新人教版初中数学九年级上册《第二十四章圆24.1.2垂直于弦的直径》公开课教学设计_0
- 格式:doc
- 大小:263.00 KB
- 文档页数:10
人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。
本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。
教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。
但垂直于弦的直径这一性质较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。
三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。
2.培养学生的观察、思考、动手和合作能力。
3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。
四. 教学重难点1.垂直于弦的直径的性质及其证明。
2.灵活运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。
3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。
4.实践操作法:让学生动手操作,加深对性质的理解。
六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。
2.教学素材:准备相关的几何图形,便于学生观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。
2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。
3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。
4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。
人教版九年级数学上册《24.1.2垂直于弦的直径》公开课教学设计一. 教材分析人教版九年级数学上册《24.1.2垂直于弦的直径》这一节主要讲述了圆中垂直于弦的直径的性质。
通过这一节的学习,学生能够理解并掌握垂直于弦的直径的性质,并能运用这一性质解决相关问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的基本概念和性质有所了解。
但是,对于圆中垂直于弦的直径的性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步探究和理解新知识。
三. 教学目标1.理解并掌握圆中垂直于弦的直径的性质。
2.能够运用垂直于弦的直径的性质解决相关问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.如何运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导探究法:通过引导学生观察、思考和讨论,让学生自主发现和理解垂直于弦的直径的性质。
2.例题讲解法:通过讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。
3.练习法:通过课堂练习和课后作业,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关课件和教学素材。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过回顾圆的基本性质和概念,引导学生进入新的学习内容。
2.呈现(10分钟)展示圆中垂直于弦的直径的性质,引导学生观察和思考。
3.操练(15分钟)讲解典型例题,让学生掌握运用垂直于弦的直径的性质解决问题的方法。
4.巩固(10分钟)布置课堂练习题,让学生巩固所学知识。
5.拓展(5分钟)通过解决实际问题,让学生运用所学知识解决实际问题。
6.小结(5分钟)总结本节课所学内容,引导学生理解垂直于弦的直径的性质。
7.家庭作业(5分钟)布置课后作业,巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点。
人教版九年级上册24.1.2垂直于弦的直径教学设计一、教学目标1.理解垂线、垂足、垂直平分线、相交于垂足的两条线段互为垂直。
2.掌握垂直平分线的性质和应用。
3.学会用垂直平分线求直径。
二、教学重难点1.理解垂线、垂足、垂直平分线的定义和性质。
2.通过垂直平分线求直径,需要掌握数学计算方法。
三、教学过程1. 导入让学生在纸上画一个圆并标记圆心、半径,引出“弦”的概念。
通过学生们的互动,让他们理解弦是圆上任意两点之间的线段。
2. 自主学习让学生自己研究什么是垂直平分线,特别是24.1.2题目中所述的垂直于弦的直径是如何求得的。
学生可以结合自己的理解和常识,得出一些初步的结论。
3. 合作探究将学生分成若干小组,每组成员之间相互讨论,举一反三,尝试解决一些类似的问题。
为了使学生更好地理解,可以在板书上示意图,或在黑板上画出一幅图形,引导学生进行讨论。
4. 指导讲解在学生讨论之后,老师进行正式的讲解,着重讲解垂足、垂线和垂直平分线的性质,并解释直径是如何通过垂直平分线来求得的。
5. 练习巩固让学生进行巩固训练,可以把一些类似的题目给学生进行练习,根据不同程度的学生做出相应的安排和调整,以及针对学生的问题进行讲解和指导;也可以让学生在课堂上完成这些题目,检验学生的掌握程度。
例如:已知圆O的直径AB,通过直线CD(平行于AB)构造两条弦EF、GH,其中EF=9cm,GH=7.5cm,请问EF和GH的中垂线上的某点到圆心的距离是多少?6. 总结归纳在巩固训练之后,对项目进行总结归纳,在课堂上梳理本课内容,使学生对本课内容有一个深入的理解。
此外,还要通过本教学的方式来告诉学生,数学并不是枯燥无味的,也充满了趣味和乐趣。
四、教学评价教学方法:•通过讨论和示例引导学生,促进他们的思维和创造力。
•通过现代媒介如电子白板和计算机等来优化整个教学流程。
教学效果:•从学生的态度和反应来看,这种教学方式能够轻松使学生更好地理解课程内容。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。
教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。
他们具备了一定的观察、分析和解决问题的能力。
但对于垂直于弦的直径的性质及其应用,可能还比较陌生。
因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。
三. 教学目标1.理解垂直于弦的直径的性质。
2.学会运用垂直于弦的直径的性质解决与圆有关的问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。
2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。
3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。
六. 教学准备1.课件:制作课件,展示相关实例和问题。
2.练习题:准备一些与垂直于弦的直径性质有关的练习题。
3.圆规、直尺等画图工具:为学生提供画图所需的工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。
2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。
3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。
在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。
第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。
24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。
24.1.2 垂直于弦的直径教学时间课题24.1.2 垂直于弦的直径课型新授课教学目标知识和能力探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.过程和方法在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情感态度价值观使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.教学重点垂直于弦的直径所具有的性质以及证明.教学难点利用垂直于弦的直径的性质解决实际问题.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA 、OB ,得到等腰△OAB ,即OA =OB .因CD ⊥AB ,故△OA M 与△OB M 都是直角三角形,又O M 为公共边,所以两个直角三角形全等,则A M =B M .又⊙O 关于直径CD 对称,所以A 点和B 点关于CD 对称,当圆沿着直径CD 对折时,点A 与点B 重合,AC 与BC 重合.因此AM =B M ,AC =BC ,同理得到AD BD =.教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质: (1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 活动3:如图3,AB 所在圆的圆心是点O ,过O 作OC ⊥AB 于点D ,若CD =4 m ,弦AB =16 m ,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形,在直角三角形中可以利用勾股定理构造方程. 教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来. 〔解答〕设圆的半径为R ,由条件得到OD =R -4,AD =8, 在R t △ADO 中222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .活动4:如图4,已知AB ,请你利用尺规作图的方法作出AB 的中点,说出你的作法.BA图4师生活动设计:图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F ,则AE =21AB = 30 cm .令⊙O 的半径为R ,则OA =R ,OE =OF -EF =R -10.在R t △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R -10)2. 解得R =50 cm .修理人员应准备内径为100 cm 的管道. 小结:垂直于弦的直径的性质,圆对称性. 作业 设计 必做 习题24.1 第1题,第8题,第9题. 选做教 学 反 思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ).D CA B所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°D CABDC A B2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .EDCABPD C A B∴∠P=∠ACD.又∵DE∥AP,∴∠4=∠P.∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解 (教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab - (3)3五、1.(1)22y x xy - (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径学习目标:1.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.3.灵活运用垂径定理解决有关圆的问题.重点:理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.难点:灵活运用垂径定理解决有关圆的问题.一、知识链接1.说一说什么是轴对称图形?2.你能通过折叠的方式找到圆形纸片的对称轴吗?在折的过程中你有什么发现?二、要点探究探究点1:垂径定理及其推论说一说 (1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(2) 你是怎么得出结论的?问题如图,AB是⊙O的一条弦,直径CD⊥AB,垂足为E.你能发现图中有那些相等的线段和劣弧? 为什么?归纳总结:垂径定理——垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵ CD是直径,CD⊥AB,∴ AE=BE,AC BC=,AD BD=.想一想下列图形是否具备垂径定理的条件?如果不是,请说明为什么?归纳总结:垂径定理的几个基本图形典例精析例1 如图,OE⊥AB于E,若⊙O的半径为10 cm,OE=6 cm,则AB= cm.例2 如图,⊙O的弦AB=8cm ,直径CE⊥AB于D,DC=2cm,求半径OC的长.思考探索如果把垂径定理结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?证明举例如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1) CD⊥AB吗?为什么?(2) AC与BC相等吗?AD与BD相等吗?为什么?归纳总结:垂径定理的推论——平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧. 例3 已知:⊙O中弦AB∥CD,求证:AC BD.归纳总结:解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.探究点2:垂径定理的实际应用问题 (教材P82例2)赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m ,拱高(弧的中点到弦的距离)为7.23m ,你能求出赵州桥主桥拱的半径吗?练一练:如图a 、b ,一弓形弦长为,弓形所在的圆的半径为7cm ,则弓形的高为 .归纳总结:在圆中有关弦长a ,半径r ,弦心距d(圆心到弦的距离),弓形高h 的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.三、课堂小结则此圆的半径为 .2.⊙O 的直径AB=20cm ,∠BAC=30°则弦AC= .3.(分类讨论题)已知⊙O 的半径为10cm ,弦MN ∥EF ,且MN=12cm ,EF=16cm ,则弦MN 和EF 之间的距离为 .4.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.你认为AC 和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD= 600 m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90 m.求这段弯路的半径.拓展提升如图,⊙O的直径为10,弦AB=8,P为AB上的一个动点,那么OP长的取值范围为 .参考答案自主学习一、知识链接1. 解:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫轴对称图形.2. 解:能;圆是轴对称图形,任何一条直径所在直线都是它的对称轴.课堂探究二、要点探究探究点2:问题解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦ABOD=OC-CD=R-7.23.2OA AD+学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
课题:垂直于弦的直径【学习目标】1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题.【学习重点】垂径定理、推论及其应用.【学习难点】发现并证明垂径定理.一,情景导入生成问题1.请同学们把手中圆对折,你会发现圆是一个什么样的图形?答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧.二,自学互研生成能力知识模块一圆的轴对称性阅读教材P81,完成下面的内容:根据教材P81探究及其证明过程可知通过证明△OAA′是等腰三角形,再由AA′⊥C D,即可得出AM=MA′.即CD是AA′的垂直平分线,从而得出圆是轴对称图形.归纳:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.知识模块二 垂径定理及其推论阅读教材P 81~P 82上面的文字,完成下面的内容:(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.用几何语言表示:如图,∵在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB 于点E.∴EA =EB ,AD ︵=BD ︵,AC ︵=BC ︵.质疑1:若AB 是直径,上述结论还成立么?成立,当AB 是直径时,OA=OB ,CD ⊥AB ,所以CD 是AB 的垂直平分线,所以弧相等。
问.垂径定理的条件和结论分别是什么?条件 ①过圆心,②垂直于弦结论:③平分弦,④平分弦所对的劣弧,⑤平分弦所对的优弧.质疑2.条件改为①过圆心,③平分弦结论改为:②垂直于弦,④平分弦所对的劣弧,⑤平分弦所对的优弧.这个命题正确吗?(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.用几何语言表示:如图,∵在⊙O 中,CD 是直径,若AE =EB.∴CD ⊥AB ,AD ︵=BD ︵,AC ︵=BC ︵.(3)垂径定理的应用:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.,拱高(弧的中点到弦的距离)为7.2m .赵州桥主桥拱的半径是多少?三,交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一圆的轴对称性知识模块二垂径定理及其推论四,当堂检测达成目标1.判断:(1)垂直于弦的直线平分这条弦,并且平分弦所对的两弧.(2)平分弦所对的一条弧的直径一定平分这条弦所对的另一弧.(3)经过弦的中点的直径一定垂直于弦.(4)圆的两条弦所夹的弧相等,则这两条弦平行.(5)弦的垂直平分线一定平分这条弦所对的弧.2. P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为______;最长弦长为______.3.在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.五,课后反思查漏补缺1,谈收获2,存在的困惑六,布置作业习题24.1第2和第3题D·OA B CE。
24.1.2 垂直于弦的直径理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重点 垂径定理及其运用.难点 探索并证明垂径定理及利用垂径定理解决一些实际问题.一、复习引入①在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.②连接圆上任意两点的线段叫做弦,如图线段AC ,AB ;③经过圆心的弦叫做直径,如图线段AB ;④圆上任意两点间的部分叫做圆弧,简称弧,以A ,C 为端点的弧记作“AC ︵”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC ︵)叫做优弧,小于半圆的弧(如图所示AC ︵或BC ︵)叫做劣弧.⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. ⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.二、探索新知(学生活动)请同学按要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由.(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵,即直径CD 平分弦AB ,并且平分AB ︵及ADB ︵.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB ,且CD ⊥AB 垂足为M.求证:AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵.分析:要证AM =BM ,只要证AM ,BM 构成的两个三角形全等.因此,只要连接OA ,OB 或AC ,BC 即可.证明:如图,连接OA ,OB ,则OA =OB ,在Rt △OAM 和Rt △OBM 中,∴Rt △OAM ≌Rt △OBM ,∴AM =BM ,∴点A 和点B 关于CD 对称,∵⊙O 关于直径CD 对称,∴当圆沿着直线CD 对折时,点A 与点B 重合,AC ︵与BC ︵重合,AD ︵与BD ︵重合.∴AC ︵=BC ︵,AD ︵=BD ︵.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB =60 m ,水面到拱顶距离CD =18 m ,当洪水泛滥时,水面宽MN =32 m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN =32 m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R.解:不需要采取紧急措施,设OA =R ,在Rt △AOC 中,AC =30,CD =18,R 2=302+(R -18)2,R 2=900+R 2-36R +324,解得R =34(m ),连接OM ,设DE =x ,在Rt △MOE 中,ME =16,342=162+(34-x)2,162+342-68x +x 2=342,x 2-68x +256=0,解得x 1=4,x 2=64(不合题意,舍去),∴DE =4,∴不需采取紧急措施.三、课堂小结(学生归纳,老师点评)垂径定理及其推论以及它们的应用.四、作业布置1.垂径定理推论的证明.2.教材第89,90页习题第8,9,10题.。
人教版九年级数学上册《24.1.2垂直于弦的直径》公开课说课稿一. 教材分析人教版九年级数学上册《24.1.2垂直于弦的直径》这一节的内容,是在学生已经掌握了垂径定理和圆周角定理的基础上进行教学的。
本节课主要让学生了解并证明圆中垂直于弦的直径的性质,即垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
这一性质在解决圆的相关问题中有着重要的作用。
教材通过引导学生观察、思考、探索,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的相关知识有一定的了解。
但是,对于证明圆中垂直于弦的直径的性质,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平,采取适当的教学策略,引导学生克服困难,掌握这一性质。
三. 说教学目标1.知识与技能目标:让学生掌握圆中垂直于弦的直径的性质,能够运用这一性质解决相关问题。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学的美妙。
四. 说教学重难点1.教学重点:圆中垂直于弦的直径的性质。
2.教学难点:证明圆中垂直于弦的直径的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。
2.教学手段:利用多媒体课件、圆规、直尺等教学工具。
六. 说教学过程1.导入新课:通过复习垂径定理和圆周角定理,引出本节课的内容——圆中垂直于弦的直径的性质。
2.探究新知:引导学生观察、思考、探索,发现垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
3.证明性质:分组讨论,每组选择一种证明方法,证明圆中垂直于弦的直径的性质。
4.应用拓展:出示相关练习题,让学生运用所学知识解决问题。
5.课堂小结:回顾本节课所学内容,总结垂直于弦的直径的性质及证明方法。
6.布置作业:布置适量作业,巩固所学知识。
24.1.2垂直于弦的直径一、内容和内容解析1、内容垂直于弦的直径。
2、内容解析本节课要研究的是圆的轴对称性与垂径定理及简单应用,垂径定理既是前面圆的性质的重要体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也是为进行圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的位置。
二、目标和目标解析1、目标(1)理解圆的对称性和垂直于弦的直径的性质,并能应用其解决问题。
(2)经历圆的对称性和垂直于弦的直径的性质的探究过程。
了解探究数学问题的一些数学基本思想。
(3)通过学生的动手操作、独立思考、小组讨论、合作交流等活动,培养学生的动手能力和相互学习、相互帮助、善于交流的思想意识;通过对赵州桥及相关问题的解决,使学生树立爱科学、学科学的思想意识。
2、目标解析达成目标(1)(2)的标志是:学生在操作、分析、归纳的基础上,归纳出垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
达成目标(3)的标志是:学生通过动手操作、独立思考、小组讨论、合作交流等活动,;通过对赵州桥及相关问题的解决,提升了动手能力和相互学习、相互帮助、善于交流的思想意识。
三、教学问题诊断分析学生在此之前已经学习了圆的有关性质和过三点的圆等内容,对圆的有关性质已经有了一定的认识,这为顺利完成本节课的教学任务打下了基础,但对于垂直于弦的直径和这弦的关系(即垂径定理)的理解,学生可能会产生一些困难,所以在教学中应予以简单明了,深入浅出的分析。
鉴于此,本节课将通过“实验——观察——猜想——合作交流——验证”的途径,进一步培养学生的动手能力,观察能力,分析、联想能力、合作交流的能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。
基于以上分析,本节课的教学重点垂直于弦的直径所具有的性质。
教学难点是垂直于弦的直径的性质的探究、证明及其应用。
24.1.2 垂直于弦的直径教学目标1、知识目标:(1)充分认识圆的轴对称性。
(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。
(3)运用垂径定理进行简单的证明、计算。
2、能力目标:让学生经历“实验—观察—猜想—验证—归纳”的研究过程,培养学生动手实践、观察分析、归纳问题和解决问题的能力。
让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
3、情感目标:通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时培养学生勇于探索的精神。
教学重点垂直于弦的直径的性质及其应用。
教学难点1、垂径定理的证明。
2、垂径定理的题设与结论的区分。
教学辅助多媒体、可折叠的圆形纸板。
教学方法本节课采用的教学方法是“主体探究式”。
整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。
令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。
学生不再是知识的接受者,而是知识的发现者,是学习的主人。
情景创设情景问题:赵州桥主桥拱的跨度(弧所对的弦的长)为, 拱高(弧的中点到弦的距离)为,你能求出赵州桥主桥拱的半径吗?以赵州桥引入不仅培养学生对祖国大好河山的热爱,而且和后面解决赵州桥半径问题首尾呼应。
回顾旧识提问:圆有什么对称性?为学生自主探索垂径定理做奠基。
引入新课拿出一张圆形纸片,作出到任意一条非直径的弦AB,再过圆心做弦的垂线段CD,AB与CD相交于点M,沿着圆的直径CD对折,你发现了什么数量关系?(1)AM=BM (2)弧AC=弧BC (3)弧AD=弧BD证一证:用几何方法证明由证明的结论得出垂径定理内容培养动手观察能力,探索新问题,学生通过“实验--观察--猜想-证明”。
师生互动提问:若将垂径定理中的“垂直于弦”与“平分弦”交换,命题正确吗?证一证:用几何方法证明由证明的结论得出垂径定理推论内容贯彻学生“类比学习”的思想。
24.1.2 垂直于弦的直径教学目标1.理解圆的轴对称性。
2.掌握.垂经定理及其推论,并能应用它们解决一些计算题和证明题。
教学重难点垂径定理及其运用。
教学过程(学生活动)请同学按要求完成下题:此图,AB 是☉O 的一条弦,作直径CD,使CD ⊥AB,垂足为M.(1)此图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你的理由.(老师点评)(1)是轴对称图形,其对称轴是CD 所在的直线.(2)AM=BM,即直径CD 平分弦AB,并且平分弧AB 、弧ADB,即=,=.二、合作与探究这样,我们就得到下面的定理: 垂直于弦的直径平分弦,并且平分弦所对的两条弧下面我们用逻辑思维证明一下:已知:直径CD 、弦AB 且CD ⊥AB,垂足为M.求证:AM=BM,弧AC=弧BC,弧AD=弧BD.分析:要证AM=BM,只要证AM 、BM 构成的两个三角形全等.因此,只要连接OA 、OB 或AC 、BC 即可.证明:如图,连接OA 、OB,则OA=OB.在Rt△OAM 和Rt △OBM 中,∴Rt △OAM ≌Rt △OBM.∴AM=BM.∴点A 和点B 关于CD 对称.∵☉O 关于直径CD 对称,∴当圆沿着直线CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合,弧AD 与弧BD 重合.∴弧AC=弧BC,弧AD=弧BD.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
【例1】 已知:如图,在⊙O 中,弦AB 的长为8cm ,圆心O 到离为3cm 。
求:⊙O 的半径。
教师分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,而AE=EB=4cm,此时就得到了一个Rt△AEO。
学生口述计算过程,课件中显示过程。
教师强调:从例1可以知道作“弦心距”是很重要的一条辅助线,弦心距的作用就是平分弦,平分弦所对的弧。