(7年真题推荐)山东省高考数学 真题分类汇编 圆锥曲线
- 格式:doc
- 大小:2.66 MB
- 文档页数:26
1.(2013年上海市春季高考数学试卷).已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥u u u r u u u r ,求直线l 的方程.2.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.3.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程; (Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.4.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.5.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率22e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.x OyB l 1l 2 PDA(第21题图)。
一、弦长问题圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为:(2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|.例1 过抛物线241x y -=的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,且|AB|=8,求倾斜角α.分析一:由弦长公式易解.解答为:∵ 抛物线方程为y x 42-=, ∴焦点为(0,-1).设直线l 的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入y x 42-=中得:0442=-+kx x .∴k x x x x 442121-=+-=,由|AB|=8得:()()41441822-⨯⨯--⋅+=k k ∴1±=k又有1tan ±=α得:4πα=或43πα=.分析二:利用焦半径关系.∵2,221py BF p y AF +-=+-=∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成.二、最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例2、已知点F 是双曲线x 24-y 212=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例3、求椭圆x 22+y 2=1上的点到直线y =x +23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例4、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例5、求椭圆x23+y2=1内接矩形ABCD面积的最大值.例6 已知定点A(0,3),点B、C分别在椭圆2216413x y+=的左右准线上运动,当∠BAC=90°时,求△ABC面积的最小值。
圆锥曲线小题一、选择题1.(2024年高考全国甲卷理科)已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为 ( )A B C D 【答案】A解析:因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A2.(2024年高考全国乙卷理科)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的随意一点P 都满意||2PB b ≤,则C 的离心率的取值范围是 ( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭ C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C3.(2024年高考数学课标Ⅰ卷理科)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = ( )A .2B .3C .6D .9【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p.故选:C .4.(2024年高考数学课标Ⅱ卷理科)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 ( )A .4B .8C .16D .32【答案】B 解析:2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B .5.(2024年高考数学课标Ⅲ卷理科)设双曲线C :22221x y a b-=(a >0,b >0)左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = ( )A .1B .2C .4D .8【答案】A解析:5ca=,c ∴=,依据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .6.(2024年高考数学课标Ⅲ卷理科)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为 ( ) A .1,04⎛⎫⎪⎝⎭ B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)【答案】B解析:因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 依据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .7.(2024年高考数学课标Ⅲ卷理科)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 ( )A .4B C .D .【答案】A【解析】由2,a b c ====,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则2P y ==1133262224PFO P S OF y ∴=⋅=⨯⨯=△,故选A . 8.(2024年高考数学课标全国Ⅱ卷理科)设F 为双曲线:C 22221x y a b-=()0,0a b >>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C的离心率为()( )A .2B .3C .2D .5【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又∵||PQ OF c ==,∴||2c PA =, PA 为以OF 为直径的圆的半径,∴A 为圆心||2c OA =.∴,22c c P ⎛⎫⎪⎝⎭,又P 点在圆222x y a +=上,∴22244c c a +=,即222c a =,∴2222c e a==,∴2e =,故选A .9.(2024年高考数学课标全国Ⅱ卷理科)若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p = ( ) A .2 B .3 C .4 D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点,02p ⎛⎫⎪⎝⎭是椭圆2231x y p p +=的一个焦点,所以232p p p ⎛⎫-= ⎪⎝⎭,解得8p =,故选D .10.(2024年高考数学课标全国Ⅰ卷理科)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若222AF F B =,1AB BF =,则C 的方程为( )A .2212x y +=B .22132x y += C .22143x y += D .22154x y +=【答案】B解析:如图,设2BF t =,则212,3AF t BF t ==,由12122AF AF BF BF a +=+=,可得12AF t =,12AF AF =,所以点A 为椭圆的上顶点或下顶点.在1ABF △中,由余弦定理可得2222129491cos 12sin 2323t t t BAF OAF t t +-∠=-∠==⨯⨯,)的左、右OP ,则C 的离心率为 ( )A B .2CD【答案】C解析:法一:依据双曲线的对称性,不妨设过点2F 作渐近线by x a=的垂线,该垂线的方程为()a y x c b =--,联立方程()b y x aa y x cb ⎧=⎪⎪⎨⎪=--⎪⎩,解得2P Pab y c ax c ⎧=⎪⎪⎨⎪=⎪⎩由22116PF PF OP =⇒=222222266a ab ab a c a c c c c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⇒++=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭整理可得42222240a a c c a b -++=即()422222240a a c c a c a -++-= 即4223c a c =即223c a =,所以23e =,所以e =C .法二:由双曲线的性质易知2PF b =,2OF c =,所以222OP c b a =-= 在2Rt POF ∆中,222cos PF bPF O OF c∠== 在12PF F ∆中,由余弦定理可得22221212212cos 2PF F F PF bPF O PF F F c+-∠==所以)222422b c bb cc+-=⋅,整理可得2222464b c a b =-=,即()222224633c a b c a -==-所以223c a =,所以e =C .12.(2024年高考数学课标Ⅱ卷(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23 B .12 C .13D .14【答案】D解析:因为12PF F ∆为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==,由余弦定理得1PF =,所以(2)P c ,而(,0)A a -,由已知AP k =,得4a c =,即14e =,故选D .13.(2024年高考数学课标Ⅱ卷(理))双曲线22221(0,0)x y a b a b-=>>线方程为( ) A.y = B.y =C.y = D.y = 14.(2024年高考数学课标卷Ⅰ(理))已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N .若OMN ∆为直角三角形,则MN =( )A .32B .3C.D .4【答案】B解析:双曲线22:13x C y -=的渐近线方程为:y x =,渐近线的夹角为:60,不妨设过()2,0F 的直线为:)2y x =-,则)2y x y x ⎧=-⎪⎨=⎪⎩解得3,22M ⎛⎫ ⎪ ⎪⎝⎭;)23y x y x ⎧=-⎪⎨=-⎪⎩解得:(3,N ,则3MN ==,故选B .15.(2024年高考数学课标卷Ⅰ(理))设抛物线2:4C y x =的焦点为F .过点()2,0-且斜率为23的直线与C 交于,M N 两点,则FM FN = ( ) A .5 B .6 C .7D .8【答案】D解析:抛物线2:4C y x =的焦点为()1,0F ,过点()2,0-且斜率为23的直线为:324y x =+,联立直线与抛物线2:4C y x =,消去x 可得:2680y y -+=,解得122,4y y ==,不妨()1,2M ,()4,4N ,()0,2FM =,()3,4FN =,则()()0,23,48FM FN ==,故选D . 16.(2017年高考数学新课标Ⅰ卷理科)已知F 为抛物线2:4C y x =的焦点,过F 作两条相互垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的是小值为( )A .16B .14C .12D .10【答案】A【解析】设1122(,),(,)A x y B x y ,3344(,),(,)D x y E x y ,直线1l 方程为1(1)y k x =-取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k += 同理直线2l 与抛物线的交点满意22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++≥= 当且仅当121k k =-=(或1-)时,取得等号.17.(2017年高考数学课标Ⅲ卷理科)已知椭圆2222:1x y C a b+=,()0a b >>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.3B.3C.3D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为原点,半径为R a =,该圆与直线20bx ay ab -+=相切所以圆心()0,0到直线20bx ay ab -+=的距离d R a ===,整理可得223a b =所以c e a ==3==,故选A .18.(2017年高考数学课标Ⅲ卷理科)已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 ( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】由渐近线的方程y x =,可设双曲线的方程为2245x y λ-= 又椭圆221123x y +=的焦点坐标为()3,0± 所以0λ>,且24531λλλ+=⇒=,故所求双曲线C 的方程为:22145x y -=,故选B . 19.(2017年高考数学课标Ⅱ卷理科)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2BCD.3【解析】解法一:常规解法依据双曲线的标准方程可求得渐近线方程为by x a=±,依据直线与圆的位置关系可求得圆心到=,解得2e =.解法二:待定系数法设渐进线的方程为y kx =∴=23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法三:几何法从题意可知:112OA OO O A ===,1OO A ∆为等边三角形,所以一条渐近线的倾斜较为3π由于tan k θ=,可得3k渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法四:坐标系转化法依据圆的直角坐标系方程:()2224x y -+=,可得极坐标方程4cos ρθ=,由4cos 2θ=可得极 角3πθ=,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以3k =渐近线的斜率与离心率关系为221k e =-,解得2e =. 解法五:参数法之直线参数方程如上图,依据双曲线的标准方程可求得渐近线方程为by x a =±,可以表示点A 的坐标为()2cos ,2sin θθ,∵ cos a c θ=,sin b c θ= ∴ 点A 的坐标为22,a b c c ⎛⎫⎪⎝⎭,代入圆方程中,解得2e =.20.(2016高考数学课标Ⅲ卷理科)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A B 、分别为C 的左、右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .34【答案】A【解析】由题意,设直线l 的方程为()y k x a =+,分别令x c =-与0x =,得点()FM k a c =-,OE ka =,由△OBE ∽△CBM ,得12OE OB FM BC =,即2()ka ak a c a c=-+,整理得13c a =,所以椭圆的离心率13e =,故选A. 21.(2016高考数学课标Ⅱ卷理科)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为 ( ) A .2 B .32C .3D .2【答案】A【解析1】由题可令21|MF |=3,|MF |=1,则22a 所以1a ,248c ,所以2c ,所以2e故选A.22.(2016高考数学课标Ⅰ卷理科)以抛物线C 的顶点为圆心的圆交C 于,A B 两点,交C 的准线于,D E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为 ( ) (A)2(B)4(C)6(D)8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:设(0,22A x ,52p D ⎛-⎝, 点(0,22A x 在抛物线22ypx =上,∴082px =……①点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的距离为4p =. 故选B .23.(2016高考数学课标Ⅰ卷理科)已知方程222213-x y m n m n-=+错误!未指定书签。
最新全国高考理科数学试题分类汇编:圆锥曲线一、选择题错误!未指定书签。
.(高考江西卷(理))过点引直线l与曲线y=A,B两点,O为坐标原点,当∆AOB的面积取最大值时,直线l的斜率等于()A.y EB BC CD=++B.C.±D.【答案】B错误!未指定书签。
.(普通高等学校招生统一考试福建数学(理)试题(纯WORD版))双曲线221 4xy-=的顶点到其渐近线的距离等于()A.25B.45CD【答案】C错误!未指定书签。
.(普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))已知中心在原点的双曲线C的右焦点为()3,0F,离心率等于32,在双曲线C的方程是()A.2214x=B.22145x y-=C.22125x y-=D.2212x=【答案】B错误!未指定书签。
.(高考新课标1(理))已知双曲线C:22221x ya b-=(0,0a b>>)的离心率为则C的渐近线方程为()A.14y x=±B.13y x=±C.12y x=±D.y x=±【答案】C错误!未指定书签。
.(高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sinx yCθθ-=与222222:1sin sin tany xCθθθ-=的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D错误!未指定书签。
.(高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )A .12B.2C .1 D【答案】B错误!未指定书签。
.(普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26 【答案】D错误!未指定书签。
山东省各地市2011年高考数学最新联考试题分类大汇编第10部分:圆锥曲线一、选择题:1. 已知点12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是( )A .)3,1(B .)22,3(C .),21(+∞+D .)21,1(+2. 以坐标轴为对称轴,原点为顶点且过圆222690x y x y +-++=圆心的抛物线方程是 ( )A 2233y x y x ==-或B .23y x =C .2293y x y x =-=或 D .22-9y x y x ==或3.已知实数m 是2,8的等比中项,则双曲线221y x m-=的离心率为 ( ) A .5B .52C .3D .2 4. 椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是 ( ) A .±43 B .±23C .±22D .±435.设P 是椭圆221258x y +=上一点,M 、N 分别是两圆:22(4)1x y ++=和23(4)1x y -+=上的点,则||||PM PN +的最小值、最大值的分别为( ) A .9,12 B .8,11 C .8,12 D .10,12 6. 已知双曲线22221x y a b -=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A.224515y x -= B.22154x y -= c22154y x -= D.225514y x -= 7.与椭圆2214x y +=共焦点且过点(2,1)P 的双曲线方程是 ( )A .2214x y -=B .2212x y -=C .22133x y -=D .2212y x -=8. 设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 ( ) A .21B .1C .2D .不确定 二、填空题:9. 抛物线x =2y 2的焦点坐标是 .10.点P 是曲线2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值是 ;11.如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率为_______.12.双曲线的渐近线方程为34y x =±,则双曲线的离心率是 。
函数、导数(一)选择题1、(07山东)设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为A.1,3B.-1,1C.-1,3D.-1,1,3 答案:A.2、(07山东)已知集合{}1,1-=M ,⎭⎬⎫⎩⎨⎧<<∈=+42211x Zx N ,则=N M ( ) A.{}1,1- B. {}1- C. {}0 D.{}0,1- 答案:B.3.(08山东卷3)函数y =lncos x (-2π<x <)2π的图象是答案:A4.(08山东卷4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1 答案:A5. (2009山东卷理)函数x xx xe e y e e--+=-的图像大致为( ).【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A.答案:A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质. 6.(2009山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f(2009)的值为( )A.-1B. 0C.1D. 2【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=,所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C. 答案:C.【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算. 7. (2009山东卷文)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f(3)的值为( )A.-1B. -2C.1D. 2【解析】:由已知得2(1)log 5f -=,2(0)log 42f ==,2(1)(0)(1)2log 5f f f =--=-,2(2)(1)(0)log 5f f f =-=-,22(3)(2)(1)log 5(2log 5)2f f f =-=---=-,故选B.答案:B.【命题立意】:本题考查对数函数的运算以及推理过程.1xy 1OAxyO 11BxyO 1 1Cx y 1 1 DO8.(2009山东卷文)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<【解析】:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间[0,2]上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D. 答案:D.【命题立意】:本题综合考查了函数的奇偶性、单调性、周期性等性质,运用化归的数学思想和数形结合的思想解答问题.9、(2010山东文数)(11)函数22xy x =-的图像大致是答案:A 10、(2010山东文数)(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为(A )13万件 (B)11万件 (C) 9万件 (D)7万件 答案:C11、(2010山东文数)(5)设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b=++(b 为常数),则(1)f -=(A )-3 (B )-1 (C )1 (D)3 答案:A12、(2010山东文数)(3)函数()()2log 31xf x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 答案:A13、(2010山东理数)(4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x+2x+b(b 为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3 【答案】D14、(2011山东文数4)曲线211y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 A .-9 B .-3C .10D .15答案:C15、(2011山东理数5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要答案:B15、(2011山东理数9文数10)函数2sin 2xy x =-的图象大致是答案:C16、(2011山东理数10)10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .9答案:B17(2012山东卷文(3))函数21()4ln(1)f x x x =+-+的定义域为(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]- 答案:B18 (2012山东卷文(10))函数cos622x xxy -=-的图象大致为答案:D19 (2012山东卷文(12))设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+< 答案:B20(2013山东理)3.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2 答案:3.A21、(2013山东文)(3)、已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,答案:则=-)1(f(A)2 (B)1 (C)0 (D)-2 答案:D22、(2013山东文)(5)、函数1()123xf x x =-++的定义域为 (A)(-3,0] (B) (-3,1](C) (,3)(3,0]-∞-- (D) (,3)(3,1]-∞-- 答案:A(二)填空题1、(07山东)函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0) 01=++ny mx 上,其中0>mn ,则nm 21+的最小值为 . 答案:82.(2009山东卷理)若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .【解析】: 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数f(x)=a x-x-a(a>0且a ≠1)有两个零点, 就是函数(0,x y a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是1>a 答案: 1>a 【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.3.(2009山东卷理)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=【解析】:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<由对称性知1212x x +=-344x x +=所以12341248x x x x +++=-+=-答案:-8 【命题立意】:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.4.(2009山东卷文)若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .【解析】: 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数f(x )=a x-x-a(a>0且a ≠1)有两个零点, 就是函数(0,x y a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是}1|{>a a . 答案: }1|{>a a【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.5.(2011山东16) 已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .答案:26(2012山东卷文(15))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14)g x m x =-在[0,)+∞上是增函数,则a =____.答案:14(三)解答题1、(07山东理)设函数2()ln(1)f x x b x =++,其中0b ≠. (Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>-⎪⎝⎭都成立. 解(I) 函数2()ln(1)f x x b x =++的定义域为()1,-+∞.222'()211b x x bf x x x x ++=+=++,令2()22g x x x b =++,则()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上递增,在11,2⎛⎫-- ⎪⎝⎭上递减,min 11()()22g x g b =-=-+.当12b >时,min 1()02g x b =-+>,2()220g x x x b =++>在()1,-+∞上恒成立.'()0,f x ∴>即当12b >时,函数()f x 在定义域()1,-+∞上单调递增。
山东省2011-2022年普通高校招生(春季)数学专题圆锥曲线(椭圆、双曲线、抛物线)一、选择题(11-25)若中心在坐标原点,焦点在x轴上的双曲线,虚轴长是实轴长的2倍,则其渐近线方程为A.y=±14xB.y=±4xC.y=±12xD.y=±2x(11-29)已知抛物线y2=4x,过其焦点且斜率为1的直线交抛物线于A,B两点,则|AB|等于A.6B.8C.10D.12(12-10)已知以坐标原点为顶点的抛物线,其焦点在x轴正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是()A.y2=6xB.y2=−6xC.y2=3xD.y2=−3x(12-13)椭圆x 29+y28=1的离心率是()A.13B.√173C. √24D.2√23(12-24)已知椭圆x 225+y220=1= 1 的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|:|PF2|等于()A.3:2B.2:3C.9:1D.1:9(13-14)已知抛物线的准线方程为x=2,则抛物线的标准方程为()A. y2=8xB. y2=−8xC. y2=4xD. y2=−4x(13-25)点p是等轴双曲线上除顶点外的任意一点,A1,A2是双曲线的顶点,则直线pA1与pA2的斜率之积为()A. 1B. −1C. 2D.−2(14-15)第一象限内的点P在抛物线y2=−12x上,它到准线的距离为7,则点P的坐标为A.(4,4√3)B.(3,6)C.(2,2√6)D.(1,2√3)(14-19)双曲线4x2-9y2=1的渐近线方程为A.y=±32xB.y=±23xC.y=±94xD.y=±49x(15-14)关x,y的方程x2+my2=1,给出下列命题:②当m<0时,方程表示双曲线;②当m=0时,方程表示抛物线;③当0<m<1时,方程表示椭圆;④当m=1时,方程表示等轴双曲线;⑤当m>1时,方程表示椭圆。
圆锥曲线(一)选择题1.(07山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x答案:A2.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45 B. 5 C. 25D.5 【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.3.(2009山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x = D. 28y x =【解析】: 抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a,则直线l 的方程为2()4a y x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,故选B. 答案:B.【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数a 的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.4、(2010山东文数)(9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 (A )1x = (B)1x =- (C)2x = (D)2x =- 答案:B5、(2010山东理数)(7)由曲线y=2x ,y=3x 围成的封闭图形面积为 (A )112(B)14(C)13(D)712【答案】A【解析】由题意得:所求封闭图形的面积为123x -x )dx=⎰(1111-1=3412⨯⨯,故选A 。
【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。
6、(2011山东理数8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 答案:A7、(2011山东文数9)9.设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案:C8、(2012山东卷文(11))已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为 2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为D(A) 283x y = (B) 2163x y = (C)28x y = (D)216x y =9、(2013数学理)11.已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M 。
若1C 在点M 处的切线平行于2C 的一条渐近线,则p = (A )316 (B )38 (C )233 (D )433答案:11.D10、(2013山东理)12.设正实数,,x y z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z+-的最大值为 (A )0 (B )1 (C )94(D )3 答案:12.B11、(2013山东数学文)(11)、抛物线)0(21:21>=p x py C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =(A)163 (B)83 (C)332 (D) 334 答案:D12(2013山东数学文)(12)、设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,2x y z +-的最大值为(A)0 (B)98 (C)2 (D)94答案:C (二)填空题1、(07山东理)(13)设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为 .答案:212p 2、(2011山东文数15)已知双曲线22221(0b 0)x y a a b-=>,>和椭圆22x y =1169+有相同的 焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .答案:22143x y -= (三)解答题1、(07山东理)(21)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72、(08山东文)22.(本小题满分14分) 已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为45,曲线1C 的内切圆半径为253.记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得2224525ab a b⎧=⎪⎨=+,又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k+=+=+=+++. 设()M x y ,,由题意知(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线, 所以直线l 的方程为1y x k=-, 即x k y=-, 因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠, 所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 的轨迹方程为222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+,所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k +=+.解法一:由于22214AMB S AB OM =△ 2222180(1)20(1)44554k k k k++=⨯⨯++ 2222400(1)(45)(54)k k k +=++ 22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.当0k =,140229AMB S =⨯=>△.当k不存在时,140429AMB S ==>△.综上所述,AMB △的面积的最小值为409. 3.(08山东卷22) (本小题满分14分)如图,设抛物线方程为x 2=2py (p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(2,-2p )时,410AB =,求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.(Ⅰ)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p=,则,x y p '=所以12,.MA MB x xk k p p==因此直线MA 的方程为102(),x y p x x p+=- 直线MB 的方程为202().x y p x x p+=-所以211102(),2x x p x x p p+=-①222202().2x xp x x p p+=- ②由①、②得212120,2x x x x x +=+- 因此 21202x x x +=,即0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --=2222440,x x p --=所以 x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p=由弦长公式得2221212241()411616.AB k x x x x p p=++-=++ 又410AB = 所以p =1或p =2,因此所求抛物线方程为22x y =或24.x y =(Ⅲ)解:设D (x 3,y 3),由题意得C (x 1+ x 2, y 1+ y 2),则CD 的中点坐标为123123(,),22x x x y y y Q ++++设直线AB 的方程为011(),x y y x x p-=-由点Q 在直线AB 上,并注意到点1212(,)22x x y y ++也在直线AB 上,代入得033.x y x p=若D (x 3,y 3)在抛物线上,则2330322,x py x x ==因此 x 3=0或x 3=2x 0.即D (0,0)或202(2,).x D x p(1)当x 0=0时,则12020x x x +==,此时,点M (0,-2p )适合题意.(2)当00x ≠,对于D (0,0),此时2212222212120002(2,),,224CDx x x x x x pC x k px px +++==又0,AB x k p=AB ⊥CD , 所以222201212201,44AB CDx x x x x k k p px p++===- 即222124,x x p +=-矛盾.对于2002(2,),x D x p因为22120(2,),2x x C x p +此时直线CD 平行于y 轴, 又00,AB x k p=≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点M (0,-2p )适合题意.4.(2009山东卷理)(本小题满分14分)设椭圆E: 22221x y a b+=(a,b>0)过M (2,2) ,N(6,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。