版图后仿真
- 格式:pdf
- 大小:537.21 KB
- 文档页数:19
西安邮电大学集成电路版图设计实验报告学号:XXX姓名:XX班级:微电子XX日期:20XX目录实验一、反相器电路的版图验证1)反相器电路2)反相器电路前仿真3)反相器电路版图说明4)反相器电路版图DRC验证5)反相器电路版图LVS验证6)反相器电路版图提取寄生参数7)反相器电路版图后仿真8)小结实验二、电阻负载共源放大器版图验证9)电阻负载共源放大器电路10)电阻负载共源放大器电路前仿真11)电阻负载共源放大器电路版图说明12)电阻负载共源放大器电路版图DRC验证13)电阻负载共源放大器电路版图LVS验证14)电阻负载共源放大器电路版图提取寄生参数15)电阻负载共源放大器电路版图后仿真16)小结实验一、反相器电路的版图验证1、反相器电路反相器电路由一个PMOS、NPOS管,输入输出端、地、电源端和SUB 端构成,其中VDD接PMOS管源端和衬底,地接NMOS管的漏端,输入端接两MOS管栅极,输出端接两MOS管漏端,SUB端单独引出,搭建好的反相器电路如图1所示。
图1 反相器原理图2、反相器电路前仿真通过工具栏的Design-Create Cellview-From Cellview将反相器电路转化为symbol,和schemetic保存在相同的cell中。
然后重新创建一个cell,插入之前创建好的反相器symbol,插入电感、电容、信号源、地等搭建一个前仿真电路,此处最好在输入输出网络上打上text,以便显示波形时方便观察,如图2所示。
图2 前仿真电路图反相器的输入端设置为方波信号,设置合适的高低电平、脉冲周期、上升时间、下降时间,将频率设置为参数变量F,选择瞬态分析,设置变量值为100KHZ,仿真时间为20u,然后进行仿真,如果仿真结果很密集而不清晰可以右键框选图形放大,如图3所示。
图3 前仿真结果3、反相器电路版图说明打开之前搭建好的反相器电路,通过Tools-Design Synthesis-Laout XL新建一个同cell目录下的Laout文件,在原理图上选中两个MOS管后在Laout中选择Create-Pick From Schematic从原理图中调入两个器件的版图模型。
模拟集成电路的设计流程一、需求分析与规格确定1. 应用场景:了解电路将用于何种设备,如手机、电脑、汽车电子等,以及这些设备对电路的特殊要求。
2. 性能指标:根据应用场景,确定电路的关键性能参数,如增益、带宽、功耗、线性度、噪声等。
3. 工作条件:明确电路的工作电压、温度范围、湿度、震动等环境条件。
4. 成本与尺寸:考虑电路的成本目标和封装尺寸,确保设计在商业上是可行的。
5. 制定规格书:将上述分析结果整理成详细的技术规格书,为后续设计工作提供依据。
二、电路架构设计与仿真在规格确定后,设计师开始进行电路架构的设计。
这一阶段,设计师需要运用专业知识,选择合适的电路拓扑,并进行初步的仿真验证。
1. 电路拓扑选择:根据规格书要求,选择合适的电路拓扑,如运算放大器、滤波器、稳压器等。
2. 元器件选型:根据电路拓扑,选取合适的晶体管、电阻、电容等元器件。
3. 原理图绘制:使用电路设计软件,绘制电路的原理图。
4. 参数调整与优化:通过仿真软件,对电路参数进行调整,以优化电路性能。
5. 仿真验证:进行直流分析、交流分析、瞬态分析等仿真,验证电路在不同工作条件下的性能是否符合规格要求。
三、版图布局与设计规则检查1. 版图绘制:根据原理图,绘制电路的版图,包括元器件布局、连线、焊盘等。
2. 设计规则检查(DRC):确保版图设计符合制造工艺的设计规则,如线宽、线间距、寄生效应等。
3. 版图与原理图一致性检查(LVS):通过软件工具,比较版图与原理图是否一致,确保没有设计错误。
4. 参数提取:从版图中提取寄生参数,为后续的版图后仿真做准备。
四、版图后仿真与优化版图设计完成后,需要进行版图后仿真,以验证实际制造出的电路性能。
1. 版图后仿真:利用提取的寄生参数,对版图进行后仿真,检查电路性能是否受到影响。
2. 性能优化:根据仿真结果,对版图进行必要的调整,以优化电路性能。
3. 设计迭代:如果仿真结果不理想,可能需要返回前面的步骤,对电路架构或版图进行重新设计。
应用Calibre xRC 辅助模拟电路版图纠错威盛电子(中国)有限公司 蔡光杰[摘要]在模拟电路设计中,在版图完成之后进行带寄生参数仿真是必要的,该仿真能够检查实际的版图在多大程度上符合我们的设计要求。
Calibre xRC是一款优秀的版图寄生电阻电容抽取工具,它能提供非常详细的寄生参数信息。
但是,越是详细的寄生参数网表就必然导致越长的仿真时间,这往往给电路的后仿真带来一些不方便,增加电路纠错的周期。
本文将根据实际工作的经验,介绍如何使用Calibre xRC的RC-Reduction和Lumped C功能来简化寄生参数网表,以缩短电路纠错的周期,以及在实际中的应用效果。
1.寄生电阻电容对模拟电路的影响在模拟电路设计中,电路中的各种寄生效应对性能影响很大。
一般来说,寄生电阻和寄生电容对电路的影响最为明显。
如果忽略寄生效应的影响,会导致仿真结果偏离了真实情况,甚至会出现错误的结果。
如果能抽取出这些寄生效应的数据,结合电路进行仿真,就能够比较准确的模拟真实电路的特性。
Calibre xRC 为我们提供了抽取电路寄生参数的解决方案。
通过对电路版图的分析,Calibre xRC能够抽取对电路性能影响最为重要的寄生电阻和寄生电容。
然而随着电路的复杂度上升,我们抽取出来的带有寄生电容和寄生电阻的网表变得巨大而且复杂,使用这样的网表进行仿真需要的时间也变得非常长。
如果我们通过仿真发现电路存在问题,需要寻找问题所在并要进行多次仿真,则可以通过Calibre xRC 的一些选项来简化网表,并且使得问题更容易被发现。
下面两个例子分别使用RC-Reduction和Lumped C来简化后仿真网表,并且使我们能迅速找到问题所在。
2.快速定位影响电路性能的主要寄生电阻下面举的例子是应用在Audio方面的电路,如图1所示,相对应的版图如图2所示。
图1图2这是一个单声道功率放大器,带音量调节功能和静音功能。
电路由三部分组成,功率放大器,可调电阻单元,数字逻辑控制单元。
模拟版图的艺术知识点总结一、模拟版图的定义模拟版图是指一种以仿真的手法所绘制的图案,它能够复制自然界或工业界中出现的各种图案。
这些图案可以是动植物、风景或是抽象的几何图案等,都可以通过模拟版图的方式加以复制和表现。
二、模拟版图的历史模拟版图的历史可以追溯至古代文明时期。
早在古埃及时期,人们就开始利用木刻版的形式来复制图案和文字。
后来在中国唐代,木刻版技术进一步发展,人们开始利用木刻版来印制书籍和绘制画作。
而在欧洲文艺复兴时期,模拟版图的技术得到进一步的发展,版画艺术也逐渐成为主流的艺术表现形式。
三、模拟版图的制作过程1. 图案设计:在制作模拟版图之前,首先需要设计出所要表现的图案。
这个过程可以通过手绘、数码设计软件等方式进行。
2. 制版:在图案设计完成后,需要将图案转移到版面上。
这个过程可以通过雕刻、刻画或是拓印的方式来完成。
3. 墨料准备:制版完成后,需要准备合适的墨料来印制图案。
墨料的配制需要考虑颜色、浓度等因素。
4. 印刷:将制版完成的图案通过印刷工艺转移到纸张或其他材料上。
5. 后处理:印刷完成后,可能需要进行一定的后处理工艺,如上色、裁切等。
四、模拟版图的艺术表现形式模拟版图可以呈现出丰富多彩的艺术表现形式,包括但不限于以下几种:1. 木刻版画:以木刻版为工具,通过雕刻的手法来表现图案。
这种技术在中国历史上有着悠久的传统,常常用于印制书籍、绘制画作等。
2. 铜版画:以铜版为工具,通过化学蚀刻的方式来表现图案。
这种技术在欧洲文艺复兴时期得到了广泛的应用,被认为是版画艺术的高级形式。
3. 丝网印刷:通过丝网来印制图案,是一种常见的模拟版图技术之一。
这种技术可以用来印制 T 恤、海报等,被广泛用于产品包装和宣传宣传活动中。
4. 染色技术:一些特殊的染色技术也可以被看作是模拟版图的一种表现形式。
比如,蜡染、印花等技术可以将图案印制到织物上,用来制作服装、家居用品等。
五、模拟版图的艺术价值模拟版图作为一种艺术表现形式,具有独特的艺术价值。
ADS Co-simulation w/ Layout ComponentsBreaking Down Barriers Between Electrical & Physical domainsAgenda• Current design flow challenges • Improved circuit/EM co-simulation w/ Layout Components • Detailed Set up & Usage of Layout Components • Application Examples • SummaryTitle of Presentation 1 March, 2001Agilent RestrictedPage 2Current Design Flow ChallengesI need to simulate my LNA design. But I am worried about the physical parasitics of the layout. I wish I can work these issues out now instead of having to tweak design later on.Title of Presentation 1 March, 2001 Agilent RestrictedI will set up the layout and perform a Momentum EM simulation and send it to you to use along side your circuit design.Page 3Issues and Challenges with Physical DesignNow, which pin connects to which pin??? Did he perform the EM simulation to my specs???I wish there was an easier way to co-simulate circuit and physical parasitics in the schematic environment!!!!Title of Presentation 1 March, 2001 Agilent Restricted Page 4Agenda• Current design flow challenges • Improved circuit/EM co-simulation w/ Layout Components • Detailed Set up & Usage of Layout Components • Application Examples • SummaryTitle of Presentation 1 March, 2001Agilent RestrictedPage 5New in ADS 2002! Co-simulate w/ Layout ComponentsWow! This is like working in Layout, but it’s not; we are still in the SchematicLayout Component is a scaled version of the layout drawing. It is automatically generated and available in the ADS library as a component! It can also be simulated with a measured data file. This new feature allows a more transparent integration of physical design parasitics at the schematic design levelTitle of Presentation 1 March, 2001 Agilent Restricted Page 6Co-simulate w/ Layout Components BenefitsSo, you are telling me that with new Layout Components I get: •EM-Circuit co-simulation from the schematic environment •Include physical layout parasitics at the schematic design level •Seamless integration of Momentum EM technology in the standard design flow •Momentum simulation options accessible from schematic environment •User defined Layout Components’ symbol size & min/max pin-pair spacing •Compiled Layout Components listed in project’s network directory •Model database for multiple models for each componentYes. Let me show you how it works...Title of Presentation 1 March, 2001 Agilent Restricted Page 7Agenda• Current design flow challenges • Improved circuit/EM co-simulation w/ Layout Components • Detailed Set up & Usage of Layout Components • Application Examples • SummaryTitle of Presentation 1 March, 2001Agilent RestrictedPage 8Generating Layout Components Dialog BoxSymbol: A scaled copy of the layout shape is created. Set min or max pin-pin distance, or layout units.3Model: These parameters will be available in schematic. They are a subset of the Momentum simulation setup.Database: When the component is created, a citifile is created from the last dataset and stored in the model database.Title of Presentation 1 March, 2001Agilent RestrictedPage 9Generating Layout Components Symbol SizeIn this case, Port 18 & 19 (two closest ports), will have 1 schematic unit (1 inch by default) of separation in the Layout Component.This option is desired when the Layout Component thought will encompass schematic symbols (ie discrete resistors, capacitors, etc…)Title of Presentation 1 March, 2001Agilent RestrictedPage 10Generating Layout Components Symbol SizeIn this case, the maximum pin-to-pin spacing of the Layout Component will measure 1 schematic unit (1 inch by default).This option is recommended if user plans on using many layout components along side schematic components.Title of Presentation 1 March, 2001 Agilent Restricted Page 11Generating Layout Components Symbol SizeIn this case, layout unit dimensions are mapped to scaled schematic unit dimensionsThis option is recommended when combining different layout components on the same schematic page.Title of Presentation 1 March, 2001 Agilent Restricted Page 12Generating Layout Component Model TypeMomentum modeling top options can be set at this time or later during use at the schematic levelMomentum modeling options include the following:Title of Presentation 1 March, 2001Agilent RestrictedPage 13Generating Layout Component Model Model DatabaseDifferent simulation results can be associated with a layout component, e.g., to keep track of simulations done with different Momentum parameters, or Momentum modes (MW or RF). Models already available for a component can be viewed in the layout component Model Database dialog. Selection and deselection of the models to be deleted can be done using the arrows or using the Select All or Unselect All buttons.Title of Presentation 1 March, 2001 Agilent Restricted Page 14Using Layout Component in SchematicComponent is inserted from ADS library: Double click:Ref: The reference pin is created as a voltage reference for all the other pins of the component. Typically connected to ground, it can also be used to simulate floating grounds.Also, push / pop if schematic subcircuit exists!Title of Presentation 1 March, 2001 Agilent Restricted Page 15Component Parameters & File SettingsReuse Model: The Model Database is queried for the Model Parameter values. If available, it will reuse database citifile during the circuit simulation. If NOT available (for example: a broader frequency sweep), a new model will be generated by invoking the Momentum simulator automatically - then it will be added to the Model Database.Changing settings results in Momentum re- simulation!File Based model: You can also choose any Sparameter file (Dataset, CITIFILE, or Touchstone) or ADS Netlist file and the model database is ignored. For example, you can use measured data for one simulation and then use the Momentum MW or RF for a second simulation to compare results!Next, circuit simulation...Title of Presentation 1 March, 2001 Agilent Restricted Page 16Agenda• Current design flow challenges • Improved circuit/EM co-simulation w/ Layout Components • Detailed Set up & Usage of Layout Components • Application Examples • SummaryTitle of Presentation 1 March, 2001Agilent RestrictedPage 17Layout Component Simulation SetupUse any other ADS simulator: AC, HB, Transient, etc.Title of Presentation 1 March, 2001Agilent RestrictedPage 18S-parameter Simulation - TuningTitle of Presentation 1 March, 2001Agilent RestrictedPage 19Transient SimulationTitle of Presentation 1 March, 2001Agilent RestrictedPage 20Agenda• Current design flow challenges • Improved circuit/EM co-simulation w/ Layout Components • Detailed Set up & Usage of Layout Components • Application Examples • SummaryTitle of Presentation 1 March, 2001Agilent RestrictedPage 21Summary• Layout Components allow for seamless and intuitive EM/Circuit co-simulation in schematic • Transparent integration of electromagnetic simulators at the schematic design level schematicLayout setup • Momentum simulation options accessible from Layout Component Generation• Compiled Layout Components available in ADS library • Model database for multiple models for each Layout Component ADS circuit simulationTitle of Presentation 1 March, 2001Agilent RestrictedPage 22。
目录前端电路设计与仿真 (2)第一节双反相器的前端设计流程 (2)1、画双反相器的visio原理图 (2)2、编写.sp文件 (2)第二节后端电路设计 (5)一、开启linux系统 (5)2、然后桌面右键重新打开Terminal (6)双反相器的后端设计流程 (8)一、schematic电路图绘制 (8)二、版图设计 (25)画版图一些技巧: (35)三、后端验证和提取 (37)第三节后端仿真 (44)其它知识 (48)前端电路设计与仿真第一节双反相器的前端设计流程1、画双反相器的visio原理图inV DDM2M3out图1.1其中双反相器的输入为in 输出为out,fa为内部节点。
电源电压VDD=1.8V,MOS管用的是TSMC的1.8V典型MOS管(在Hspice里面的名称为pch和nch,在Cadence里面的名称为pmos2v和nmos2v)。
2、编写.sp文件新建dualinv.txt文件然后将后缀名改为dualinv.sp文件具体实例.sp文件内容如下:.lib 'F:\Program Files\synopsys\rf018.l' TT 是TSMC用于仿真的模型文件位置和选择的具体工艺角*****这里选择TT工艺角***********划红线部分的数据请参考excel文件《尺寸对应6参数》,MOS管的W 不同对应的6个尺寸是不同的,但是这六个尺寸不随着L的变化而变化。
划紫色线条处的端口名称和顺序一定要一致MOS场效应晶体管描述语句:(与后端提取pex输出的网表格式相同) MMX D G S B MNAME <L=val> <W= val > <AD= val > <AS= val > <PD= val > <PS= val > <NRD= val > <NRS= val >2.1、在windowXP开始--程序这里打开Hspice程序2.2、弹出以下画面然后进行仿真1、打开.sp文件2、按下仿真按钮3形存放.sp文件的地址查看波形按钮按下后弹出以下对话框单击此处如果要查看内部节点的波形,双击Top处单击这些节点即可查看波形如果有多个子电路请单击此处的Top查看如果要查看测量语句的输出结果请查看 .MTO文件(用记事本打开)至此前端仿真教程结束第二节后端电路设计前序(打开Cadence软件)一、开启linux系统双击桌面虚拟机的图标选择Power on this virtual machine开启linux之后在桌面右键选择 Open Terminal输入 xhost local:命令按回车之后输入 su xue命令按回车,这样就进入了xue用户1、输入命令加载calibre软件的license,按回车,等到出现以下画面再关闭Terminal窗口2、然后桌面右键重新打开Terminal进入学用户,开启Cadence软件,如下图然后出现cadence软件的界面关闭这个help窗口,剩下下面这个窗口,这样cadence软件就开启了[如果在操作过程中关闭了cadence,只需要执行步骤2即可,步骤1加载calibre的license只在linux重启或者刚开启的时候运行一次就可以了。
使用Calibre xRC实现RFCMOS电路的寄生参量提取及后仿真中国科学院微电子研究所郭慧民[摘要]Calibre xRC是Mentor Graphics公司用于寄生参量提取的工具,其强大的功能和良好的易用性使其得到业界的广泛认可。
本文以采用RFCMOS工艺实现的LNA为例,介绍使用Calibre xRC对RFCMOS电路寄生参量提取,以Calibreview 形式输出以及在Virtuoso的ADE中直接后仿真的流程。
本文还将讨论Calibre xRC特有的XCELL方式对包含RF器件的电路仿真结果的影响。
采用Calibre xRC提取寄生参量采用RFCMOS工艺设计低噪声放大器(LNA),其电路图如图1所示,版图如图2所示。
图1 LNA的电路图图2 LNA的版图Calibre支持将其快捷方式嵌入在Virtuoso平台中。
用户只需在自己.cdsinit文件中加入以下一行语句:load( strcat( getShellEnvVar("MGC_HOME") "/lib/calibre.skl" ))就可以在virtuoso的菜单中出现“calibre”一项,包含如下菜单:点击Run PEX,启动Calibre xRC的GUI,如图3所示。
Outputs菜单中的Extraction Type里,第一项通常选择Transistor Level或Gate Level,分别代表晶体管级提取和门级提取。
第二项可以选择R+C+CC,R+C,R,C+CC,其中R 代表寄生电阻,C代表本征寄生电容,CC代表耦合电容。
第三项可以选择No Inductance,L或L+M,分别代表不提取电感,只提取自感和提取自感与互感。
这些设置由电路图的规模和提取的精度而定。
在Format一栏中,可以选择SPECTRE,ELDO,HSPICE等网表形式,也可以选择Calibre xRC提供的CALIBREVIEW形式。
ADS仿真:微带滤波器的设计微波滤波器是用来分离不同频率微波信号的一种器件。
它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。
在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。
微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。
1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。
最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。
这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。
2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。
图12.1给出了这四种滤波器的特性曲线。
按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。
2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。
3中心频率:fc或f0。
4截止频率。
下降沿3dB点频率。
5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。
6微分时延(differential delay):两特定频率点群时延之差以ns计。
7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。
前段时间仿了一下8GHz的wilkison的3dB等功分器,写下一些小心得。
一、切记要将贴片的高度设计在Z=0的高度,否则你转为.dxf时文件并不能打开。
二、功分器的关键参数是1/4波长匹配器,在仿真高度的过程中要通过改变它的长度,来取得合适的S参数。
三、首先要将S12,S13参数基本确定下来,使其位于(-3,-3.3)dB之间;四、其次将S11,S22,S33调节到S参数在-25dB以下;五、最后将S23参数调节到-25dB以下即可投入工程应用。
在使用HFSS设计的过程中,如果使用波端口激励,那么端口应该在空气腔的边缘处。
如果使用集总参数激励,那么端口应该在空气腔的内部。
第一步:定义变量第二步:建模空气腔:airbox介质:substrate,Rogers4003, 0.508mm微带线:patch电阻:R波端口激励:port1, port2, port3注意:在直角处要切一刀,否则的话损耗会比较大。
第三步:设置边界及波端口激励一、边界的顺序是很重要的,在这里,电阻R会与微带线patch重叠,所以应该会设置微带线为perfectE, 之后再设计电阻为RLC。
Substrate的底面应该要设为perfectE。
Airbox的不与波端口和substrate接触的面应该要设为radiation。
二、波端口积分方向为从Z=-H到Z=7*H,正中间。
第四步:设置求解频率以及扫描频率第五步:检查是否设计正确由于我们是预先设定微带线的,所以可以忽略此警告。
开始仿真。
第六步:查看仿真结果,若结果不理想,再进行参数扫描。
如下图所示:添加参数扫描范围parametric,查看它的变化规律,仿真出最好的实验结果。
得到扫描范围后,可对其进行优化,optimization,得出理想的结果。
第七步:仿真结果如下图所示仿真效果良好,还有待改善的地方是,S11、S22、S33没有在同一个谐振点。
如果有时间的话可以继续对其进行仿真。
Calibre后仿1. 在用户目录(/home/用户名)下的Simulation文件夹中,新建一个存放后仿真文件的文件夹,如对本例的inverter则后仿文件夹名可取为“postinv”。
2. 新建一个inverter的schematic cellview,如取为inverter_simu,并画好inverter的电路图和进行相应的电路仿真。
仿真完成后,则会在simulation文件夹中生成一个相应的存放仿真结果的文件夹,且其文件夹名与schematic cellview name完全一样。
该文件夹中保存了仿真生成的电路网表(在文件夹“…/simulation/inverter_simu/spectre/schematic/netlist”中)和仿真分析结果(在文件夹“…/simulation/inverter_simu/spectre/schematic/psf”中,里面存入了dc、ac和tran分析的所有静态工作点、所有节点电压和电流等信息)。
将文件夹“…/simulation/inverter_simu/spectre/schematic/netlist”中的网表文件“input.scs”(该文件为spectre仿真时所运行的网表文件,相当Hspice的“.sp”文件)和文件夹“…/simulation/inverter_simu/spectre/schematic/psf”中“runObjFile”文件(该文件为查看仿真分析结果文件“dc-dc”、“ac-ac”和“tran-tran”中的节点电压电流等信息时的控制文件,里面包含了节点控制信息)复制到后仿文件夹“postinv”中。
注意:这里的schematic cellview(如取名为inverter_simu_1)最好是先建成symbol,然后再新建一个仿真用的schematic cellview(如取名为inverter_simu_2)。