中间充以电阻率m ⋅Ω=1210ρ的物质,则内、外导体间的电阻R=。
7、真空中半径分别为R 和2R 的两个均匀带电同心球面,分别带有电量+q 和-3q 。
现将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为。
8、图示电路中,当开关K 断开时,a 、b 差U ab =;K 闭合时,图中10μF 电量变化为Δq=。
9、一空气平行板电容器,极板面积为S d ,电容器两端电压为U ,则电容器极q=。
. . 页脚 1、均匀带电细线ABCD弯成如图所示的形状,其线电荷密度为λ,试求圆心O处的电势。 解:
两段直线的电势为 2ln4201V
半圆的电势为 024V, O点电势)2ln2(40V
2、有一半径为 a 的半圆环,左半截均匀带有负电荷,电荷线密度为-λ,右半截均匀带有正电荷,电线密度为λ ,如图。试求:环心处 O 点的电场强度。 解:如图,在半圆周上取电荷元dq
aadEdEEEadqdEaddldqxx0200202dcos212cos41
由对称性
3、一锥顶角为θ的圆台,上下底面半径分别为R1和R2,在它的侧面上均匀带电,电荷面密度为σ,求顶点O的电势。(以无穷远处为电势零点) 解::以顶点O作坐标原点,圆锥轴线为X轴向下为正. 在任意位置x处取高度为d x的小圆环, 其面积为
xdxdxrdScostan2cos2 其上电量为 xdxtgdSdqcos2 它在O点产生的电势为
2204xrdqdU
022202
tantan4costan2dxxxxdx
总电势 01202)(tan221RRdxdUUx
x
A B
C
D O
· a a a
_ x
y
O a θ _ _
_ _ + +
+
+ +
x y
o a θ
Ed
R1 R2 σ
θ O . .
页脚 4、已知一带电细杆,杆长为l,其线电荷密度为λ = cx,其中c为常数。试求距杆右端距离为a的P点电势。
解:考虑杆上坐标为x的一小块dx dx在P点产生的电势为
xalxdxcxaldxdU00441 求上式的积分,得P点上的电势为
])ln()[(44000laalalcxalxdxcUl
5、有一半径为 a 的非均匀带电的半球面,电荷面密度为σ = σ0 cosθ,σ0为恒量 。试求:球心处 O 点的电势。
解:
6、有一半径为 a 的非均匀带电的半圆环,电荷线密度为λ =λ0 cosθ,λ0为恒量 。试求:圆心处 O 点的电势。
解:
7、有宽度为a的直长均匀带电薄板,沿长度方向单位长度的带电量为λ , 试求:与板的边缘距离为b的一点P 处的电场强度 (已知电荷线密度为λ的无限长直线的电场强度为
rE02)。
x P O l a
o θ Z 002000200042sincos4sin24sin2sin2RdRRRdRdUURdqdURdRdsdqRdRds
圆环的电势
上取一圆环,o θ Z
x y O a θ
002200024cos4ddUU
addldq,a
dqdU
dq,在半圆上取电荷元
P a b · . . 页脚 解:
8、有一瓦楞状直长均匀带电薄板,面电荷密度为σ,瓦楞的圆半径为 a ,试求:轴线中部一点P 处的电场强度。(已知电
荷线密度为λ的无限长直线的电场强度为rE02) 解:
9、电荷以相同的面密度σ分布在半径分别为R1 =10 cm和R2 = 20 cm两个同心球面上。设无限远处电势为零,球心处的电势为V0 = 300 V。 (1)求电荷面密度σ;(2)若要使球心处的电势也为零,外球面上的电荷面密度σ’应为多少?( εo = 8.85×10-12 C2N-1m-2)
bbaaxbadxadEExbadxadEdxadx,aln2)(2)(20000
度整个带电薄板的电场强公式,有由无限长带电直线电场电荷线密度为视为无限长带电直线,
的窄条为研究对象,取宽为如图
a b P · O
x
dE
X dx
a L P
.
P ·
000
00
0
sin2sin0 cos2cos2ddEdEEddEdEE
ddE
addldlyyxx=为带电直线,电荷线密度限长的窄条为对象,视为无如图,顶视图,取宽为
x y o a θ
Ed . .
页脚 解:(1)
11104RqU 22204R
qU
)(4421221120100RRRqRqUUU
29210/1085.8)(mcRRU
(2) 0 10、如图,长直圆柱面半径 为R,单位长度带电为λ,试用高斯定理计算圆柱面外的电场强度。
解:0
iqsdE
0E (Rr0 )
rE2 (rR)
11、电荷Q均匀分布在长为l的细杆AB上,P点位于AB的延长线上,且与B相距为d,求P点的电场强度。
解:
12、电荷Q均匀分布在长为l的细杆AB上,P点位于AB的延长线上,且与B相距为d,求P点的电势。 解:
13、电荷Q均匀分布在半径为R的半圆周上,求曲率中心O处的电场强度。
解:如图,在圆周上取电荷元dq
R A B P d l
)11(444122lddlQx
dxE
xdxdE
A B P d l dxlQqdxdqU04d
ldddldlQxdqUln4400
O Q R . .
页脚 2022220
20
20
2 cos41cos 41cos041 RQdRQRdqdEdEEEERdqdEdQRdRQdldqxxy==由对称性,
14、用细的绝缘棒弯成半径为R的圆弧,该圆弧对圆心所的角为2α ,总电荷q沿棒均匀分布,求圆心处的电场强度。
解:如图,在圆弧上取电荷元dq
sin4 cos241cos 41cos041 2220202020RqdRqRdqdEdEEEERdqdEdqRdRqdldqxxy==
由对称性,
15、求均匀带电圆环轴线上任一点P处的电场强度(圆环半径为R,带电量为Q)
解:
1、一平板电容器的电容为1×10-11F,充电到带电荷为1.0×10-8C后,断开电源,求极板间的电压及电场能量。
R x Ed O Q
y
θ
O
R
O
R
x
y Ed
θ
2/322022220
220
)(41410 41xRQxxRxxRdqdEEEEdxRdqdEdqxx由对称性知,
,,则在圆环上任取电荷元