精馏塔单元操作手册
- 格式:doc
- 大小:378.50 KB
- 文档页数:12
蒸 馏概述1.什么叫蒸馏?蒸馏操作的依据是什么?有何特点?答:蒸馏是分离液体混合物的单元操作。
利用混和物中各组分间挥发性不同的性质,通过加入或去除热量的方法,使混合物形成气液两相,并让他们相互接触进行质量传递,致使易挥发组分在气相中增浓,难挥发组分在液相中增浓,实现混合物的分离,这种操作统称为蒸馏。
由此可见,蒸馏分离的依据是混和物中各组分的挥发度不同。
分离的条件是必须造成气液两相系统。
蒸馏操作具有以下特点:①通过蒸馏操作,可以直接获得所需要的产品,因此蒸馏操作流程较简单。
②蒸馏分离的使用范围广,它不仅可以分离液体混合物,而且也可以分离气体混合物或固体混合物。
例如,可以将空气加压液化或将脂肪酸混合物加热熔化并减压,以建立气液两相系统,用蒸馏方法进行分离。
③在蒸馏中由于要产生大量的气相和液相,因此需消耗大量的能量。
或者为建立气液两相系统,通常有高压、真空、高温或低温等条件,也会带来技术问题等,这是不易采用蒸馏分离某些物系的原因。
2.蒸馏和精馏有何区别?答:蒸馏是这种单元操作的统称,精馏是其中一类,具体地说蒸馏按其操作方式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏和平衡是适用于易分离分离物系或分离要求不高的场合;精馏适用于难分离物系或对分离要求高的场合;特殊精馏适用于普通精馏难以分离或无法分离的系统。
工业生产中以精馏的应用最为广泛。
蒸馏和精馏的根本区别是精馏具有回流,因此将精馏称为具有回流的蒸馏。
可见蒸馏和精馏既有共性又有区别。
3.如何选定蒸馏操作压强?答:操作压强对物系的相平衡及蒸馏操作经济等都有影响,压强是由经济衡算或比较来加以确定的。
但是简而言之,蒸馏按其操作压强可分为常压蒸馏、减压蒸馏和加压蒸馏。
工业生产中多采用常压蒸馏。
对在常压下物系的沸点较高,或在高温下易发生分解、聚合等现象的物系(即热敏性物系),常用减压蒸馏。
对常压下物系的沸点在室温以下的混合物或为气态混合物,则采用加压蒸馏。
精馏工序操作规程1范围1.1.适用范围本操作规程适用于宁夏阳光硅业有限责任公司1260吨/年多晶硅生产工艺的精馏提纯工序(含罐区工序)1.2.目的本操作规程的目的在于:让操作人员明确本工序的工艺流程、工艺原理和工艺系统的操作标准、质量指标控制标准及管理标准,从而能够规范操作人员、检修人员和管理人员依据相关标准进行安全操作和管理工作。
管理要点(包括意外情况的判断和处理措施)2.1原料质量标准提纯工序的原料来源包括合成料、还原回收料、氢化回收料三部分。
从合成炉、还原炉和氢化炉冷凝回收装置回收的氯硅烷液体,其质量标准列于表1。
2.2产品质量标准氯硅烷精馏提纯工序的产品,包括半导体质量级的三氯氢硅,二级(工业级)三氯氢硅和高纯或工业级四氯化硅,设计的产品质量列于表2(不含系统内部循环的氯硅烷)2.3生产规模2.3.1主产品生产规模氯硅烷提纯工序设计的主产品(半导体质量级三氯氢硅)生产规模列于表三表3氯硅烷提纯工序设计的主产品生产规模(每年按8760小时计)氯硅烷提出工序设计的有自用辅助产品和副产品。
自用辅助产品供“湿法除尘”用的氯硅烷;“氢化炉”用的四氯化硅。
副产品有二级(工业级)三氯氢硅、高纯或工业级四氯化硅,还有氯化钙与硝酸钙。
生产规模列于表42.4原辅材料和能源动力消耗氯硅烷提纯工序的主要消耗,包括原料氯硅烷、工业水、循环水、冷冻盐水、氮气、工艺用空气、仪表空气、氢氧化钠溶液和电能。
其设计的消耗指标列于表5和表6。
2.5尾气与液体废料的排放(1)提纯工序排放至2.8号车间气体洗涤塔进行净化处理的有害气体成分与排放量列于表7.表7尾气的成分与排放量(有害物质主要是HCI)符合国家标准排放要求;气体洗涤塔处理后的废液,排放至工艺废料处理车间(6号厂房)进行无害化综合利用处理。
(2)为生产半导体质量级的三氯氢硅,必须要排除部分杂质含量较高的三氯氢硅和四氯化硅,但这些物料是可以回收利用的,本工序排除的液体废料成分和综合利用方向见表8。
《化工单元操作》课程标准课程名称:化工单元操作适用专业:应用化工、石油化工的等化工类相关专业课程类别:专业核心课修课方式:必修课程时数:256学时一、课程性质和任务(一)课程定位《化工单元操作》是承前启后、由理及工的桥梁,主要研究化工过程中各种单元操作,是一门强调工程观念、定量运算、设计、操作能力的训练,强调理论和实际相结合、提高分析问题、解决问题的能力及应用知识的综合技能课程,是高职院校化工类专业学生在具备了必要的数学、物理、物理化学、化工制图和计算技术等基础知识之后必修的专业课,目的使学生获得今后从事化工生产过程与化工生产工艺操作、管理等必备的技能。
课程内容是以化工生产企业工段长以上岗位职工所需的职业能力为依据进行设置,其功能是使学生掌握常用的化工单元操作过程和反应过程的相关原理及相应设备操作及维护技能,会进行化工单元过程方案的选择、设备的选用及部分设备的简单设计,为今后学习《化工工艺》、《反应过程与技术》、《精细化工生产技术》、《石油加工生产技术》等核心课程的学习打下坚实的基础,注重培养学生的自学能力、分析问题和解决问题的能力、人际沟通能力,为走上工作岗位打下良好的基础。
(二)课程设计思路按照“以能力为本位,以职业实践为主线,以项目课程为主体”的总体设计要求,以化工专业工程技术人员的相关工作任务和职业能力分析为依据,构建工作过程完整的课程体系。
该门课程以培养化工单元过程方案选择能力、设备选用与简单设计能力、装置的操作运行能力为基本目标,打破传统的学科完整体系,构建工作过程完整的学习过程,紧紧围绕工作任务完成的需要来选择和组织课程内容,突出工作任务与知识的联系,让学习者在职业实践活动的基础上掌握知识,增强课程内容与职业岗位能力要求的相关性,提高学习者的自学能力与就业能力。
学习项目选取的基本依据是该门课程的工作领域和工作任务,具体以常用的化工单元操作为线索进行设计,包括:化工管路、流体输送过程、碳酸钙悬浮液及非均相物系的分离、换热操作、吸收操作、精馏操作、干燥操作、其他单元操作操作简介等八个学习情境,各学习情境按照认识工艺流程-了解主要设备-明确加工物系-理解工艺指标-分析检验结果-评定考核过程等若干工作任务来训练学生化工岗位的操作技能,以工作任务为中心引出相关知识。
合肥学院Hefei University化工原理课程设计题目: 甲醇—水连续精馏塔的设计系别: 生物与环境工程系专业: 14生工(2)班学号:姓名:指导教师: 于宙老师2016年 12 月 18 日目录一、前言............................................. 错误!未定义书签。
1.1精馏塔对塔设备的要求...................................... - 5 -1.2常用板式塔类型及本设计的选型.............................. - 6 -二、设计任务书要求及流程的确定和说明............................. - 8 -2.1设计名称.................................................. - 8 -2.2设计条件.................................................. - 8 -2.3设计任务.................................................. - 8 -2.4设计思路................................................. - 10 -2.5设计流程................................................. - 10 -三、精馏塔的工艺计算............................................ - 10 -3.1精馏塔的物料衡算......................................... - 10 -R ......................................... - 11 -3.2求最小回流比min3.3理论板数NT的计算以及实际板数的确定...................... - 14 -3.4全塔效率................................................ - 14 -3.5实际塔板数N............................................. - 15 -四、塔的工艺条件及有关物性数据计算.............................. - 15 -4.1操作压强m P............................................... - 15 -4.2操作温度m t............................................... - 16 -M............................................ - 16 -4.3平均分子量mρ.............................................. - 16 -4.4 平均密度mσ.......................................... - 18 -4.5 液体表面张力mμ............................................. - 19 -4.6 液体粘度Lm4.7精馏塔的气液相负荷....................................... - 20 -五、主要工艺尺寸计算......................................... - 20 -5.1塔径..................................................... - 20 -5.2溢流装置的确定........................................... - 22 -5.3塔板布置................................................. - 24 -5.4浮阀数目及排列........................................... - 24 -5.5精馏塔有效高度的计算..................................... - 27 -六、流体力学校核................................................ - 28 -6.1气相通过浮塔板的压力降................................... - 28 -6.2液泛的验算............................................... - 30 -6.3雾沫夹带V e的验算......................................... - 31 -6.4漏液验算................................................. - 33 -七、塔板负荷性能图.............................................. - 33 -7.1以精馏段为例............................................. - 33 -7.2以提馏段为例............................................. - 36 -7.3负荷性能图及操作弹性..................................... - 38 -八、塔附件设计.................................................. - 40 -8.1接管..................................................... - 40 -8.2人孔..................................................... - 42 -8.3视镜..................................................... - 42 -8.4支座..................................................... - 42 -8.5塔盘..................................................... - 43 -8.6除沫器................................................... - 43 -8.7法兰的选取............................................... - 43 -九、主要辅助设备的计算及选型.................................... - 43 -9.1原料液加热器............................................. - 43 -9.2釜液再沸器............................................... - 44 -9.3馏出蒸汽冷凝器........................................... - 45 -9.4产品冷却器............................................... - 46 -十塔体附件工艺尺寸的确定...................................... - 47 -10.1筒体工艺尺寸的确定...................................... - 47 -10.2封头的设计.............................................. - 47 -10.3裙座.................................................... - 48 -十一设计结果.................................................. - 48 -物料衡算结果表10 ............................................ - 48 -精馏塔工艺条件及有关物性数据计算结果......................... - 49 -浮阀塔板工艺设计结果......................................... - 50 -十二、结束语.................................................... - 51 -参考文献........................................................ - 52 -十三、附录...................................................... - 54 -致谢.............................................. 错误!未定义书签。
分离乙醇-水的精馏塔设计设计人员:所在班级:化学工程与工艺成绩:指导老师:日期:化工原理课程设计任务书一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件(1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%;(3)塔顶易挥发组分回收率为99%;(4)生产能力为50000吨/年90%的乙醇产品;(5)每年按330天计,每天24小时连续运行。
(6)操作条件a)塔顶压强 4kPa (表压)b)进料热状态自选c)回流比自选d)加热蒸汽压力低压蒸汽(或自选)e)单板压降 kPa。
三、设备形式:筛板塔或浮阀塔四、设计内容:1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)塔板主要工艺尺寸的计算;6)塔板的流体力学验算;7)塔板负荷性能图;8)精馏塔接管尺寸计算;9)对设计过程的评述和有关问题的讨论;2、设计图纸要求;1)绘制生产工艺流程图(A2 号图纸);2)绘制精馏塔设计条件图(A2 号图纸);五、设计基础数据:1.常压下乙醇---水体系的t-x-y 数据;2.乙醇的密度、粘度、表面张力等物性参数。
一、设计题目:乙醇---水连续精馏塔的设计二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。
塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。
三、设备形式:筛板塔四、设计内容:1)精馏塔的物料衡算:原料乙醇的组成 xF==0.1740原料乙醇组成 xD0.7788塔顶易挥发组分回收率90%平均摩尔质量 MF =由于生产能力50000吨/年,.则 qn,F所以,qn,D2)塔板数的确定:甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设计中理论塔板数的计算采用图解法。
1.引言1.1.精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。
对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。
精馏塔底部是加热区,温度最高;塔顶温度最低。
精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。
1.2.精馏塔对塔设备的要求精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。
常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:①生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
②效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。
③流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
④有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
⑤结构简单,造价低,安装检修方便。
⑥能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。
1.3常用板式塔类型及本设计的选型常用板式塔类型有很多,如:筛板塔、泡罩塔、舌型塔、浮阀塔等。
由于浮阀塔有如下优点:①生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大20%~40%,与筛板塔接近。
②操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
③塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。
④气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。
⑤塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%~80%,但是比筛板塔高 20%~30。
而且近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。
化工原理课程设计题目分离苯-甲苯精馏塔设计学院专业班级学生姓名指导教师成绩2016年6月27 日摘要精馏塔是分离液体混合物最常用的一种单元操作,主要是利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
本设计的题目是苯-甲苯二元物系筛板式精馏塔的设计。
在确定的工艺条件下,确定设计方案和设计内容,其主要包括精馏塔工艺设计计算、塔辅助设备设计计算、精馏工艺过程流程图、精馏塔设备结构图以及设计说明书。
关键词:筛板塔;苯-甲苯;工艺计算;结构图AbstractFractionator is separating the liquid mixture of the most commonly used as a unit operation, mainly using reflux liquid mixture was distilled to obtain high-purity separation, is the industry's most widely used liquid mixture is separated, widely used in petroleum, chemical, light work, food, metallurgy and other sectors. This design is entitled benzene - Toluene Binary System sieve tray type distillation column design. Under certain conditions, to determine the design and content design, which includes rectifying tower design and calculation process, tower auxiliary equipment design calculations, distillation process flow diagram, distillation apparatus configuration diagram and design specifications.Key words:Sieve tray; benzene - toluene; process calculation; configuration diagram目录摘要 (Ⅱ)Abstract (Ⅲ)第1章绪论 (1)1.1 概述 (1)1.2 设计依据 (3)1.3 厂址选择 (3)第2章设计方案的选择和论证 (3)2.1 设计流程 (3)2.1.1 选择原则 (4)2.1.2 设计流程图 (4)2.2 设计要求 (5)2.2.1 满足工艺与操作的要求 (5)2.2.2 满足经济上的需求 (5)2.2.3 保证安全生产 (5)2.3 设计思路 (5)2.3.1 文献检索 (6)2.3.2 小组讨论 (7)2.4 相关符号说明 (7)第3章塔的工艺计算 (9)3.1 基础物性数据 (9)3.1.1 苯和甲苯的物理性质 (9)3.1.2 苯和甲苯饱和蒸汽压P o (9) (9)3.1.3 苯和甲苯的液相密度ρL3.1.4 液体表面张力σ (10)3.1.5 液体粘度μ (10)3.2 塔的工艺计算 (10)3.2.1 操作压力的计算 (10)3.2.2 操作温度的计算 (11)3.2.3 原料液及塔顶、塔底产品的摩尔分率 (11)3.2.4 原料液及塔顶、塔底产品的平均摩尔质量 (12)3.2.5 物料衡算 (12)3.3 理论板数计算 (12)3.3.1 相对挥发度的求取 (12)3.3.2 操作回流比的求取 (13)3.3.3 精馏塔的气液负荷 (13)3.3.4 操作线的求取 (13)3.3.5 理论板层数N T的求取 (13)3.3.6 实际板数N的求取 (15)3.4 塔的工艺条件及有关物性数据的计算 (16)3.4.1 平均密度计算 (16)3.4.2 液体表面张力计算 (17)3.4.3 液体平均粘度计算 (18)3.4.4 气液负荷计算 (19)3.5 精馏塔的工艺尺寸的计算 (20)3.6 塔板流体力学校核 (21)3.6.1 溢流装置计算 (21)3.6.2 塔板布置 (24)3.7 塔板负荷性能图 (25)第4章辅助设备的选型 (34)4.1 进料管的选择 (34)4.2 回流管的选择 (34)4.3 塔底出口管路的选择 (35)4.4 塔顶蒸汽管的选择 (35)4.5 加料蒸汽管的选择 (36)4.6 人孔的设计 (36)4.7 法兰 (36)第5章塔附件设计计算 (37)5.1 选用釜式再沸器 (37)5.2 冷凝器的选型 (37)设计总结 (37)参考文献 (40)附录1 设计结果一览表 (42)附录2 苯-甲苯精馏塔的工艺流程图 (43)致谢 (45)第1章绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
第一章蒸馏在化工生产过程中,常常需要将原料、中间产物或粗产品中的组成部分进行分离,如将原油分成气油、煤油、柴油及重油等馏分作为产品又如聚氯乙烯在聚合前要求单体氯乙烯纯度不低于99.99%(也即将杂质分离掉),这些物质大都是均相混合物。
对于均相物系的分离,必须造成一个两相物系,,实现传质与分离操作。
常见的传质与分离过程有蒸馏、吸收、萃取与干燥等。
其中蒸馏是分离均相液态溶液的最常用的方法。
蒸馏是利用溶液中各组分蒸气压(或沸点、挥发度)的差异使各组分得到分离。
,由于苯的挥发性能比甲苯强,(即苯的沸点比甲苯低),气化出来的蒸气中苯的组成(即浓度)必然比原来液体的要高。
当气液达到平衡后,从容器中将蒸气抽出并使之冷凝,则可得到苯含量高的冷凝液。
显然,遗留下的残液中苯的组成要比原来溶液低,即甲苯组成要比原来溶液高,这样溶液就得到初步分离。
图1为常采用的连续精馏装置流程图,其主要设备为精馏塔,是由若干层塔板组成的板式塔,有时也用充满填料的填料塔。
溶液经预热后由塔的中部引入,因为原料组分的沸点不同,沸点低的组分较易气化而向上升,最后在冷凝器中冷凝成易挥发组分含量高的液体,一部分作为塔顶产品(又称馏出液),余下的送回塔内作为回流(称为回流液)。
沸点高的组分则从蒸气中不断地冷凝到沿各板下流的回流液中,最后从塔底排出的釜液中难挥发组分含量较高,釜液的一部分被引出作为塔底产品,余下的再送入再沸器(或者蒸馏釜),被加热气化后再返回塔中,具体内容第二节介绍。
蒸馏按操作方式可分为简单蒸馏、平衡蒸馏(闪蒸)、精馏和特殊精馏;按原图1:连续精馏流程图料中所含组分数目可分成双组分精馏及多组分精馏;按操作压力则可分为常压蒸馏、加压蒸馏及减压(真空)蒸馏;按操作是否连续又可分为连续蒸馏和间歇蒸馏。
本章将重点讨论常压下双组分连续精馏。
平衡关系是指溶液与其上方蒸气达到相平衡时,气、液两相间组成的关系。
它是分析蒸馏原理和进行蒸馏设备计算的依据。
化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。
设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。
(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。
填料类型和规格自选。
(四)工作日每年工作日为300天,每天24小时连续运行。
(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。
摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。
无色、透明、高度挥发、易燃液体。
略有酒精气味。
近年来,世界甲醇的生产能力发展速度较快。
甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。
由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。
近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。
甲醇化工已成为化学工业中一个重要的领域。
目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。
随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。
国内又有一批甲醇项目在筹建。
这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。
2008级化工原理课程设计化工原理课程设计 --分离苯—甲苯连续精馏筛板塔河南城建学院专业:化学工程与工艺姓名:学号:指导老师:序言课程设计是“化工原理”的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基本知识来解决某一设计任务的一次训练,在整个教学计划中它起着培养学生独立工作能力的重要作用。
精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,精馏过程在能量剂驱动下,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。
根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。
本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。
分离苯和甲苯,可以利用二者沸点的不同,采用塔式设备改变其温度,使其分离并分别进行回收和储存。
目录一、化工原理课程设计任务书 (1)二、设计计算 (3)1.设计方案的选定标准 32.操作条件的确定 33.设计方案的选定及基础数据的搜集 (4)4. 精馏塔的物料衡算 (8)5. 塔板数的确定 (9)6. 精馏塔的工艺条件及有关物性数据的计算 (11)7. 气液负荷计算 (15)8. 精馏塔的塔体工艺尺寸计算 (15)9. 塔板主要工艺尺寸的计算 (17)10. 筛板的流体力学验算 (20)11. 塔板负荷性能图 (23)12.各接管尺寸的确定 (27)三、个人心得体会及改进意见 (31)四、参考文献 (32)附录(符号说明) (33)2008级化工原理课程设计一、化工原理课程设计任务书板式精馏塔设计任务书(一)设计题目:设计分离苯―甲苯连续精馏筛板塔(二)设计任务及操作条件1、设计任务:物料处理量: 50240吨/年进料组成: 22.6%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥97%塔底产品组成苯≤1%2、操作条件平均操作压力: 101.3 kPa平均操作温度:94℃回流比:自选单板压降: <=0.7kPa工时:年开工时数7200小时(三)设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。
蒸馏化工生产中经常要处理由若干组分所组成的混合物,其中大部分是均相物系。
生产中为了满足贮存、运输、加工和使用的要求,时常需要将这些混合物分离成为较纯净或几乎纯态的物质或组分。
蒸馏是分离液体混合物的典型单元操作。
这种操作是将液体混合物部分气化,利用其中各组分挥发度不同的特性以实现分离的目的。
它是通过液相和气相间的质量传递来实现的。
蒸馏过程可以按不同方法分类。
按照操作方式可分为间歇和连续蒸馏。
按蒸馏方法可分为简单蒸馏、平衡蒸馏(闪蒸)、精馏和特殊精馏等。
当一般较易分离的物系或对分离要求不高时,可采用简单蒸馏或闪蒸,较难分离的可采用精馏,很难分离的或用普通精馏不能分离的可采用特殊精馏。
工业中以精馏的应用最为广泛。
按操作压强可分为常压、加压和减压精馏。
按待分离混合物中组分的数目可以分为两(双)组分和多组分精馏。
因两组分精馏计算较为简单,故常以两组分溶液的精馏原理为计算基础,然后引申用于多组分精馏的计算中。
在本章中将着重讨论常压下两组分连续精馏。
蒸馏在化学工业中应用十分广泛,其历史也最为悠久,因此它是分离(传质)过程中最重要的单元操作之一。
在前面我们已经知道,蒸馏是气液两相间的传质过程,因此常用组分在两相中的浓度(组成)偏离平衡的程度来衡量传质推动力的大小。
传质过程是以两相达到相平衡为极限的。
由此可见,气液相平衡关系是分析蒸馏原理和进行设备计算的理论基础,故在讨论精馏过程的计算前,首先简述相平衡关系。
相平衡是《物理化学》课程的基本内容,本章侧重于论述其在化学工程中的应用,且讨论的只限于两组分理想溶液。
本节包含四个部分的内容:拉乌尔定律相律相图相对挥发度。
拉乌尔定律根据溶液中同分子间的与异分子间的作用力的差异,可将溶液分为理想溶液和非理想溶液两种。
实验表明,理想溶液的气液平衡关系遵循拉乌尔定律(Raoult's Law),即:式中溶液上方组分的平衡分压,Pa;同温度下纯组分的饱和蒸气压,Pa;(下标A表示易挥发组分、B表示难挥发组分)通常略去上式中的下标,习惯上以线x表示液相中易挥发组分的摩尔分率,以(1-x)表示难挥发组分的摩尔分率;以y表示气相中易挥发组分的摩尔分率,以(1-y)表示难挥发组分的摩尔分率。
操作手册操作手册 (1)1 工艺说明 (1)1.1工艺原理、工艺特点 (1)1.1.1 MTBE合成原理 (1)1.1.2 产物分离原理 (1)1.1.3 合成MTBE的工艺原理流程 (1)1.2 操作变量分析 (2)1.2.1 反应压力 (2)1.2.2 反应温度 (2)1.2.3 醇烯比 (3)1.2.4 空速 (3)2 正常操作程序 (4)2.1醚化反应 (4)2.2催化蒸馏 (4)2.3甲醇回收 (5)2.4碳四精制 (6)2.5原料水洗 (7)3 开车准备 (7)3.1 R-1301的内部除锈和催化剂安装 (7)3.2 T-1301塔的安装方法 (8)3.3 T-1302塔的安装 (9)3.4 T-1303塔的安装 (9)3.5 T-1304塔的安装 (9)3.6 投料前催化剂的脱水 (9)3.6.1 R-1301中醚化催化剂的脱水 (9)3.6.2 T-1301中树脂催化剂的脱水 (10)3.8 T-1303甲醇回收塔操作 (10)4 装置的开工过程和开工方法 (11)4.1醚化系统开车 (11)4.2催化精馏系统开车 (12)4.3甲醇回收系统开车 (13)4.4 碳四精制系统开车 (14)4.5 原料水洗系统开车 (15)5 装置的停工过程和停工方法 (15)5.1 计划停工次序 (15)5.2长期停工方法 (15)5.2.1 长期停车但不更换催化剂 (15)5.2.2 长期停车但更换催化剂 (16)6 事故处理原则 (17)6.1 反应器R-1301的临时停工方法 (17)6.2催化蒸馏塔T-1301的临时停工方法 (17)6.3 甲醇萃取塔T-1302、甲醇回收塔T-1303的临时停工方法 (18)6.4 脱碳三塔T-1304的临时停工方法 (18)7 采样 (18)8 工艺危险因素分析及控制措施 (19)8.1 职业危害因素及其影响 (19)8.1.1 主要有毒物料 (19)8.1.2 易燃、易爆介质的特性 (20)8.2职业危害因素的防治及治理 (20)8.2.1 装置及设备布置 (20)8.2.2 设备、管道材质选型 (20)8.2.3 防火防爆安全设施 (20)8.2.4 防毒、防噪声安全措施 (21)8.2.5 安全管理措施 (21)9 环境保护 (21)9.1 设计依据 (21)9.2污染物的排放及处理 (22)9.2.1 废水 (22)9. 3 噪声控制 (23)9. 4 环境监测机构及设施 (23)1 工艺说明1.1工艺原理、工艺特点本设计采用混相床-催化精馏MTBE 合成技术路线。
还原氢化车间尾气回收工艺操作规程(试行)国电宁夏太阳能有限公司2009年12月10日发布(第1版)编制:审核:批准:生效日期:2010年07月01日(第1版)目录1总体说明 (1)1.1概述 (1)1.2适用性 (1)2 工艺技术规程 (1)2.1装置简介 (1)2.2工艺原理 (2)2.3工艺流程说明 (3)2.3.1尾气冷凝和压缩系统 (3)2.3.2吸收和解吸系统 (4)2.3.3吸附再生系统 (4)2.3.4精馏系统 (5)2.4工艺流程图 (6)3 工艺指标 (6)3.1原料指标 (6)3.2产物以及副产物的指标 (7)3.3生产规模 (8)3.4公用工程条件指标 (8)4 操作指南 (8)4.1尾气回收系统操作原则 (8)4.2安全常规 (8)4.2.1 换热器 (9)4.2.2 泵 (9)4.2.3 塔 (9)4.2.4 压力容器 (9)4.2.5 压缩机 (9)4.3尾气回收系统首次启动 (9)4.3.1 尾气回收系统的氮气惰化 (10)4.3.2 尾气回收系统的氢气置换 (11)4.3.3 制冷单元T600 (11)4.3.4 蒸汽单元T980和T400 (12)4.3.5 尾气回收单元充入STC (13)4.3.6 吸附单元T500 (14)4.3.7 尾气压缩机成套包 (15)4.3.8 氯化氢吸收单元T200 (16)4.3.9 氯化氢解析单元T300 (17)4.3.10 冷凝单元T100 (18)4.3.11 氯硅烷精馏单元T400 (19)5 尾气回收系统的标准操作 (20)5.1冷凝单元T100 (20)5.1.1 初级和二级冷凝器V9200T100AW100A/B/C和V9200T100AW110A/B (20)5.1.2 氯硅烷凝液槽V9200T100AB110/150/160 (21)5.1.3 尾气压缩机 (21)5.2氯化氢吸收单元T200 (22)5.2.1 尾气的预冷V9200T200AW120/121/130 (22)5.2.2 洗涤液冷却器V9200T200AW140/150/151/160 (23)5.2.3 氯化氢吸收塔V9200T200AK100 (23)5.3氯化氢解吸单元T300 (24)5.3.1 氯化氢解吸塔V9200T300AK110 (25)5.3.2 氯化氢缓冲罐V9200T300AB210和蒸发器V9200T300AW205/200/208 (26)5.4氯硅烷精馏单元T400 (27)5.4.1 氯硅烷精馏塔V9200T300AK120 (27)5.5吸附单元T500 (28)6 停车过程 (29)6.1尾气回收系统的长时间停车 (29)6.1.1 冷凝单元T100 (30)6.1.2 氯化氢吸收单元T200、解吸单元T300、氯硅烷精馏单元T400和压缩机 (31)6.1.3 整个尾气回收系统的降压 (34)6.1.4 吸附单元T500 (34)6.1.5 蒸汽单元T980和T400 (35)6.1.6 深冷单元T600 (35)6.2尾气回收系统的短时间停车 (36)7. 检查与维护 (36)1总体说明1.1概述本操作手册中包含了安全、有效率地操作尾气回收装置必要的信息。
化工原理课程设计——苯-甲苯连续精馏筛板塔的设计学院:生命科学学院专业年级:姓名:指导老师:目录一、序言 (2)二、设计任务 (2)三、设计条件 (2)四、设计方案 (2)五、工艺计算 (3)1、设计方案的选定及基础数据的搜集 (5)2、精馏塔的物料衡算 (6)3、精馏塔的工艺条件及有关物性数据的计算 (10)4、精馏塔的塔体工艺尺寸计算 (15)5、塔板主要工艺尺寸的计算 (16)6、筛板的流体力学验算 (19)7、塔板负荷性能图 (22)六、设计结果一览表 (27)七、参考书目 (28)八、心得体会 (28)九、附录 (29)一、序言化工原理课程设计是综合运用化工原理课程和有关先修课程物理化学,化工制图等所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用;通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等;精馏是分离液体混合物含可液化的气体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用;精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离;根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离;本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离;二、设计任务1原料液中苯含量:质量分率=75%质量,其余为甲苯;2塔顶产品中苯含量不得低于98%质量;3残液中苯含量不得高于%质量;4生产能力:90000 t/y苯产品,年开工310天;三、设计条件1精馏塔顶压强:表压2进料热状态:自选3回流比:自选;4单板压降压:≯四、设计方案1设计方案的确定及流程说明2塔的工艺计算3塔和塔板主要工艺尺寸的设计4塔高、塔径以及塔板结构尺寸的确定;塔板的流体力学验算;5编制设计结果概要或设计一览表6辅助设备选型与计算7绘制塔设备结构图五、工艺计算1、设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物;由于对物料没有特殊的要求,可以在常压下操作;对于二元混合物的分离,应采用连续精馏流程;设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内;塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐;该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍;塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐;其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量;塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列;筛板塔也是传质过程常用的塔设备,它的主要优点有:1结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右;2处理能力大,比同塔径的泡罩塔可增加10~15%;3塔板效率高,比泡罩塔高15%左右;4压降较低,每板压力比泡罩塔约低30%左右;筛板塔的缺点是:1塔板安装的水平度要求较高,否则气液接触不匀;2操作弹性较小约2~3;3小孔筛板容易堵塞;下图是板式塔的简略图:82、精馏塔的物料衡算1 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量甲苯的摩尔质量 kmol kg M B /13.92=780.013.92/25.011.78/75.011.78/75.0x F =+= 2原料液及塔顶、塔底产品的平均摩尔质量)/(kg 0.2813.192)780.01(11.78780.0kmol M F =⨯-+⨯=3物料衡算原料处理量)/(1049.12431020.81900000002h kmol F ⨯=⨯⨯= 总物料衡算 21094.1W D ⨯=+苯物料衡算 W D F 099.0983.0780.0+=联立解得式中 F------原料液流量 D------塔顶产品量 W------塔底产品量 塔板数的确定1理论板层数NT 的求取苯一甲苯属理想物系,可采逐板计算求理论板层数;①求最小回流比及操作回流比; 采用恩特伍德方程求最小回流比; 解得,最小回流比73.0=m R 取操作回流比为②求精馏塔的气、液相负荷 )/(89.15511931.1h kmol RD L =⨯==)/(89.27411931.2)1()1('h kmol F q D R V =⨯=--+= 泡点进料:q=1③求操作线方程 精馏段操作线方程为 提馏段操作线方程为 2逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α=相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+解得 x x y 47.1147.2+=变形得y y x 47.147.2-=用精馏段操作线和相平衡方程进行逐板计算1D y x = = , 1111111(1) 2.475(1)y y x y y y y ==+α-+-=970.0426.0567.012=+=x y ,959.047.147.22=-=y yx953.0426.0567.023=+=x y ,891.047.147.233=-=y yx931.0426.0567.034=+=x y ,845.047.147.244=-=y yx905.0426.0567.045=+=x y ,795.047.147.255=-=y yx 877.0426.0567.056=+=x y ,742.047.147.266=-=y yx因为,故精馏段理论板 n=5,用提留段操作线和相平衡方程继续逐板计算811.0426.0567.067=+=x y ,635.047.147.277=-=y yx693.0426.0567.078=+=x y ,478.047.147.288=-=y yx519.0426.0567.089=+=x y ,304.047.147.299=-=y yx326.0426.0567.0910=+=x y ,164.047.147.21010=-=y yx 171.0426.0567.01011=+=x y ,077.047.147.21111=-=y yx因为,所以提留段理论板 n=5不包括塔釜 3全塔效率的计算查温度组成图得到,塔顶温度TD=℃,塔釜温度TW=105℃,全塔平均温度Tm =℃; 分别查得苯、甲苯在平均温度下的粘度)(272.0s mPa A ⋅=μ,)(279.0s mPa B ⋅=μ 平均粘度由公式,得 全塔效率E T 4求实际板数 精馏段实际板层数 提馏段实际板层数 进料板在第11块板;3、精馏塔的工艺条件及有关物性数据的计算1操作压力计算 塔顶操作压力P =4+ kPa每层塔板压降 △P = kPa 进料板压力F P =+×10= kPa塔底操作压力w P = kPa精馏段平均压力 P m1 =+/2= kPa 提馏段平均压力P m2 =+/2 = kPa 2操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由 安托尼方程计算,计算过程略;计算结果如下: 塔顶温度0.980t =D ℃ 进料板温度F t =℃塔底温度w t =℃精馏段平均温度m t = .+/2 = ℃提馏段平均温度m t =+/2 =℃ 3平均摩尔质量计算 塔顶平均摩尔质量计算由x D=y 1=,代入相平衡方程得x 1= 进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =)/(73.8113.92)742.01(11.78742.0m ,kmol kg M F L =⨯-+⨯=塔底平均摩尔质量计算由xw=,由相平衡方程,得yw=)/(05.9113.92)077.01(11.78077.0m ,kmol kg M W L =⨯-+⨯=精馏段平均摩尔质量提馏段平均摩尔质量 (4)平均密度计算(5)①气相平均密度计算 由理想气体状态方程计算,精馏段的平均气相密度即)/(90.2)15.27324.83(314.809.798.1083m kg RT PV m M Vm =+⨯⨯==ρ提馏段的平均气相密度 ②液相平均密度计算 液相平均密度依下式计算,即塔顶液相平均密度的计算 由t D =℃,查手册得)/(1.809);/(0.81433m kg m kg B A ==ρρ 塔顶液相的质量分率98.0=a a 求得)(得3m ,m,/kg 9.813;1.80902.00.81498.01m D L D L =+=ρρ进料板液相平均密度的计算 由t F =℃,查手册得)/(36.804);/(6.80833m kg m kg B A ==ρρ进料板液相的质量分率 71.013.92)742.01(11.78742.011.78742.0=⨯-+⨯⨯=A α塔底液相平均密度的计算 由t w =℃,查手册得)/(3.785);/(4.78633m kg m kg B A ==ρρ 塔底液相的质量分率066.013.92)077.01(11.78077.011.78077.0=⨯-+⨯⨯=A a)(得3m ,m,/kg 9.784;3.785934.04.786066.01m W L W L =+=ρρ精馏段液相平均密度为6.81024.8079.813=+=Lm ρ提馏段液相平均密度为)(3/kg 15.79629.7844.807m Lm =+=ρ5 液体平均表面张力计算液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算由 t D =℃,查手册得 )/(59.21);/(25.21m mN m mN B A ==σσ 进料板液相平均表面张力的计算由t F=℃,查手册得 )/(72.2008.21258.060.20742.0)/(08.21);/(60.21,m mN m mN m mN Fm L B A =⨯+⨯===σσσ塔底液相平均表面张力的计算 由 t W =℃,查手册得)/(50.2118.19923.026.18077.0)/(18.19);/(26.18,m mN m mN m mN Wm L B A =⨯+⨯===σσσ精馏段液相平均表面张力为)/(99.20272.2026.21m mN Lm =+=σ提馏段液相平均表面张力为)/(11.21272.2050.21m mN Lm =+=σ6 液体平均粘度计算液相平均粘度依下式计算,即 μLm=Σxi μi塔顶液相平均粘度的计算由 t D=℃,查手册得 )(311.0309.0017.0305.0983.0)(309.0);(305.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ进料板液相平均粘度的计算由t F=℃,查手册得 )(294.0297.0258.0292.0742.0)(297.0);(292.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ塔底液相平均粘度的计算由tw =℃,查手册得 )(258.0259.0923.0244.0077.0)(259.0);(244.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ精馏段液相平均粘度为)(303.02294.0311.0,s mPa m L ⋅=+=μ提馏段液相平均粘度为7气液负荷计算 精馏段: 提馏段:4 精馏塔的塔体工艺尺寸计算1 塔径的计算塔板间距H T 的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关;可参照下表所示经验关系选取;表7 板间距与塔径关系塔径D T ,m ~ ~ ~ ~ ~ 板间距H T ,mm 200~300 250~350 300~450 350~600 400~600对精馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;查史密斯关联图 得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为)/m (99.20m N 时2020.980.0720.07132020C C σ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,故按标准,塔径圆整为,则空塔气速s; 对提馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=,故0.400.060.34T L H h m -=-=;11220.0075783.40.0901.372.90S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查2:165P 图3—8得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C =校正物系表面张力为19.58/mN m 时 按标准,塔径圆整为,则空塔气速s;将精馏段和提溜段相比较可以知道二者的塔径不一致,根据塔径的选择规定,对于相差不大的二塔径取二者中较大的,因此在设计塔的时候塔径取;5、塔板主要工艺尺寸的计算(1) 溢流装置计算 精馏段因塔径D =,可选用单溢流弓形降液管,采用平行受液盘;对精馏段各项计算如下: a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×= b 出口堰高W h :OW L W h h h -= 故)(044.0016.006.0h m w =-=c 降液管的宽度d W 与降液管的面积f A :由66.0/=D l w 查2:170P 图3—13得124.0/=D W d ,0722.0/=T f A A故0.1240.124 1.60.198d W D m ==⨯=,2223.140.07220.0722 1.60.145244f A D m π=⨯=⨯⨯= 利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即0.14520.4015.700.0037f T sA H s L τ⨯===大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=依2:171P 式3—11:'0.00370.0351.060.09s o w o L h m l μ===⨯⨯符合00.006w h h =- e 受液盘采用平行形受液盘,不设进堰口,深度为60mm 同理可以算出提溜段相关数据如下:a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.8W l D = 2.5/23.34h W L l m =查知E=,依式232.841000h ow w L h E l ⎛⎫=⎪⎝⎭可得232.840.0261000h OW W L h E m l ⎛⎫== ⎪⎝⎭故0.060.0260.034w h m =-=c 降液管的宽度d W 与降液管的面积f A : 由60.0/=D l W查图得, 052.0,100.0==T f dA A D w 故计算液体在降液管中停留时间以检验降液管面积, 即11.6f T sA H s L τ==大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=s '0.032so w oL h m l μ==⨯m 符合00.006w h h =- 2 塔板布置精馏段①塔板的分块因D ≥800mm,故塔板采用分块式;塔极分为4块;对精馏段: a)取边缘区宽度 安定区宽度b ⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 )(96.004.012m w D R c =-=-=,)(73.0)07.02.0(1)(2m w w Dx s d =--=+-=解得,c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距t 0.1550.3=⨯=5×5= 筛孔数则每层板上的开孔面积0A 为 气体通过筛孔的气速为6、筛板的流体力学验算塔板的流体力学计算,目的在于验算预选的塔板参数是否能维持塔的正常操作,以便决定对有关塔板参数进行必要的调整,最后还要作出塔板负荷性能图; 1 气体通过筛板压强相当的液柱高度计算 精馏段:a)干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式 b 气体穿过板上液层压降相当的液柱高度l h :()()s m fT s A A V a /70.014.3052.0108.2===⨯--μ,19.190.27.0=⨯==v a a e u F由o ε与a F 关联图查得板上液层充气系数o ε=,依式()()0396.0016.0044.066.000=+⨯=+==ow w L l h h h h εεc 克服液体表面张力压降相当的液柱高度σh : 依式00211.01099.2043-40=⨯⨯==∂gd e l h σ, 故0744.00327.00396.000211.0=++=p h则单板压强:()()p p g e h p l p p 7000.5918.965.8100744.0≤=⨯⨯==∆(2) 液面落差(3) 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 雾沫夹带()()水液水液kg kg kg kg e fT a h H u v /1.0/1032.732.306.05.24.07.01099.20107.52.3107.5366≤⨯=⨯==-⨯-⨯⨯-⨯---σ故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()()σμh h e e c L v l oow -+=13.00056.0/4.4筛板的稳定性系数5.171.157.624.110>===OW U U K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的; 同精馏段公式计算,提溜段各参数计算如下:1 气体通过筛板压强相当的液柱高度计算 a)干板压降相当的液柱高度:b 气体穿过板上液层压降相当的液柱高度:679.0163.014.302.2=-=-'='f T S aA A V u , 22.121.3679.0=⨯=''=V aa u F ρ由o ε与a F 关联图查得板上液层充气系数o ε=,依式039.006.065.01=⨯='h c 克服液体表面张力压降相当的液柱高度:()m gd h L 00216.01058.94.7961011.2144330=⨯⨯⨯⨯⨯=='--ρσσ, 故)(0758.000216.0039.00346.0m h p =++='则单板压降:)(7.0591.08.94.7960758.0kPa p <=⨯⨯='∆ 2液面落差对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 液沫夹带故在设计负荷下不会发生过量雾沫夹带; 4 漏液查得:84.00=c ()()5.69.26.8100021.006.013.00056.084.4.4/13.00056.04.40=÷⨯-⨯+⨯⨯=-+='o h hL c u vL owρρσ筛板的稳定性系数5.171.157.624.11>===ow o u u K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为提馏段塔径及各项工艺尺寸是适合的;7、塔板负荷性能图精馏段: 1 雾沫夹带线雾沫夹带量2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ取气)液kg kg e v /(1.0=,前面求得m mN m /99.20,=精σ,代入2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ,整理得:s s L V 3205.2911.5-=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19;表8由上表数据即可作出雾沫夹带线; 2 液泛线 由E=,l W =得:已算出)(1011.23m h -⨯=σ,3322311011.2405.0029.010555.7--⨯+++⨯=++=ssc p L V h h h h σm H T 4.0=,m h w 044.0=,5.0=Φ代入()dow w p w T h h h h h H +++=+Φ,整理得:2432210085.1878.134443.19s ssL L V ⨯--=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表10由上表数据即可作出液泛线2; 3 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限,)/(0163.04163.04.03m ax ,s m A H L fT s =⨯==τ据此可作出与气体流量无关的垂直液相负荷上限线m 3/s; 4 漏液线由32614.0044.0sow w L L h h h +=+=和0min ,A V u s ow =,代入()VLL ow h h C U ρρσ-+=13.00056.04.40得:整理得:32min ,314.22574.2684.0ss LV +⨯=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-21; 表11由上表数据即可作出液泛线4; 5 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;E=sm L s /10167.334min ,-⨯=据此可作出与气体流量无关的垂直液相负荷下限线5;sm A H L fT s /013.05163.04.03max ,=⨯==τ根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;图1 精馏段筛板负荷性能图在负荷性能图上,作出操作点P,连接OP,即作出操作线;由图可看出,该筛板的操作上限为液泛控制,下限为漏液控制; 同精馏段,得出提馏段的各曲线为:(1) 雾沫夹带线2.36107.5e ⎪⎪⎭⎫⎝⎛+⨯=-f TaLv hH u σ整理得:3207.1352.5ss L V -=(2) 液泛线()dow w p w T h h h h h H +++=+Φ已知E= lw=,同理精馏段得: 由此可作出精馏段液泛线2;3 漏液线 32628.00325.0h sow w L l h h +=+= 整理得:3225.2090.1688.0V min ,s s l += 据此可作出漏液线3; 4 液相负荷上限线以θ=5s 作为液体在降液管中停留时间的下限,)/(013.05163.04.0L 3max ,s m A H fT s =⨯==τ据此可作出与气体流量元关的垂直液相负荷上限线; 5 液相负荷下限线以h ow =5s 作为液体在降液管中停留时间的下限,32min ,2.1360006.1100084.2⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=s ow L h 整理得:)/(1073.934min ,s m L s -⨯=由此可作出液相负荷下限线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;六、设计结果一览表七、设计心得体会本次课程设计通过给定的生产操作工艺条件自行设计一套苯-甲苯物系的分离的塔板式连续精馏塔设备;通过近两周的团队努力,反经过复杂的计算和优化,我们三人组终于设计出一套较为完善的塔板式连续精馏塔设备;其各项操作性能指标均能符合工艺生产技术要求,而且操作弹性大,生产能力强,达到了预期的目的;通过这次课程设计我经历并学到了很多知识,熟悉了大量课程内容,懂得了许多做事方法,可谓是我从中受益匪浅,我想这也许就是这门课程的最初本意;从接到课题并完成分组的那一刻起我们就立志要尽最大努力把它做全做好;首先,我们去图书馆借阅了大量有关书籍,并从设计书上了解熟悉了设计的流程和方法;通过查阅资料我们从对设计一无所知变得初晓门路,而进一步的学习和讨论使我们使我们具备了完成设计的知识和方法,这使我们对设计有了极大的信心,我们确定了设计方案和具体流程及设计时间表,然后就进入了正是的设计工作当中;八、参考文献1 张浩勤,陆美娟.化工原理第二版上下册. 北京:化学工业出版社,2006.2 路秀林,王者相. 化工设备设计全书塔设备M. 北京:化学工业出版社,2004.3 姚玉英.天津大学出版社上下册,2003.4 王志魁. 化工原理第四版M. 北京:化学工业出版社,2010.5 王为国. 化工原理课程设计M. 北京:化学工业出版社,2010.6 马沛生. 化工数据. 北京:中国石化出版社,2003.。
乙醇水精馏塔设计-CAL-FENGHAI.-(YICAI)-Company One1⑴综合运用“化工原理”和相关选修课程的知识,联系化工生产的实际完成单元操作的化工设计实践,初步掌握化工单元操作的基本程序和方法。
⑵熟悉查阅资料和标准、正确选用公式,数据选用简洁,文字和工程语言正确表达设计思路和结果。
⑶树立正确设计思想,培养工程、经济和环保意识,提高分析工程问题的能力。
二、设计任务及操作条件在一常压操作的连续精馏塔内分离乙醇-水混合物。
生产能力(塔顶产品) 3000 kg/h操作周期 300 天/年进料组成 25% (质量分数,下同)塔顶馏出液组成≥94%塔底馏出液组成≤0.1%操作压力 4kPa(塔顶表压)进料热状况泡点单板压降:≤0.7 kPa设备型式筛板三、设计内容:(1) 精馏塔的物料衡算;(2) 塔板数的确定:(3) 精馏塔的工艺条件及有关物件数据的计算;(4) 精馏塔的塔体工艺尺寸计算;(5) 塔板主要工艺尺寸的计算;(6) 塔板的流体力学验算:(7) 塔板负荷性能图;(8) 精馏塔接管尺寸计算;(9) 绘制生产工艺流程图;(10) 绘制精馏塔设计条件图;(11) 对设计过程的评述和有关问题的讨论。
[ 设计计算 ](一)设计方案选定本设计任务为分离水-乙醇混合物。
原料液由泵从原料储罐中引出,在预热器中预热至84℃后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25℃后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。
1精馏方式:本设计采用连续精馏方式。
原料液连续加入精馏塔中,并连续收集产物和排出残液。
其优点是集成度高,可控性好,产品质量稳定。
由于所涉浓度范围内乙醇和水的挥发度相差较大,因而无须采用特殊精馏。
2操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于乙醇和水这类非热敏沸点在常温(工业低温段)物系分离。
文档编号:TSS_C4.DOC精馏塔单元仿真培训系统操作说明书北京东方仿真软件技术有限公司二〇〇六年十月目录一、工艺流程说明 (2)1、工艺说明 (2)2、本单元复杂控制方案说明 (2)3、设备一览 (3)二、精馏单元操作规程 (3)1、冷态开车操作规程 (3)2、正常操作规程 (4)3、停车操作规程 (5)4、仪表一览表 (6)三、事故设置一览 (7)四、仿真界面 (9)附:思考题 (11)一、工艺流程说明1、工艺说明本流程是利用精馏方法,在脱丁烷塔中将丁烷从脱丙烷塔釜混合物中分离出来。
精馏是将液体混合物部分气化,利用其中各组分相对挥发度的不同,通过液相和气相间的质量传递来实现对混合物分离。
本装置中将脱丙烷塔釜混合物部分气化,由于丁烷的沸点较低,即其挥发度较高,故丁烷易于从液相中气化出来,再将气化的蒸汽冷凝,可得到丁烷组成高于原料的混合物,经过多次气化冷凝,即可达到分离混合物中丁烷的目的。
原料为67.8℃脱丙烷塔的釜液(主要有C4、C5、C6、C7等),由脱丁烷塔(DA-405)的第16块板进料(全塔共32块板),进料量由流量控制器FIC101控制。
灵敏板温度由调节器TC101通过调节再沸器加热蒸汽的流量,来控制提馏段灵敏板温度,从而控制丁烷的分离质量。
脱丁烷塔塔釜液(主要为C5以上馏分)一部分作为产品采出,一部分经再沸器(EA-418A、B)部分汽化为蒸汽从塔底上升。
塔釜的液位和塔釜产品采出量由LC101和FC102组成的串级控制器控制。
再沸器采用低压蒸汽加热。
塔釜蒸汽缓冲罐(FA-414)液位由液位控制器LC102调节底部采出量控制。
塔顶的上升蒸汽(C4馏分和少量C5馏分)经塔顶冷凝器(EA-419)全部冷凝成液体,该冷凝液靠位差流入回流罐(FA-408)。
塔顶压力PC102采用分程控制:在正常的压力波动下,通过调节塔顶冷凝器的冷却水量来调节压力,当压力超高时,压力报警系统发出报警信号,PC102调节塔顶至回流罐的排气量来控制塔顶压力调节气相出料。
操作压力 4.25atm (表压),高压控制器PC101将调节回流罐的气相排放量,来控制塔内压力稳定。
冷凝器以冷却水为载热体。
回流罐液位由液位控制器LC103调节塔顶产品采出量来维持恒定。
回流罐中的液体一部分作为塔顶产品送下一工序,另一部分液体由回流泵(GA-412A、B)送回塔顶做为回流,回流量由流量控制器FC104控制。
2、本单元复杂控制方案说明吸收解吸单元复杂控制回路主要是串级回路的使用,在吸收塔、解吸塔和产品罐中都使用了液位与流量串级回路。
串级回路:是在简单调节系统基础上发展起来的。
在结构上,串级回路调节系统有两个闭合回路。
主、副调节器串联,主调节器的输出为副调节器的给定值,系统通过副调节器的输出操纵调节阀动作,实现对主参数的定值调节。
所以在串级回路调节系统中,主回路是定值调节系统,副回路是随动系统。
分程控制:就是由一只调节器的输出信号控制两只或更多的调节阀,每只调节阀在调节器的输出信号的某段范围中工作。
具体实例:DA405的塔釜液位控制LC101和和塔釜出料FC102构成一串级回路。
FC102.SP随LC101.OP的改变而变化。
PIC102为一分程控制器,分别控制PV102A和PV102B,当PC102.OP逐渐开大时,PV102A从0逐渐开大到100;而PV102B从100逐渐关小至0。
3、设备一览DA-405:脱丁烷塔EA-419:塔顶冷凝器FA-408:塔顶回流罐GA-412A、B:回流泵EA-418A、B:塔釜再沸器FA-414:塔釜蒸汽缓冲罐二、精馏单元操作规程1、冷态开车操作规程本操作规程仅供参考,详细操作以评分系统为准。
装置冷态开工状态为精馏塔单元处于常温、常压氮吹扫完毕后的氮封状态,所有阀门、机泵处于关停状态。
1.1、进料过程(1)开FA-408顶放空阀PC101排放不凝气,稍开FIC101调节阀(不超过20%),向精馏塔进料。
(2)进料后,塔内温度略升,压力升高。
当压力PC101升至0.5atm时,关闭PC101调节阀投自动,并控制塔压不超过4.25atm(如果塔内压力大幅波动,改回手动调节稳定压力)。
1.2、启动再沸器(1)当压力PC101升至0.5atm时,打开冷凝水PC102调节阀至50%;塔压基本稳定在4.25atm后,可加大塔进料(FIC101开至50%左右)。
(2)待塔釜液位LC101升至20%以上时,开加热蒸汽入口阀V13,再稍开TC101调节阀,给再沸器缓慢加热,并调节TC101阀开度使塔釜液位LC101维持在40%-60%。
待FA-414液位LC102升至50%时,并投自动,设定值为50%。
1.3、建立回流随着塔进料增加和再沸器、冷凝器投用,塔压会有所升高。
回流罐逐渐积液。
(1)塔压升高时,通过开大PC102的输出,改变塔顶冷凝器冷却水量和旁路量来控制塔压稳定。
(2)当回流罐液位LC103升至20%以上时,先开回流泵GA412A/B的入口阀V19,再启动泵,再开出口阀V17,启动回流泵。
(3)通过FC104的阀开度控制回流量,维持回流罐液位不超高,同时逐渐关闭进料,全回流操作。
1.4、调整至正常(1)当各项操作指标趋近正常值时,打开进料阀FIC101。
(2)逐步调整进料量FIC101至正常值。
(3)通过TC101调节再沸器加热量使灵敏板温度TC101达到正常值。
(4)逐步调整回流量FC104至正常值。
(5)开FC103和FC102出料,注意塔釜、回流罐液位。
(6)将各控制回路投自动,各参数稳定并与工艺设计值吻合后,投产品采出串级。
2、正常操作规程2.1、正常工况下的工艺参数(1)进料流量FIC101设为自动,设定值为14056 kg/hr。
(2)塔釜采出量FC102设为串级,设定值为7349 kg/hr,LC101设自动,设定值为50%。
(3)塔顶采出量FC103设为串级,设定值为6707 kg/hr。
(4)塔顶回流量FC104设为自动,设定值为9664 kg/hr。
(5)塔顶压力PC102设为自动,设定值为4.25atm,PC101设自动,设定值为5.0atm。
(6)灵敏板温度TC101设为自动,设定值为89.3 ℃。
(7)FA-414液位LC102设为自动,设定值为50%。
(8)回流罐液位LC103设为自动,设定值为50%。
2.2、主要工艺生产指标的调整方法(1)质量调节:本系统的质量调节采用以提馏段灵敏板温度作为主参数,以再沸器和加热蒸汽流量的调节系统,以实现对塔的分离质量控制。
(2)压力控制:在正常的压力情况下,由塔顶冷凝器的冷却水量来调节压力,当压力高于操作压力4.25atm(表压)时,压力报警系统发出报警信号,同时调节器PC101将调节回流罐的气相出料,为了保持同气相出料的相对平衡,该系统采用压力分程调节。
(3)液位调节:塔釜液位由调节塔釜的产品采出量来维持恒定。
设有高低液位报警。
回流罐液位由调节塔顶产品采出量来维持恒定。
设有高低液位报警。
(4)流量调节:进料量和回流量都采用单回路的流量控制;再沸器加热介质流量,由灵敏板温度调节。
3、停车操作规程本操作规程仅供参考,详细操作以评分系统为准。
3.1、降负荷(1)逐步关小FIC101调节阀,降低进料至正常进料量的70%。
(2)在降负荷过程中,保持灵敏板温度TC101的稳定性和塔压PC102的稳定,使精馏塔分离出合格产品。
(3)在降负荷过程中,尽量通过FC103排出回流罐中的液体产品,至回流罐液位LC104在20%左右。
(4)在降负荷过程中,尽量通过FC102排出塔釜产品,使LC101降至30%左右。
3.2、停进料和再沸器在负荷降至正常的70%,且产品已大部采出后,停进料和再沸器。
(1)关FIC101调节阀,停精馏塔进料。
(2)关TC101调节阀和V13或V16阀,停再沸器的加热蒸汽。
(3)关FC102调节阀和FC103调节阀,停止产品采出。
(4)打开塔釜泄液阀V10,排不合格产品,并控制塔釜降低液位。
(5)手动打开LC102调节阀,对FA-114泄液。
3.3、停回流(1)停进料和再沸器后,回流罐中的液体全部通过回流泵打入塔,以降低塔内温度。
(2)当回流罐液位至0时,关FC104调节阀,关泵出口阀V17(或V18),停泵GA412A(或GA412B),关入口阀V19(或V20),停回流。
(3)开泄液阀V10排净塔内液体。
3.4 降压、降温(1)打开PC101调节阀,将塔压降至接近常压后,关PC101调节阀。
(2)全塔温度降至50℃左右时,关塔顶冷凝器的冷却水(PC102的输出至0)。
精馏塔单元仿真培训系统操作说明书Tel: 86-10-64951832, 64810799 , 64971654 Fax: 86-10-6971664 E-mail:*****************北京东方仿真软件技术有限公司网址: 64、仪表一览表三、事故设置一览下列事故处理操作仅供参考,详细操作以评分系统为准。
1、热蒸汽压力过高原因:热蒸汽压力过高。
现象:加热蒸汽的流量增大,塔釜温度持续上升。
处理:适当减小TC101的阀门开度。
2、热蒸汽压力过低原因:热蒸汽压力过低。
现象:加热蒸汽的流量减小,塔釜温度持续下降。
处理:适当增大TC101的开度。
3.冷凝水中断原因:停冷凝水。
现象:塔顶温度上升,塔顶压力升高。
处理:(1)开回流罐放空阀PC101保压。
(2)手动关闭FC101,停止进料。
(3)手动关闭TC101,停加热蒸汽。
(4)手动关闭FC103和FC102,停止产品采出。
(5)开塔釜排液阀V10,排不合格产品。
(6)手动打开LIC102,对FA114泄液。
(7)当回流罐液位为0时,关闭FIC104。
(8)关闭回流泵出口阀V17/V18。
(9)关闭回流泵GA424A/GA424B。
(10)关闭回流泵入口阀V19/V20。
(11)待塔釜液位为0时,关闭泄液阀V10。
(12)待塔顶压力降为常压后,关闭冷凝器。
4.停电原因:停电。
现象:回流泵GA412A停止,回流中断。
处理:(1)手动开回流罐放空阀PC101泄压。
(2)手动关进料阀FIC101。
(3)手动关出料阀FC102和FC103。
(4)手动关加热蒸汽阀TC101。
(5)开塔釜排液阀V10和回流罐泄液阀V23,排不合格产品。
(6)手动打开LIC102,对FA114泄液。
(7)当回流罐液位为0时,关闭V23。
(8)关闭回流泵出口阀V17/V18。
(9)关闭回流泵GA424A/GA424B。
(10)关闭回流泵入口阀V19/V20。
(11)待塔釜液位为0时,关闭泄液阀V10。
(12)待塔顶压力降为常压后,关闭冷凝器。
5.回流泵故障原因:回流泵GA-412A泵坏。