2017-2018学年高中数学北师大版必修四教学案:第一章 §3 弧度制
- 格式:doc
- 大小:1.96 MB
- 文档页数:11
§3弧度制1.了解角的另外一种度量方法——弧度制.2.能够熟练地在角度制和弧度制之间进行换算.(重点)3.掌握弧度制中扇形的弧长公式和面积公式.(难点)[基础·初探]教材整理弧度制阅读教材P9~P11,完成下列问题.1.弧度制的定义在单位圆中,长度为1的弧所对的圆心角称为1弧度角.它的单位符号是rad,读作弧度.以弧度作为单位来度量角的单位制,叫作弧度制.2.角度制与弧度制的互化(1)弧度数①正角的弧度数是一个正数;②负角的弧度数是一个负数;③零角的弧度数是0;④弧度数与十进制实数间存在一一对应关系.(2)弧度数的计算|α|lr.如图1-3-1:图1-3-1(3)角度制与弧度制的换算图1-3-2(4)一些特殊角的度数与弧度数的对应关系已知r为扇形所在圆的半径,n为圆心角的度数,α为圆心角的弧度数.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位.()(2)1度的角是周角的1360,1弧度的角是周角的12π.()(3)180°等于π弧度.()(4)不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关.()【解析】(1)正确.(2)正确.1度的角是周角的1360,1弧度的角是周角的12π.(3)正确.根据弧度的定义,180°一定等于π弧度.(4)错误.根据角度制与弧度制的定义,无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,而是与弧长和半径的比值有关.【答案】(1)√(2)√(3)√(4)×[小组合作型](1)20°;(2)-15°;(3)7π12;(4)-115π.【精彩点拨】套用角度与弧度的换算公式,即度数×π180=弧度数,弧度数×180°π=度数.进行求解.【自主解答】(1)20°=20π180=π9.(2)-15°=-15180π=-π12.(3)712π=712×180°=105°.(4)-115π=-115×180°=-396°.角度制与弧度制互化的策略1.原则牢记180°=π rad.充分利用1°=π180rad和1 rad=180°π进行换算.2.方法设一个角的弧度数为α,角度数为n.则α rad=α·180°π;n°=n·π180rad. 3.注意事项(1)将角度化为弧度,当角度中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad化为弧度便可.(2)以弧度为单位表示角时,如无特殊要求,不必把π写成小数.[再练一题]1.将112°30′化为弧度,将-512π化为度.【导学号:66470003】【解】 112°30′=112.5°=112.5×π180=5π8rad ,又1 rad =180°π,∴-512π rad =-512π×180°π=-75°.几象限角;(2)在0°~720°范围内,找出与角2π5终边相同的角.【精彩点拨】 (1)把角度换算为弧度,表示成2k π+α(k ∈Z )的形式即可求解;(2)把弧度换算为角度,写出与其终边相同的角,调整k 使待求角在[0°,720°)内.【自主解答】 (1)-1 500°=-1 500×π180=-25π3=-10π+5π3. ∵5π3是第四象限角,∴-1 500°是第四象限角.(2)∵2π5=25×180°=72°,∴终边与角2π5相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°,∴在0°~720°范围内,与2π5角终边相同的角为72°,432°.[再练一题]2.设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们分别是第几象限角;(2)将β1,β2用角度制表示出来,并在-720°~0°范围内找出与它们终边相同的所有角.【解】 (1)∵180°=π rad ,∴α1=-570°=-570π180=-19π6=-2×2π+5π6, α2=750°=750π180=25π6=2×2π+π6. ∴α1是第二象限角,α2是第一象限角.(2)β1=3π5=35×180°=108°,设θ=108°+k ·360°(k ∈Z ),则由-720°≤θ<0°,即-720° ≤108°+k ·360°<0°,得k =-2,或k =-1.故在-720°~0°范围内,与β1终边相同的角是-612°和-252°.β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0.故在-720°~0°范围内,与β2终边相同的角是-420°.[探究共研型]探究1 【提示】 |α|=l r .探究2 扇形的面积和相应的弧长存在怎样的关系? 【提示】 S =12lr .如图1-3-3,扇形AOB 的面积为4,周长为10,求扇形的圆心角α(0<α<2π)的弧度数.图1-3-3【精彩点拨】 S =12lr ,l +2r =周长→求l ,r 值→α=lr【自主解答】 设︵AB 长为l ,扇形半径为r ,由题意得: ⎩⎪⎨⎪⎧l +2r =10,12lr =4,解得⎩⎨⎧ r =4,l =2,或⎩⎨⎧r =1,l =8.(舍)故α=24=12(rad),即扇形的圆心角为12 rad.涉及扇形的周长、弧长、圆心角、面积等计算,关键是先分析题目,已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接计算或列方程(组)求解.[再练一题]3.(1)已知扇形的半径为1 cm ,圆心角为30°,求扇形的弧长和面积; (2)已知扇形的周长为6 cm ,面积为2 cm 2,求扇形圆心角的弧度数. 【解】 (1)∵α=30°=π6,∴l =|α|r =π6×1=π6(cm), S =12|α|r 2=12×π6×12=π12(cm 2), 故扇形的弧长为π6 cm ,面积为π12 cm 2.(2)设扇形的弧长为l ,所在圆的半径为r ,由题意得 ⎩⎪⎨⎪⎧l +2r =6,12lr =2,消去l 并整理得,r 2-3r +2=0,解得r =1或r =2.当r =1时,l =4,圆心角α=l r =41=4; 当r =2时,l =2,圆心角α=l r =22=1. 故扇形的圆心角为1弧度或4弧度.1.下列说法中,错误的说法是()A.半圆所对的圆心角是π radB.周角的大小是2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【解析】根据弧度的定义及角度与弧度的换算知A,B,C均正确,D错误.【答案】 D2.已知α=-2 ,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】-π<-2<-π2,故α的终边在第三象限.【答案】 C3.-2312π rad化为角度应为.【导学号:66470004】【解析】-2312π=-2312×180°=-345°.【答案】-345°4.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的倍.【解析】由于S=12lR,若l′=32l,R′=12R,则S′=12l′R′=12×32l×12R=34S.【答案】3 45.已知集合A={α|2kπ<α<π+2kπ,k∈Z},B={α|-4≤α≤4},求A∩B. 【解】∵A={α|2kπ<α<π+2kπ,k∈Z},令k=1,有2π<α<3π,而2π>4;令k=0,有0<α<π;令k=-1,有-2π<α<-π,而-2π<-4<-π,故A∩B={α|-4≤a<-π或0<α<π}.。
2.7 平面向量的应用1.阅读回答下列问题:①.直线的方向向量方程是怎么来的?是否唯一?为什么?②.什么是直线的法向量?是否唯一?为什么?③.直线方程与方向向量和法向量之间的转换关系?④.点到直线的距离公式怎么推出来的?结论是什么?2.应用分析例1.求点(1,2)P 到直线:210l x y ++=的距离。
分析:直线:210l x y ++=法向量( ) 直线:210l x y ++=任取一点A ( ) ||||PA n d n ⋅= 例2.如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点。
分析:三线共点,两线相交于一点0,0,AH BC BH AC ⋅=⋅= 需证0CH BA ⋅=例3.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ∠BAC 平分线交BC例4.证明:三角形重心与顶点的距离等于它到对边中点的距离的两倍。
证:设−→−AC= b ,−→−CB = a ,则−→−AD =−→−AC +−→−CD = b +21a , −→−−→−−→−+=CB EC EB =a +21b ∵A, G, D 共线,B, G, E 共线∴可设−→−AG =λ−→−AD ,−→−EG = μ−→−EB ,则−→−AG =λ−→−AD =λ(b +21a )=λb +21λa , −→−EG = μ−→−EB = μ(21b +a )=21μb +μa , ∵−→−−→−−→−=+AG EG AE 即:21b + (21μb +μa ) =λb +21λa C C :()||||(35,93)336,(0,)5541(1,)5AB AC AD AB AC AD AB BC AD D λλμμμμ=+==+=-+-∴=∴=∴分析利用等腰三角形的中线,角平分线重合表示C∴(μ-21λ)a + (21μ-λ+21)b = 0 ∵a , b 不平行, ∴⇒⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-313202121021μλλμλμ −→−AG =32−→−AD5.(3,1),(sin 2,cos 2)()1)()0tan .2)().a b x x f x a bf x x f x ===⋅=例已知向量函数若求的值求函数的单调增区间以及函数取得最大值时向量a 与b 夹角3.巩固训练1.求证:过点00(,)A x y 并且垂直于向量(,)n a b =的直线方程是00ax by ax by +=+2.已知两直线12:(23)10,:(25)(6)70l mx m y l m x m y ---=+++-=如果12//l l m =则若12l l m ⊥=则。
1.3 弧度制1.度量角的单位制 (1)角度制规定周角的______为1度的角,用度作为单位来度量角的单位制叫角度制. (2)弧度制在以单位长为半径的圆中,单位长度的弧所对的圆心角称为__________,它的单位符号是______,读作______.这种以______作单位度量角的单位制,叫作弧度制.预习交流1角α=3这种表达方式正确吗? 2.弧度数的计算预习交流2(1)扇形弧长为18 cm ,半径为12 cm ,则圆心角的弧度数是__________. (2)一条弦的长度等于圆半径的12,则这条弦的圆心角的弧度数是( ). A.π6 B.π3 C.12D .以上都不对 3.角度与弧度的互化预习交流3填空.(记住下面一些特殊角的度数与弧度数的互化)设扇形的半径为r ,弧长为l ,α为其圆心角,则预习交流4(1)在弧度制下的扇形面积公式S =12lr 可类比哪种图形的面积公式加以记忆?(2)圆的半径为6 cm ,则15°的圆心角与圆弧围成的扇形的弧长为______cm ,面积为______cm 2.答案:1.(1)1360(2)1弧度的角 rad 弧度 弧度预习交流1:提示:正确.角α=3表示3弧度的角,这里将“弧度”省略了. 2.正数 负数 0预习交流2:(1)32(2)D预习交流3:30° 45° 120° 0 π12 π3 5π12 3π4 5π6 5π4 3π24.|α|πr 180 |α|r |α|πr 2360 12lr 12|α|r 2预习交流4:(1)提示:此公式可类比三角形的面积公式来记忆. (2)π2 3π21.角度制与弧度制的互化(1)把112°30′化成弧度;(2)把-5π12化成度;(3)将8化成度.思路分析:(1)先把112°30′化成度,再利用1°=π180 rad 进行换算;(2)直接利用1rad =⎝⎛⎭⎪⎫180π°≈57.30°进行换算.把下列各角从度化成弧度或从弧度化成度.(1)67°30′;(2)810°;(3)108°;(4)135°;(5)7π;(6)-5π2;(7)23π4;(8)-4π5.1.角度与弧度的互化.(1)原则:牢记180°=π rad ,充分利用1°=π180 rad ,1 rad =⎝⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =⎝⎛⎭⎪⎫α·180π°;n °=n ·π180 rad. 2.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度即可.以弧度为单位表示角时,常把弧度写成多少π的形式.如无特殊要求,不必把π写成小数.2.用弧度表示终边相同的角及区域角已知角α=2 005°,(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.思路分析:(1)先将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,再根据β与α的终边相同来判断.。
§3 弧度制问题导学1.角度制与弧度制的互化活动与探究1(1)把112°30′化成弧度;(2)把-5π12化成度.迁移与应用把下列各角从度化成弧度或从弧度化成度.(1)67°30′;(2)810°;(3)108°;(4)135°;(5)7π;(6)-5π2;(7)23π4;(8)-4π5.1.角度与弧度的互化.(1)原则:牢记180°=π rad ,充分利用1°=π180rad , 1 rad =⎝⎛⎭⎫180π°进行换算. (2)方法:设一个角的弧度数为α,角度数为n ,则 α rad =⎝⎛⎭⎫α·180π°;n °=n ·π180rad . 2.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度即可.以弧度为单位表示角时,常把弧度写成多少π的形式.如无特殊要求,不必把π写成小数.2.用弧度表示终边相同的角及区域角活动与探究2 已知角α=2 005°,(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.迁移与应用已知角α的终边与π3的终边相同,求角α3在[0,2π)内的值.(1)用弧度表示终边相同的角所有与角α终边相同的角,连同角α在内,构成的集合用弧度可表示为{β|β=2kπ+α,k∈Z},这里α应为弧度数.(2)在某个区间内寻找与α终边相同的角β①首先表示β的一般形式.②然后根据区间范围讨论k的值.③最后把k的值代入β的一般形式求出.活动与探究3用弧度表示顶点在原点,始边重合于x轴的非负半轴,终边落在图中的阴影部分内的角的集合(不包括边界).迁移与应用用弧度表示顶点在原点,始边与x轴的非负半轴重合,终边落在阴影部分内的角的集合,如图所示,包括边界.区域角的表示方法(1)要用终边相同的角的表示形式表示出以阴影部分的边界为终边的角,并注意旋转的方向及两边界角的大小顺序;(2)表达式中角度制与弧度制不能混用;(3)要分清阴影部分是否包括边界,以确定表达式中是否带“等号”.3.弧长公式及扇形面积公式的应用活动与探究4扇形AOB 的周长为8 cm ,圆心角为α(0<α<2π). (1)若这个扇形的面积为3 cm 2,求圆心角α的大小; (2)求这个扇形的面积取得最大值时圆心角α的大小.迁移与应用如图所示,已知扇形AOB 的圆心角为120°,半径长为6,求:(1)AB 的长; (2)弓形ACB 的面积.(1)在弧度制下的弧长公式及扇形面积公式中,由α,r ,l ,S 中的两个量可以求出另外的两个量,即用方程的思想“知二求二”.(2)求扇形的面积关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用.当堂检测1.下列说法中,错误的是( ).A .用角度制和弧度制度量任一角,单位不同,量数也不同B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径无关2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积为( ).A .83πB .43C .2πD .4π33.把-1 485°写成2k π+α(0≤α<2π,k ∈Z )的形式是( ). A .-8π+π4 B .-8π-7π4C .-10π-π4D .-10π+7π44.(1)300°化为弧度是________; (2)-5π6化为度是________; (3)终边落在如图的阴影部分(包括边界)的角的集合是________.5.已知扇形的周长为6 cm ,面积为2 cm 2,求扇形圆心角α(0<α<2π).课前预习导学 【预习导引】1.(1)1360 (2)1弧度的角 rad 弧度 弧度预习交流1 略预习交流2 30° 45° 120° 0π12 π3 5π12 3π4 5π6 5π4 3π23.正数 负数 0 预习交流3 (1)32 (2)π34.|α|πr 180 |α|r |α|πr 2360 12lr 12|α|r 2预习交流4 (1)提示:此公式可类比三角形的面积公式来记忆.(2)π2 3π2 课堂合作探究 【问题导学】活动与探究1 解:(1)112°30′=112.5°=112.5×π180=2252×π180=5π8;(2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 迁移与应用 (1)3π8rad(2)9π2rad (3)3π5rad (4)3π4rad (5)1 260° (6)-450° (7)1 035° (8)-144°活动与探究2 解:(1)2 005°=2 005×π180=401π36=5×2π+4136π.又π<41π36<3π2,所以α与41π36终边相同,是第三象限角.(2)与α角终边相同的角为2k π+41π36,k ∈Z .由-5π≤2k π+41π36<0,可得-52-4172≤k <-4172.∵k ∈Z ,∴k =-3,-2,-1.∴在区间[-5π,0)上,与角α终边相同的角是-31π36,-103π36,-175π36.迁移与应用 π9,7π9,13π9活动与探究3 解:(1)图①中以OB 为终边的角为330°,可看成是-30°,化为弧度,即-π6,而75°=75×π180=5π12,∴⎩⎨⎧⎭⎬⎫θ|2k π-π6<θ<2k π +5π12,k ∈Z .(2)图②中以OB 为终边的角为225°,可看成是-135°,化为弧度,即-3π4,而135°=135×π180=3π4,∴⎩⎨⎧⎭⎬⎫θ|2k π-3π4<θ<2k π+3π4,k ∈Z .迁移与应用 解:(1)⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π6≤α≤2k π+5π4,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α⎪⎪2k π-π3≤α≤2k π+π6,k ∈Z .(3)⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+2π3,k ∈Z .活动与探究4 解:设扇形AOB 的半径为r ,弧长为l ,(1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2,或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr =6.(2)∵2r +l =8,∴S 扇=12lr =12(8-2r )·r =-r 2+4r =-(r -2)2+4,∴当r =2时,S 扇形最大取4,此时l =4,α=lr =2.迁移与应用 (1)4π (2)12π-9 3 【当堂检测】 1.A 2.D 3.D 4.(1)5π3(2)-150°(3)⎩⎨⎧⎭⎬⎫α⎪⎪3π4+2k π≤α≤5π4+2k π,k ∈Z 5.1弧度或4弧度。
[核心必知]1.度量角的单位制(1)角度制规定周角的1360为1度的角,用度作为单位度量角的单位制叫角度制.(2)弧度制在以单位长为半径的圆中,单位长度的弧所对的圆心角称为1弧度的角,它的单位符号是rad,读作弧度.这种以弧度作单位度量角的单位制,叫作弧度制.2.角度与弧度的互化(1)角度制与弧度制的互化(换算)180°=π_rad;1°=错误!rad=0.017 45 rad;1 rad=错误!=57°18′=57.30°(2)特殊角的度数与弧度数的对应表任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.3.扇形的弧长及面积公式设扇形的半径为r,弧长为l,α为其圆心角,则[问题思考]1.半径不同的圆中,相同的圆心角所对的角的弧度数是否相同?提示:相同.在公式|α|=错误!中,角的弧度数的大小与所在圆的半径的大小无关,只与圆心角的大小有关.2.2°与2弧度的角是否表示同一个角?提示:不是同一个角.2°是角度制,2是弧度制,2 rad约为115°。
3.390°可以写成360°+错误!吗?提示:不可以,在同一表达式中角度与弧度不能混用.讲一讲1.(1)把112°30′化为弧度;(2)-错误!rad化为度.[尝试解答](1)∵1°=错误!rad,∴112°30′=112。
5°=112.5×π180rad=错误!rad.(2)∵1 rad=错误!°,∴-错误!rad=-错误!×错误!°=-75°.1.将角度制化为弧度制,当角度制中含有“分”“秒"单位时,应先将它们统一转化为“度”,再利用1°=错误!rad化为弧度便可.2.以弧度为单位表示角时,常把弧度写成多少π的形式,如无特殊要求,不必把π写成小数.练一练1.将下列角度与弧度互化.(1)20°;(2)错误!;(3)8 rad解:(1)20°=20×错误!=错误!,(2)错误!=错误!×180°=165°。
三角函数1.3 弧度制自主学习一、教学目标:(1)理解1弧度的角及弧度的定义;(2)掌握角度与弧度的换算公式;(3)熟练进行角度与弧度的换算;(4)理解角的集合与实数集R 之间的一一对应关系;(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。
二、教学重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。
三、教学难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。
四、知识引导1.角度值:我们把周角的3601规定为1度的角。
弧度制:我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角,其中正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
2.角度和弧度直接的互化180°=πrad ,360°=2πrad1°=180π≈0.01745rad ,1rad =(π180)°≈57.30°=57°18’。
3.弧度制下扇形的弧长和面积L=|α|r 22121:R lR S α==扇形面积公式 对点讲练新课引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳:弧度制的性质: ①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. r l4.角度与弧度之间的转换:①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度: 2360;180;1801()57.305718rad ;180( )n n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.6.特殊角的弧度ll r r弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.知识点一角度值与弧度制的转化例1.把45°化成弧度。
§3 弧度制学 习 目 标核 心 素 养1.了解角的另外一种度量方法——弧度制.2.能够熟练地在角度制和弧度制之间进行换算.(重点)3.掌握弧度制中扇形的弧长公式和面积公式.(难点)1.通过学习弧度制的概念,提升数学抽象素养.2.通过角度制和弧度制的换算及弧长公式和面积公式的应用,培养数学运算素养.1.弧度制 (1)弧度制的定义在单位圆中,长度为1的弧所对的圆心角称为1弧度角.它的单位符号是rad ,读作弧度.以弧度作为单位来度量角的单位制,叫作弧度制.(2)角度制与弧度制的互化 ①弧度数(ⅰ)正角的弧度数是一个正数; (ⅱ)负角的弧度数是一个负数; (ⅲ)零角的弧度数是0;(ⅳ)弧度数与十进制实数间存在一一对应关系. ②弧度数的计算 |α|=lr.如图:③角度制与弧度制的换算④一些特殊角的度数与弧度数的对应关系 度0° 1°30° 45° 60° 90°120° 135° 150° 180° 270° 360° 弧度0 π180π6π4π3π22π33π45π6π3π22π思考1:“1弧度的角”的大小和所在圆的半径大小有关系吗?[提示] 在半径为1的圆中,1弧度的角为长度为1的弧所对的圆心角,又当半径不同时, 同样的圆心角所对的弧长与半径之比是常数,故1弧度角的大小与所在圆的半径大小无关.2.弧长公式与扇形面积公式已知r 为扇形所在圆的半径,n 为圆心角的度数,α为圆心角的弧度数.角度制 弧度制弧长公式l =|n |πr180l =|α|r 扇形面积公式S =|n |πr 2360S =12l ·r =12|α|r 2思考2:扇形的面积与弧长公式用弧度怎么表示?[提示] 设扇形的半径为r ,弧长为l ,α为其圆心角,则S =12lr ,l =αr .1.下列说法中,错误的说法是( ) A .半圆所对的圆心角是π rad B .周角的大小是2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度D [根据弧度的定义及角度与弧度的换算知A ,B ,C 均正确,D 错误.] 2.时针经过一小时,时针转过了( )A .π6 radB .-π6 radC .π12rad D .-π12radB [时针经过一小时,转过-30°, 又-30°=-π6rad ,故选B.]3.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限D [2π-5与-5的终边相同,∵2π-5∈⎝⎛⎭⎪⎫0,π2,∴2π-5是第一象限角,则-5也是第一象限角.]4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4C [设扇形半径为r ,圆心角弧度数为α, 则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1.]角度与弧度的互化【例1】 设α1=510°,α2=-750°,β1=5,β2=-6.(1)将α1,α2用弧度表示出来,并指出它们各自终边所在的象限;(2)将β1,β2用角度表示出来,并在-360°~360°范围内找出与它们终边相同的所有的角.[解] (1)∵1°=π180 rad ,∴α1=510°=510×π180=176π,α2=-750°=-750×π180=-256π. ∴α1的终边在第二象限,α2的终边在第四象限. (2)β1=4π5=4π5×180°π=144°.设θ1=k ·360°+144°(k ∈Z ). ∵-360°≤θ1<360°,∴-360°≤k ·360°+144°<360°. ∴k =-1或k =0.∴在-360°~360°范围内与β1终边相同的角是-216°.β2=-11π6=-11π6×180°π=-330°. 设θ2=k ·360°-330°(k ∈Z ). ∵-360°≤θ2<360°,∴-360°≤k ·360°-330°<360°. ∴k =0或k =1.∴在-360°~360°范围内与β2终边相同的角是30°.角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad,充分利用1°=π180 rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°π;n °=n ·π180 rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度.1.将下列角度与弧度进行互化:(1)20°;(2)-15°;(3)7π12;(4)-115π.[解] (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad=712×180°=105°. (4)-115π rad=-115×180°=-396°.用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. [解] (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π, ∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.1.根据已知图形写出区域角的集合的步骤: (1)仔细观察图形; (2)写出区间边界对应的角; (3)用不等式表示区域范围内的角.2.注意事项:用不等式表示区域角的范围时,要注意角的集合形式是否能够合并,这一点容易出错.2.(1)把-1 125°化为2k π+α(k ∈Z,0≤α<2π)的形式是( ) A .-6π-π4B .-6π+7π4C .-8π-π4D .-8π+7π4(2)在0°~720°范围内,找出与角22π5终边相同的角.(1)D [因为-1 125°=-4×360°+315°,315°=315×π180=7π4,所以-1 125°=-8π+7π4.](2)解:因为22π5=4π+25π=720°+72°,所以与角22π5终边相同的角构成集合{θ|θ=72°+k ·360°,k ∈Z }.当k =0时,θ=72°;当k =1时,θ=432°,所以在0°~720°范围内,与角22π5终边相同的角为72°,432°.弧长公式与面积公式的应用[探究问题]1.扇形的半径,弧长及圆心角存在怎样的关系? [提示] |α|=l r.2.扇形的面积和相应的弧长存在怎样的关系? [提示] S =12lr .【例3】 一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数. [思路探究] 设扇形的半径为R ,弧长为l → 根据条件列方程组→解方程组求R 、l →求圆心角 [解] 设扇形的半径为R ,弧长为l , 则2R +l =4,∴l =4-2R , 根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.(变条件)将例3中的条件改为“扇形的面积为4,周长为10,试求圆心角α(0<α<2π)的弧度数.[解] 设弧长为l ,扇形半径为r ,由题意得:⎩⎪⎨⎪⎧l +2r =10,12lr =4,解得⎩⎪⎨⎪⎧r =4,l =2或⎩⎪⎨⎪⎧r =1,l =8.(舍)故α=24=12(rad),即扇形的圆心角为12rad.2.(变条件,变结论)将例3的条件改为“已知扇形的周长为40 cm”.问:当它的半径和圆心角取什么值时,才使扇形的面积最大?[解] 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r ,∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.1.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位.( ) (2)1度的角是周角的1360,1弧度的角是周角的12π.( )(3)180°等于π弧度.( ) [答案] (1)√ (2)√ (3)√ 2.-72°化为弧度是( ) A .-π3B .-25πC .-5π6D .-5π7B [-72°=-72×π180=-25π.]3.-2312π化为角度为________.-345° [-2312π=-2312π×180°π=-345°.]4.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=k π2-π3,k ∈Z,N ={α|-π<α<π},则M ∩N =________. ⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π [由-π<k π2-π3<π,得-43<k <83.因为k ∈Z ,所以k =-1,0,1,2,所以M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.]5.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________. 32 48 [|α|=l r =128=32 rad ,S =12l ·r =12×12×8=48.]。
§3 弧度制一、教学目标:1、知识与技能:(1)理解1弧度的角及弧度的定义;(2)掌握角度与弧度的换算公式;(3)熟练进行角度与弧度的换算;(4)理解角的集合与实数集R之间的一一对应关系;(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。
2、过程与方法:通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。
3、情感态度与价值观:通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。
二、教学重、难点重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。
难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。
三、学法与教法在初中,我们非常熟悉角度制表示角,但在进行角的运算时,运用六十进制出现了很不习惯的问题,与我们常用的十进制不一样,正因为这样,所以有必要引入弧度制;在学习中,通过自主学习的形式,让学生感受弧度制的优越性,在类比中理解掌握弧度制。
教法:探究讨论法。
四、教学过程(一)、创设情境,揭示课题在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的3601规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。
下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是rad ,读作弧度.(二)、探究新知1.1弧度的角的定义.(板书)我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角(打开课件).如图1—12(见教材),弧AB 的长等于半径r ,则弧AB 所对的圆心角就是1弧度的角,弧度的单位记作rad 。
陕西省榆林育才中学高中数学 第1章《三角函数》3弧度制导学案 北师大版必修4【学习目标】1.通过计算弧长与半径的比值理解弧度的定义.2.掌握弧度与角度之间的换算关系,能正确地进行弧度与角度的互化.3.能初步运用弧度制表示的弧长公式、扇形面积公式,解决相关问题. 【重点难点】重点:弧度与角度之间的换算. 难点:弧度制的理解. 【自主学习】1. 先选定一个特殊的角,即周角,将它分为360等份,把1等份确定为一个度 量单位,称为__________,这种度量角的方法叫___________.2. 在度量和计算时,同样的圆心角所对的弧长与半径的比是常数,称这个常数 为该角的______________.3. 规定:在单位圆中,单位长度的弧所对的圆心角为______________, 它的 单位符号是________,读作___________.4. =360________rad ; =180________rad ; =1________rad ≈________rad ; 1rad =()≈__________=___________.5. 一般地,任一正角的弧度数都是一个________数;任一负角的弧度数都是一 个______数;零角的弧度数是_________.这种以弧度作为单位来度量角的单位制, 叫作________.注:在弧度制下,角的集合与实数集之间建立了一一对应关系:即 每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个 实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.6.弧长等于弧所对的圆心角弧度数的绝对值与半径的积,即________________.7.在弧度制下,扇形面积公式为:=S _______________.8.把下列各角从度化成弧度.(1)135; (2)90; (3)60.【合作探究】1.把下列各角化成π2~0间的角加上)(2Z k k ∈π的形式,并指出它们是哪个象限的角. (1)672; (2)718π-; (3)1500-; (4)236π.2. 已知一扇形的圆心角为72,半径等于cm 20,求扇形的面积.【课堂检测】1. 与32π终边相同的角是( ) A. 311π B. 322ππ-k (Z k ∈)C. 3102ππ-k (Z k ∈)D. 32)12(ππ++k (Z k ∈)【课堂小结】【课后训练】1. 下列叙述中错误的是( )A. “度”与“弧度”是度量角的两种不同的度量单位B. 1度的角是周角的3601,1弧度上的角是周角的π21 C. 1弧度是长度等于半径的弧 D. 根据弧度的定义,180等于π弧度2. 把1485-写成),20(2Z k k ∈<≤+πααπ的形式是__________________.3. 若一扇形弧长为18cm ,半径为12cm ,则扇形的面积为___________.。
弧度制教学目的:1.理解1弧度的角、弧度制的定义2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解教学过程: 一、复习引入:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA 为2.度量角的大小第一种单位制—角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的? 规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180rn l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同二、角度制与弧度制的换算:rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度解:1081805353=⨯=rad π注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad ,表示角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住:4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合 实数集R例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 . 5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 . 6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B. 9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案:1.C2.C3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z } 5.一 7-2π 6.3 7.28.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求: (1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z,即4π+k π<2α<2π+k π,k ∈Z.故当k=2m(m ∈Z)时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k=2m+1(m ∈Z)时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角. 综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈=3m(m ∈Z)时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k=3m+1(m ∈Z)时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k=3m+2(m ∈Z)时,ππαππm m 2353223+<<+,此时,3α角是第四象限角. 综上可知,3α角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z.评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k=0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z)所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z),而此角不属于任何象限. 七、板书设计(略)。
明目标、知重点 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.1.度量角的单位制(1)角度制用度作为单位来度量角的单位制,叫作角度制.规定1度的角等于周角的1 360.(2)1弧度的角在以单位长为半径的圆中,单位长度的弧所对的圆心角为1弧度的角,它的单位符号是rad,读作弧度.(3)弧度制以弧度作为单位来度量角的单位制,叫作弧度制.(4)角的弧度数的规定一般地,任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值满足|α|=lr.这里,弧度数α的正负由角α的终边的旋转方向决定.2.角度制与弧度制的换算(1)角度化弧度弧度化角度360°=2π rad2π rad=360°180°=π radπ rad=180°1°=π180rad ≈0.017 45 rad1 rad =⎝⎛⎭⎫180π°≈57.30°=57°18′(2)一些特殊角的度数与弧度数的对应关系 度数0°1° 30° 45° 60° 90° 弧度数 0π180π6π4π3π2度数 120° 135° 150° 180° 270° 360° 弧度数2π33π45π6π3π22π3.扇形的弧长及面积公式设扇形的半径为r ,弧长为l ,α(0<α<2π)为其圆心角,则 度量单位类别 α为角度制 α为弧度制 扇形的弧长 l =απr 180l =|α|·r 扇形的面积S =απr 2360S =12l ·r =12α·r 2[情境导学] 初中几何研究过角的度量, 规定周角的1360作为1°的角.我们把用度作为单位来度量角的制度叫作角度制, 在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进制不是十进制,总给我们带来不少困难.那么我们能否重新选择角的单位制,使在该单位制下两角的加减运算与十进制下的加减法运算一样呢?今天我们就来研究这种新单位制—弧度制. 探究点一 弧度制思考1 1弧度的角是怎样规定的?1弧度的角和圆半径的大小有关吗?你能作出一个1弧度的角吗?答 在以单位长为半径的圆中,单位长度的弧所对的圆心角为1弧度的角.1弧度的角是一个定值,与所在圆的半径无关.如图所示,∠AOB 就是1弧度的角.思考2 如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数与l 、r 之间有着怎样的关系?请你完成下表,找出某种规律.规律:如果一个半径为r 的圆的圆心角α所对的弧长为l ,那么α的弧度数的绝对值是lr ,即|α|=l r.思考3 除了角度制,数学中还常用弧度制表示角.请叙述一下弧度制的内容.答 一般地,任一正角的弧度数都是一个正数,任一负角的弧度数都是一个负数,零角的弧度数是0.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr.这里,弧度数α的正负由角α的终边的旋转方向决定. 例1 (1)把67°30′化成弧度; (2)把-7π12化成角度.解 (1)∵67°30′=⎝⎛⎭⎫6712°, ∴67°30′=π180rad ×6712=38π rad.(2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝⎛⎭⎫180π°即可. 跟踪训练1 将下列角按要求转化: (1)300°=________rad ; (2)-22°30′=________rad ;(3)8π5=________度. 答案 (1)5π3 (2)-π8(3)288探究点二 弧度制下的弧长公式和扇形面积公式思考 我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α). 答 半径为r ,圆心角为n 的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr 2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .例2 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2, 此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.反思与感悟 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.跟踪训练2 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2 rad ,即扇形的圆心角为2 rad.探究点三 利用弧度制表示终边相同的角导引 在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度.思考1 利用弧度制表示出终边落在坐标轴上的角的集合.思考2例3 (1)-1 500°; (2)23π6; (3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 在同一问题中,单位制度要统一,角度制与弧度制不能混用. 跟踪训练3 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α的终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,又0<169π<2π,∴-1 480°=169π+2×(-5)π.(2)∵β与α终边相同,∴β=α+2k π=169π+2k π(k ∈Z ).又β∈[-4π,0],∴β1=169π-2π=-29π,β2=169π-4π=-209π.∴β=-29π或β=-209π.1.时针经过一小时,时针转过了( ) A.π6 rad B .-π6 radC.π12 rad D .-π12rad答案 B解析 时针经过一小时,转过-30°, 又-30°=-π6rad ,故选B.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .1或2 C .1或4 D .2或4 答案 C解析 设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎪⎨⎪⎧ 2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧ r =1α=4或⎩⎪⎨⎪⎧r =2,α=1.3.已知两角的和是1弧度,两角的差是1°,则这两个角分别为____________________.答案 12+π360,12-π360解析 设这两个角为α,β弧度,不妨设α>β,则⎩⎪⎨⎪⎧α+β=1,α-β=π180,解得α=12+π360,β=12-π360. 4.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是________.答案 -34π解析 ∵-114π=-2π+⎝⎛⎭⎫-34π =2×(-1)π+⎝⎛⎭⎫-34π. ∴θ=-34π.[呈重点、现规律]1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 角度制与弧度制换算关系为:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.一、基础过关1.-300°化为弧度是( ) A .-43πB .-53πC .-54πD .-76π答案 B2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对答案 A3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1 D .2sin 1 答案 C 解析 ∵r =1sin 1,∴l =|α|r =2sin 1. 4.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C5.设角α、β满足-180°<α<β<180°,则α-β的范围是_________________________________. 答案 (-360°,0°)解析 ∵α<β,∴α-β<0°,又-180°<α<180°,-180°<-β<180°,∴-360°<α-β<360°. 综上可知α-β的范围是-360°<α-β<0°.6.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________. 答案 34解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .7.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .二、能力提升8.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9 答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsin π6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.9.圆的半径是6 cm ,则圆心角为15°的扇形面积是( ) A.π2 cm 2 B.3π2 cm 2 C .π cm 2 D .3π cm 2 答案 B解析 ∵15°=π12,∴l =π12×6=π2(cm),∴S =12lr =12×π2×6=3π2(cm 2).10.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上的角的集合是{α|α=π2+k π,k ∈Z }C .终边在坐标轴上的角的集合是{α|α=k ·π2,k ∈Z }D .终边在直线y =x 上的角的集合是{α|α=π4+2k π,k ∈Z }答案 D解析 终边在直线y =x 上的角的集合应是{α|α=π4+k π,k ∈Z }.11.如图所示,动点P ,Q 从点A 出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·|-π6|=2π.所以t =4(秒),即第一次相遇的时间为4秒.12.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ (0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ. 解 因为0<θ<π,且2k π+π<2θ<2k π+3π2(k ∈Z ),则必有k =0,于是π2<θ<3π4,又14θ=2n π(n ∈Z ),所以θ=n π7,n ∈Z ,从而π2<n π7<3π4,即72<n <214,n ∈Z ,所以n =4或5,故θ=4π7或5π7.三、探究与拓展13.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓, ∵α=60°=π3,R =10,∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝⎛⎭⎫π3-32 (cm 2).(2)扇形周长c =2R +l =2R +αR ,∴α=c -2RR ,∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R打印版高中数学 =-R 2+12cR =-⎝⎛⎭⎫R -c 42+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。
2017-2018学年高中数学北师大版必修4全册同步学案目录第一章 1 周期现象-§2 角的概念的推广第一章 3 弧度制第一章 4.1 单位圆与任意角的正弦函数、余弦函数的定义-4.2 单位圆与周期性第一章 4.1 单位圆与正弦函数、余弦函数的基本性质第一章 4.4 单位圆的对称性与诱导公式(一)第一章 4.4 单位圆的对称性与诱导公式(二)第一章 5.1 正弦函数的图像第一章 5.2 正弦函数的性质第一章 6 余弦函数的图像与性质第一章7 正切函数第一章8 函数y=Asin(ωx+φ)的图像与性质(一)第一章8 函数y=Asin(ωx+φ)的图像与性质(二)第一章9 三角函数的简单应用第一章章末复习课第二章 1 从位移、速度、力到向量第二章 2.1 向量的加法第二章 2.2 向量的减法第二章 3.1 数乘向量第二章 3.2 平面向量基本定理第二章 4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示第二章 4.3 向量平行的坐标表示第二章 5 从力做的功到向量的数量积(一)第二章 5 从力做的功到向量的数量积(二)第二章 6 平面向量数量积的坐标表示第二章向量应用举例第二章章末复习课第三章 1 同角三角函数的基本关系第三章 2.1 两角差的余弦函数第三章 2.2 两角和与差的正弦、余弦函数第三章 2.3 两角和与差的正切函数第三章 3 二倍角的三角函数(一)第三章 3 二倍角的三角函数(二)第三章疑难规律方法第三章章末复习课学习目标 1.了解现实生活中的周期现象.2.了解任意角的概念,理解象限角的概念.3.掌握终边相同的角的含义及其表示.知识点一周期现象思考“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.”这样的现象,具有怎样的属性?梳理(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间这种现象是否会________出现,若出现,则为周期现象;否则,不是周期现象.知识点二角的相关概念思考1将射线OA绕着点O旋转到OB位置,有几种旋转方向?思考2如果一个角的始边与终边重合,那么这个角一定是零角吗?梳理(1)角的概念:角可以看成平面内____________绕着________从一个位置________到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类:知识点三象限角思考把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?梳理在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:________在第几象限就是第几象限角;轴线角:________落在坐标轴上的角.知识点四终边相同的角思考1假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?思考2如何表示与60°终边相同的角?梳理终边相同角的表示一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与________的整数倍的和.类型一周期现象的应用例1水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?反思与感悟(1)应用周期现象中“周而复始”的规律性可以达到“化繁为简”、“化无限为有限”的目的.(2)只要确定好周期现象中重复出现的“基本单位”就可以把问题转化到一个周期内来解决.跟踪训练1利用例1中的水车盛800升的水,至少需要多少时间?类型二 象限角的判定例2 在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.反思与感悟 判断象限角的步骤 (1)当0°≤α<360°时,直接写出结果.(2)当α<0°或α≥360°时,将α化为k ·360°+β(k ∈Z ,0°≤β<360°),转化为判断角β所属的象限.跟踪训练2 (1)判断下列角所在的象限,并指出其在0°~360°范围内终边相同的角. ①549°;②-60°;③-503°36′.(2)若α是第二象限角,试确定2α、α2是第几象限角.类型三 终边相同的角命题角度1 求与已知角终边相同的角例3 在与角10 030°终边相同的角中,求满足下列条件的角. (1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.反思与感悟 求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.跟踪训练3 写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.命题角度2 求终边在给定直线上的角的集合 例4 写出终边在直线y =-3x 上的角的集合.反思与感悟求终边在给定直线上的角的集合,常用分类讨论的思想,即分x≥0和x<0两种情况讨论,最后再进行合并.跟踪训练4写出终边在直线y=33x上的角的集合.1.下列是周期现象的为()①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次;③某超市每天的营业额;④某地每年6月份的平均降雨量.A.①②④B.②④C.①②D.①②③2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}3.2 017°是第________象限角.4.一个质点,在平衡位置O点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O点开始计时,质点向左运动第一次到达M 点用了0.3 s,又经过0.2 s第二次通过M点,则质点第三次通过M点,还要经过的时间是________s.5.已知,如图所示.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.1.判断是否为周期现象,关键是看在相同的间隔内,图像是否重复出现.2.由于角的概念推广了,那么终边相同的角有无数个,这无数个终边相同的角构成一个集合.与α角终边相同的角可表示为{β|β=α+k·360°,k∈Z},要领会好k∈Z的含义.3.熟记终边在坐标轴上的各角的度数,才能正确快速地用不等式表示各象限角,注意不等式表示的角的终边随整数k的改变而改变时,要对k分类讨论.答案精析问题导学知识点一思考周而复始,重复出现.梳理(2)重复知识点二思考1有顺时针和逆时针两种旋转方向.思考2不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.梳理(1)一条射线端点旋转(2)逆时针方向旋转顺时针方向旋转没有作任何旋转知识点三思考终边可能落在坐标轴上或四个象限内.梳理终边终边知识点四思考1它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.思考260°+k·360°(k∈Z).梳理周角题型探究例1解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1 920(升).跟踪训练1解设x分钟后盛水y升,由例1知每转一圈,水车最多盛水16×10=160(升),所以y=x5·160=32x,为使水车盛800升的水,则有32x≥800,所以x≥25,即水车盛800升的水至少需要25分钟.例2解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.跟踪训练2 解 (1)①∵549°=189°+360°,∴549°角为第三象限的角,与189°角终边相同. ②∵-60°=300°-360°,∴-60°角为第四象限的角,与300°角终边相同. ③∵-503°36′=216°24′-2×360°,∴-503°36′角为第三象限的角,与216°24′角终边相同. (2)由题意得90°+k ·360°<α<180°+k ·360°(k ∈Z ),① 所以180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).故2α是第三或第四象限角或终边落在y 轴非正半轴上的角. 由①得45°+k ·180°<α2<90°+k ·180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),得45°+n ·360°<α2<90°+n ·360°(n ∈Z ),故α2是第一象限角.当k 为奇数时,令k =2n +1(n ∈Z ),得45°+180°+n ·360°<α2<90°+180°+n ·360°(n ∈Z ),即225°+n ·360°<α2<270°+n ·360°(n ∈Z ),故α2为第三象限角. 综上可知,α2为第一或第三象限角.例3 解 与10 030°终边相同的角的一般形式为β=k ·360°+10 030°(k ∈Z ).(1)由-360°<k ·360°+10 030°<0°,得-10 390°<k ·360°<-10 030°,解得k =-28,故所求的最大负角为β=-50°. (2)由0°<k ·360°+10 030°<360°, 得-10 030°<k ·360°<-9 670°, 解得k =-27,故所求的最小正角为β=310°. (3)由360°≤k ·360°+10 030°<720°, 得-9 670°≤k ·360°<-9 310°, 解得k =-26,故所求的角为β=670°.跟踪训练3 解 由终边相同的角的表示知,与角α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴31136≤k<61136(k∈Z),故取k=4,5,6.当k=4时,β=4×360°-1 910°=-470°;当k=5时,β=5×360°-1 910°=-110°;当k=6时,β=6×360°-1 910°=250°.例4解终边在y=-3x(x<0)上的角的集合是S1={α|α=120°+k·360°,k∈Z};终边在y=-3x(x≥0)上的角的集合是S2={α|α=300°+k·360°,k∈Z}.因此,终边在直线y=-3x上的角的集合是S=S1∪S2={α|α=120°+k·360°,k∈Z}∪{α|α=300°+k·360°,k∈Z},即S={α|α=120°+2k·180°,k∈Z}∪{α|α=120°+(2k+1)·180°,k∈Z}={α|α=120°+n·180°,n∈Z}.故终边在直线y=-3x上的角的集合是S={α|α=120°+n·180°,n∈Z}.跟踪训练4解终边在y=33x(x≥0)上的角的集合是S1={α|α=30°+k·360°,k∈Z};终边在y=33x(x<0)上的角的集合是S2={α|α=210°+k·360°,k∈Z}.因此,终边在直线y=33x上的角的集合是S=S1∪S2={α|α=30°+k·360°,k∈Z}∪{α|α=210°+k·360°,k∈Z},即S={α|α=30°+2k·180°,k∈Z}∪{α|α=30°+(2k+1)·180°,k∈Z}={α|α=30°+n·180°,n∈Z}.故终边在直线y=33x上的角的集合是S={α|α=30°+n·180°,n∈Z}.当堂训练1.C 2.C 3.三 4.1.45.解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一角度制与弧度制思考1在初中学过的角度制中,1度的角是如何规定的?思考2在弧度制中,1弧度的角是如何规定的,如何表示?思考3“1弧度的角”的大小和所在圆的半径大小有关系吗?梳理(1)角度制和弧度制(2)角的弧度数的计算设r是圆的半径,l是圆心角α所对的弧长,则角α的弧度数的绝对值满足|α|=lr.知识点二角度制与弧度制的换算思考角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢?梳理(1)角度与弧度的互化(2)一些特殊角的度数与弧度数的对应关系知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示? 梳理类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以180°π即可. 跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角例2 已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A .π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A .2 B.2sin 1 C .2sin 1 D.4sin 1反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关 2.时针经过一小时,转过了( )A.π6 rad B .-π6 radC.π12rad D .-π12rad3.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或45.已知⊙O 的一条弧AE 的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是________.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×180°π=度数.3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.答案精析问题导学 知识点一思考1 周角的1360等于1度.思考2 在单位圆中,长度为1的弧所对的圆心角称为1弧度角.思考3 在半径为1的圆中,1弧度的角为长度为1的弧所对的圆心角,又当半径不同时,同样的圆心角所对的弧长与半径之比是常数,故1弧度角的大小与所在圆的半径大小无关. 梳理 (1)度 弧度 弧度 知识点二思考 利用1°=π180 rad 和1 rad =180°π进行弧度与角度的换算.梳理 (1)2π 360° π 180° 0.017 45 57.30° (2)45° 90° 135° 270° 0 π6 π3 2π35π6 知识点三思考 设扇形的半径为r ,弧长为l ,α为其圆心角,则S =12lr ,l =αr .题型探究例1 解 (1)20°=20π180=π9. (2)-15°=-15π180=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.跟踪训练1 解 (1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 例2 解 (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-29π6;当k =-2时,γ=-17π6;当k =-1时,γ=-5π6.跟踪训练2 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°. ∴在[0°,720°]内与2π5角终边相同的角为72°,432°.例3 (1)A (2)D跟踪训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R , 根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 当堂训练1.D 2.B 3.D 4.C 5.-34.1单位圆与任意角的正弦函数、余弦函数的定义4.2单位圆与周期性学习目标 1.理解任意角的正弦函数、余弦函数的定义及其应用.2.掌握同角的正弦、余弦函数值间的关系.3.理解周期函数的定义.知识点一任意角的正弦函数和余弦函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,PM⊥x 轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦分别等于什么?思考2对确定的锐角α,sin α,cos α的值是否随P点在终边上的位置的改变而改变?思考3若取|OP|=1时,sin α,cos α的值怎样表示?梳理(1)对于任意角α,使角α的顶点与原点重合,始边与x轴的非负半轴重合,终边与单位圆交于唯一的点P(u,v),那么点P的____________定义为角α的正弦函数,记作________;点P的____________定义为角α的余弦函数,记作________.(2)对于给定的角α,点P的纵坐标v、横坐标u都是唯一确定的,所以正弦函数、余弦函数都是以角为自变量,以单位圆上点的坐标为函数值的函数.知识点二正弦、余弦函数的定义域思考对于任意角α,sin α,cos α都有意义吗?梳理正弦函数、余弦函数的定义域知识点三正弦、余弦函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦函数的值在各象限的符号吗?梳理正弦、余弦函数在各象限的符号知识点四周期函数思考由sin(x+2kπ)=sin x(k∈Z)可知函数值随着角的变化呈周期性变化,你能说一下函数的变化周期吗?梳理一般地,对于函数f(x),如果存在____________,对定义域内的____________x值,都有____________,我们就把f(x)称为周期函数,____称为这个函数的周期.特别地,正弦函数、余弦函数是周期函数,称2kπ(k∈Z,k≠0)为正弦函数、余弦函数的周期,其中2π是正弦函数、余弦函数正周期中________的一个,称为____________,简称为周期.类型一 正弦函数、余弦函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ的值.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应的三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b 2,cos α=aa 2+b 2. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α的值.类型二 正弦、余弦函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( )A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4.反思与感悟准确确定正弦函数、余弦函数值中角所在象限是基础,准确记忆正弦函数、余弦函数值在各象限的符号是解决这类问题的关键.跟踪训练3若三角形的两内角A,B,满足sin A cos B<0,则此三角形必为()A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都有可能类型三周期性例4(1)已知函数f(x)在其定义域上都满足f(x+2)=-f(x),求证:函数f(x)是以4为周期的周期函数;(2)已知函数f(x)在其定义域上都满足f(x+2)=-1f(x),求证:函数f(x)是以4为周期的周期函数.反思与感悟(1)证明函数是周期函数,只需根据定义:存在非零常数T,对任意定义域内实数x,都有f(x+T)=f(x).(2)一般地,如果f(x+a)=-f(x),那么f(x)的周期为2a(a≠0);如果f(x+a)=1f(x),那么f(x)的周期也为2a(a≠0).跟踪训练4若函数y=f(x)(x∈R)满足f(x)=f(x-a)+f(x+a)(a<0),f(2a)=1,求f(14a)的值.1.已知角α的终边经过点(-4,3),则cos α等于()A.45B.35 C .-35D .-452.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-23.设f (x )是以1为一个周期的函数,且当x ∈(-1,0)时,f (x )=2x +1,则f (72)的值为( )A .2B .0C .-1D .-34.点P (sin 2 016°,cos 2 016°)位于第________象限. 5.已知角α的终边在直线y =2x 上,求sin α+cos α的值.1.三角函数的定义是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点在终边上的位置无关这一关键点. 2.三角函数值的符号主要涉及开方、去绝对值等计算问题,同时也要注意终边在坐标轴上的角的三角函数值情况,因角的终边经过的点决定了三角函数值的符号,所以当点的位置不确定时注意进行讨论,体现了分类讨论的思想.3.正弦、余弦函数的周期性反映了终边相同的角的三角函数值相等,作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.答案精析问题导学 知识点一思考1 sin α=y r ,cos α=xr .思考2 不会.思考3 sin α=y ,cos α=x .梳理 (1)纵坐标v v =sin α 横坐标u u =cos α 知识点二思考 由三角函数的定义可知,对于任意角α,sin α,cos α都有意义. 知识点三思考 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (u ,v ),则sin α=v ,cos α=u .当α为第一象限角时,v >0,u >0,故sin α>0,cos α>0,同理可得α在其他象限时三角函数值的符号. 知识点四思考 2π,4π,6π,-2π,…等都是函数的周期.梳理 非零实数T 任意一个 f (x +T )=f (x ) T 最小 最小正周期 题型探究例1 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=xr=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010. 跟踪训练1 解 r =(-3a )2+(4a )2=5|a |. ①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.例2 解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则 x =k ,y =-3k , r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r =-3k 10k =-31010,1cos α=r x =10k k =10, ∴10sin α+3cos α=10×⎝⎛⎭⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,1cos α=r x =-10k k =-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.跟踪训练2 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点,则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12.例3 (1)D(2)解 ①∵145°是第二象限角, ∴sin 145°>0,∵-210°=-360°+150°, ∴-210°是第二象限角, ∴cos (-210°)<0, ∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0, ∴sin 3·cos 4<0. 跟踪训练3 B例4 证明 (1)∵f (x +4)=f [(x +2)+2]=-f (x +2) =-[-f (x )]=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. (2)∵f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. 跟踪训练4 解 由f (x )=f (x -a )+f (x +a ),① 得f (x +a )=f (x )+f (x +2a ).② ①+②,得f (x -a )+f (x +2a )=0, 即f (x -a )=-f (x +2a ), ∴f (x )=-f (x +3a ), 即f (x +3a )=-f (x ),∴f (x +6a )=-f (x +3a )=f (x ). ∴T =6a 为函数y =f (x )的一个周期, ∴f (14a )=f (6a ×2+2a )=f (2a )=1. 当堂训练1.D 2.C 3.B 4.三5.解 在直线y =2x 上任取一点P (x,2x )(x ≠0), 则r =x 2+(2x )2=5|x |. ①若x >0,则r =5x , 从而sin α=2x 5x=255,cos α=x 5x =55, ∴cos α+sin α=355.②若x <0,则r =-5x , 从而sin α=2x-5x=-255,cos α=x -5x =-55,∴cos α+sin α=-355.4.3 单位圆与正弦函数、余弦函数的基本性质学习目标 1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题.知识点 正弦、余弦函数的性质思考1 正弦函数、余弦函数的最大值、最小值分别是多少?思考2 能否认为正弦函数在单位圆的右半圆是单调增加的?梳理正弦、余弦函数的性质类型一 正弦余数、余弦函数的定义域 例1 求下列函数的定义域. (1)y =2sin x -3; (2)y =lg(sin x -22)+1-2cos x .反思与感悟 (1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.跟踪训练1 函数y =2sin x +1的定义域为_________________________________________. 类型二 正、余弦函数的值域与最值例2 (1)求函数y =cos x (-π3≤x ≤5π6)的值域.(2)已知函数y =a sin x +1的最大值为3,求它的最小值.反思与感悟 (1)求正、余弦函数的值域或最值时应注意定义域,解题时可借助图像结合正、余弦函数的单调性进行分析.(2)对于含有参数的值域或最值,应注意对参数讨论.跟踪训练2 函数y =2+cos x ,x ∈(-π3,2π3]的值域为________.类型三 正、余弦函数的单调性例3 函数y =cos x 的一个递增区间为( ) A .(-π2,π2)B .(0,π)C .(π2,3π2)D .(π,2π)反思与感悟 利用单位圆有助于理解记忆正弦、余弦函数的单调区间,特别注意不连贯的单调区间不能并.跟踪训练3 求下列函数的单调区间.(1)y =sin x ,x ∈[-π,π];(2)y =cos x ,x ∈[-π,π].1.函数y =sin x ,x ∈[-π4,π4]的最大值和最小值分别是( )A .1,-1B .1,22 C.22,-22D .1,-222.不等式2sin x -1≥0的解集为____________________________________________. 3.函数y =2cos x -1的定义域为_____________________________________________. 4.求y =-2sin x ,x ∈[-π6,π]的值域.利用单位圆来研究正弦、余弦函数的基本性质,能够加深对正弦、余弦函数性质的理解与认识,同时也有助于提升学生利用数形结合思想解决问题的意识.答案精析问题导学 知识点思考1 设任意角x 的终边与单位圆交于点P (cos x ,sin x ),当自变量x 变化时,点P 的横坐标是cos x ,|cos x |≤1,纵坐标是sin x ,|sin x |≤1,所以正弦函数、余弦函数的最大值为1,最小值为-1.思考2 不能,右半圆可以表示无数个区间,只能说正弦函数在每一个区间[2k π-π2,2k π+π2](k ∈Z )上是增加的. 梳理 2π [-π2+2k π,π2+2k π]题型探究例1 解 (1)自变量x 应满足2sin x -3≥0,即sin x ≥32. 图中阴影部分就是满足条件的角x 的范围,即{x |2k π+π3≤x ≤2k π+2π3,k ∈Z }.(2)由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示, ∴{x |2k π+π3≤x <2k π+3π4,k ∈Z }.跟踪训练1 [-π6+2k π,7π6+2k π],k ∈Z例2 解 (1)∵y =cos x 在区间[-π3,0]上是增加的,在区间[0,5π6]上是减少的,∴当x =0时,y max =1,当x =5π6时,y min =cos 5π6=-32,∴y =cos x (-π3≤x ≤5π6)的值域是[-32,1].(2)当a >0时,y max =a ×1+1=3,得a =2, ∴当sin x =-1时,y min =2×(-1)+1=-1; 当a <0时,y max =a ×(-1)+1=3,得a =-2, ∴当sin x =1时,y min =-2×1+1=-1. ∴它的最小值为-1. 跟踪训练2 [32,3]例3 D跟踪训练3 解 (1)y =sin x 在x ∈[-π,π]上的递增区间为[-π2,π2],递减区间为[-π,-π2],[π2,π]. (2)y =cos x 在x ∈[-π,π]上的递增区间为[-π,0],递减区间为[0,π]. 当堂训练1.C 2.{x |π4+2k π≤x ≤3π4+2k π,k ∈Z }3.⎣⎡⎦⎤-π3+2k π,π3+2k π ,k ∈Z 4.解 由x ∈[-π6,π],得sin x ∈[-12,1],∴y =[-2,1],∴y =-2sin x ,x ∈[-π6,π]的值域为[-2,1].4.4 单位圆的对称性与诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题.知识点2kπ±α,-α,π±α的诱导公式思考1设α为任意角,则2kπ+α,π+α,-α,2kπ-α,π-α的终边与α的终边有怎样的对应关系?思考22kπ+α,π+α,-α,2kπ-α,π-α终边和单位圆的交点与α的终边和单位圆的交点有怎样的对称关系?试据此分析角α与-α的正弦函数、余弦函数的关系.梳理对任意角α,有下列关系式成立:sin(2kπ+α)=sin α,cos(2kπ+α)=cos α(1.8)sin(-α)=-sin α,cos(-α)=cos α(1.9)sin(2π-α)=-sin α,cos(2π-α)=cos α(1.10)sin(π-α)=sin α,cos(π-α)=-cos α(1.11)sin(π+α)=-sin α,cos(π+α)=-cos α(1.12)公式1.8~1.12叫作正弦函数、余弦函数的诱导公式.这五组诱导公式的记忆口诀是“____________________________”.其含义是诱导公式两边的函数名称________,符号则是将α看成________时原角所在象限的正弦函数、余弦函数值的符号.类型一给角求值问题例1求下列各三角函数式的值.(1)cos 210°;(2)sin 11π4;(3)sin(-43π6);(4)cos(-1 920°).反思与感悟利用诱导公式求任意角三角函数值的步骤(1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角.(3)“角化锐”:用公式二或四将大于90°的角转化为锐角.(4)“锐求值”:得到锐角的三角函数后求值.跟踪训练1求下列各三角函数式的值.(1)sin 1 320°; (2)cos ⎝⎛⎭⎫-31π6.类型二 给值(式)求值问题例2 (1)已知sin(π+α)=-0.3,则sin(2π-α)=________. (2)已知cos(π6-α)=22,则cos(5π6+α)=________.反思与感悟 解决此类问题的关键是抓住已知角与所求角之间的关系,从而灵活选择诱导公式求解,一般可从两角的和、差的关系入手分析,解题时注意整体思想的运用. 跟踪训练2 已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ=________. 类型三 利用诱导公式化简 例3 化简下列各式. (1)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.引申探究若本例(1)改为:sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ),请化简.反思与感悟 利用诱导公式进行化简,主要是进行角的转化,最终达到角的统一,能求值的要求出值.跟踪训练3 化简:cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α).1.sin 585°的值为( ) A .-22 B.22 C .-32 D.322.cos(-16π3)+sin(-16π3)的值为( )。
[核心必知]1.度量角的单位制(1)角度制规定周角的1360为1度的角,用度作为单位度量角的单位制叫角度制.(2)弧度制在以单位长为半径的圆中,单位长度的弧所对的圆心角称为1弧度的角,它的单位符号是rad,读作弧度.这种以弧度作单位度量角的单位制,叫作弧度制.2.角度与弧度的互化(1)角度制与弧度制的互化(换算)180°=π_rad;1°=π180rad=0.017 45 rad;1 rad=180°π=57°18′=57.30°(2)特殊角的度数与弧度数的对应表任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.3.扇形的弧长及面积公式设扇形的半径为r ,弧长为l ,α为其圆心角,则1.半径不同的圆中,相同的圆心角所对的角的弧度数是否相同?提示:相同.在公式|α|=l r中,角的弧度数的大小与所在圆的半径的大小无关,只与圆心角的大小有关.2.2°与2弧度的角是否表示同一个角?提示:不是同一个角.2°是角度制,2是弧度制,2 rad 约为115°. 3.390°可以写成360°+π6吗?提示:不可以,在同一表达式中角度与弧度不能混用.讲一讲1.(1)把112°30′化为弧度;(2)-5π12 rad 化为度.[尝试解答] (1)∵1°=π180rad ,∴112°30′=112.5°=112.5×π180 rad =5π8 rad.(2)∵1 rad =⎝⎛⎭⎪⎫180π°,∴-5π12 rad =-5π12×⎝ ⎛⎭⎪⎫180π°=-75°.1.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度便可.2.以弧度为单位表示角时,常把弧度写成多少π的形式,如无特殊要求,不必把π写成小数.练一练1.将下列角度与弧度互化. (1)20°; (2)11π12;(3)8 rad解:(1)20°=20×π180=π9,(2)11π12=1112×180°=165°.(3)8 rad =8×⎝ ⎛⎭⎪⎫180π°≈8×57.30°=458.40°.讲一讲2.把下列角化成2k π+α(0≤α<2π,k ∈Z )的形式,指出它是第几象限角并写出与α终边相同的角的集合.(1)-46π3; (2)-1 485°.[尝试解答] (1)-46π3=-8×2π+2π3,它是第二象限角,与2π3终边相同的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+2π3,k ∈Z . (2)-1 485°=-5×360°+315°=-10π+7π4,它是第四象限角,与7π4终边相同的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+7π4,k ∈Z .用弧度制表示角的集合时应注意:(1)利用弧度制与角度制之间的关系将有关角化为弧度数; (2)π的倍数是偶数,α的范围是[0,2π) (3)在表示角的集合时要使用统一的度量单位. 练一练2.(1)用弧度表示终边落在x 轴的非正、非负半轴上,y 轴的非正、非负半轴上,x 轴上,y 轴上的角的集合;(2)用弧度表示第一、二、三、四象限角的集合. 解:(1)终边落在x 轴的非正半轴上的角的集合为 {β|β=2k π+π,k ∈Z };终边落在x 轴的非负半轴上的角的集合为 {β|β=2k π,k ∈Z };终边落在y 轴的非正半轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=2k π+3π2,k ∈Z ; 终边落在y 轴的非负半轴上的角的集合为 {β|β=2k π+π2,k ∈Z };所以,终边落在x 轴上的角的集合为{β|β=k π,k ∈Z }; 终边落在y 轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=k π+π2,k ∈Z . (2)第一象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π<β<2k π+π2,k ∈Z ;第二象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+π2<β<2k π+π,k ∈Z ;第三象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+π<β<2k π+3π2,k ∈Z ;第四象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+3π2<β<2k π+2π,k ∈Z .讲一讲3.(1)已知扇形的半径为1 cm ,圆心角为30°,求扇形的弧长和面积. (2)已知扇形的周长为6 cm ,面积为2 cm 2,求扇形圆心角的弧度数. [尝试解答] (1)∵α=30°=π6,∴l =|α|×r =π6×1=π6(cm)S =12|α|×r 2=12×π6×12=π12(cm 2)故扇形的弧长为π6 cm ,面积为π12cm 2.(2)设扇形的弧长为l ,所在圆的半径为r ,由题意得⎩⎪⎨⎪⎧l +2r =6,12lr =2,消去l 并整理得,r 2-3r +2=0, 解得r =1或r =2.当r =1时,l =4,圆心角α=l r =41=4;当r =2时,l =2,圆心角α=l r =22=1.故扇形的圆心角为1弧度或4弧度.1.涉及扇形的周长、弧长、圆心角和面积等的计算,关键是要弄清题目中已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程组解决.2.解题过程中,常常用到方程的思想及等价转化的思想. 练一练3.扇形的周长C 一定时,它的圆心角θ取何值才能使该扇形的面积S 最大,最大值是多少? 解:设扇形的半径为R ,则扇形的弧长为C -2R , ∵S =12(C -2R )×R =-R 2+C 2R=-(R -C4)2+(C4)2, ∴当R =C4,即θ=C -2R R =2时,扇形有最大面积C 216.用弧度表示终边落在图中的阴影部分内的角的集合如图(不包括边界角).[错解] (1)图①中,S 1={θ|2k π+330°<θ<2k π+75°,k ∈Z }; (2)图②中,S 2={θ|2k π+225°<θ<2k π+135°,k ∈Z };(3)图③中,S 3={θ|2k π+30°<θ<2k π+90°或2k π+210°<θ<2k π+270°,k ∈Z }. [错因] 上面解答犯了两个错误:一是角的大小没分清,如(1)中330°>75°,(2)中,225°>135°,其实写出的集合S 1,S 2中不含任何元素;二是角度与弧度在同一表达式中混用.[正解] (1)图①中以OB 为终边的角为330°,可看成为-30°,化为弧度,即-π6,而75°=75×π180=5π12,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-π6<θ <2k π+5π12,k ∈Z . (2)图②中以OB 为终边的角225°,可看成是-135°,化为弧度,即-3π4,而135°=3π4,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-3π4<θ<2k π+3π4,k ∈Z .(3)图③中,∵30°=π6,210°=7π6,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π6<θ<2k π+π2,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+7π6<θ<2k π+3π2,k ∈Z , 即⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π6<θ<2k π+π2,k ∈Z ∪⎩⎨⎧⎭⎬⎫θ⎪⎪⎪(2k +1)π+π6<θ<(2k +1)π+π2,k ∈Z . 即⎩⎨⎧⎭⎬⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z .1.下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同制度B .1度的角是圆周的1360所对的圆心角,1弧度的角是圆周的12π所对的圆心角C .根据弧度的定义,180°一定等于π radD .不论是用角度制还是弧度制度量角,它们都与圆的半径长短有关解析:选D 根据角、弧度的定义,可知无论角度制还是弧度制,角的大小都与圆的半径长短无关,而与弧长与半径的比值有关,所以D 错误.2.若α=1 920°,则该角的弧度数为( ) A.163 B.323 C.16π3 D.32π3解析:选D ∵1°=π180弧度,∴1 920°=1 920×π180 rad =32π3 rad.3.-29π12的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D -29π12=-2π-5π12,因为-5π12是第四象限角,所以-29π12是第四象限角.4.已知半径为10 cm 的圆上,有一条弧的长是40 cm ,则该弧所对的圆心角的弧度数是________.解析:由l =|α|×r ,得弧度数为4. 答案:45.已知一扇形的圆心角是72°,半径为20 cm ,则扇形的面积是________. 解析:设扇形的弧长为l . ∵72°=72×π180 rad =2π5 rad ,∴l =|α|×r =2π5×20=8π(cm),∴S =12lr =12×8π×20=80π(cm 2).答案: 80π cm 26.(1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α的终边相同,求β. 解:(1)∵-1 480°=-1 480π180=-74π9=-10π+16π9,又0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0],令k =-1,则β=-2π9,令k =-2,则β=-20π9,∴β的值是-2π9,-20π9.一、选择题1.下列命题中,真命题是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和D .1弧度的角是长度等于半径长的弧所对的圆心角 解析:选D 由弧度制定义知D 正确. 2.α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C ∵-π<-2<-π2,∴α的终边落在第三象限,故选C. 3.时钟的分针在1时到3时20分这段时间里转过的弧度数为( ) A.14π3 B .-14π3 C.7π18 D .-7π18解析:选B 显然分针在1时到3时20分这段时间里,顺时针转过了213周,其弧度数为-(2π×73)=-14π3rad.4.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+(-1)k×π2,k ∈Z ,B =错误!⎭⎪⎬⎪⎫2k π+π2,k ∈Z ,则集合A 与B 之间的关系为( )A .AB B .A BC .A =BD .A ∩B =∅解析:选C 对于集合A ,当k =2n (n ∈Z )时,x =2n π+π2,当k =2n +1(n ∈Z )时,x =2nπ+π-π2=2n π+π2∴A =B ,故选C. 二、填空题5.在半径为2的圆内,弧长为2π3的圆心角的度数为________.解析:设所求的角为α,角α=2π32=π3=60°.答案:60°6.终边落在直线y =x 上的角的集合用弧度表示为S =________.解析:S =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=5π4+2k π,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪{α|α=π4+(2k +1)π,k ∈Z }=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+n π,n ∈Z .答案:{α|α=π4+n π,n ∈Z }7.已知θ∈⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+(-1)k×π4,k ∈Z ,则角θ的终边所在的象限是________.解析:当k 为偶数时,α=2n π+π4,终边在第一象限;当k 为奇数时,α=(2n +1)π-π4=2n π+34π,终边在第二象限.答案:第一、二象限8.已知扇形的面积为25,圆心角为2 rad ,则它的周长为________. 解析:设扇形的弧长为l ,半径为r , 则由S =12αr 2=25,得r =5,l =αr =10,故扇形的周长为20. 答案:20 三、解答题9.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在图中的阴影部分内的角的集合(不包括边界).解:(1)图①中,以OA 为终边的角为π6+2k π(k ∈Z );以OB 为终边的角为-2π3+2k π(k ∈Z ).∴阴影部分内的角的集合为{α|-2π3+2k π<α<π6+2k π,k ∈Z }.(2)图②中,以OA 为终边的角为π3+2k π,k ∈Z ;以OB 为终边的角为2π3+2k π,k ∈Z .不妨设右边阴影部分所表示集合为M 1,左边阴影部分所表示集合为M 2, 则M 1={α|2k π<α<π3+2k π,k ∈Z },M 2={α|2π3+2k π<α<π+2k π,k ∈Z }. ∴阴影部分所表示的集合为:M 1∪M 2={α|2k π<α<π3+2k π,k ∈Z }∪{α|2π3+2k π<α<π+2k π,k ∈Z }= {α|2k π<α<π3+2k π或2π3+2k π<α<π+2k π,k ∈Z }. 10.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t s ,则t ×π3+t ×|-π6|=2π,所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s .如图,设第一次相遇点为C ,第一次相遇时已运动到终边在π3×4=4π3的位置,则x c =-⎝ ⎛⎭⎪⎫4×12=-2,y c =-42-22=-23,所以C 点的坐标为(-2,-23).P 点走过的弧长为4π3×4=16π3, Q 点走过的弧长为2π3×4=8π3.。