数控技术
- 格式:pdf
- 大小:90.47 KB
- 文档页数:9
什么是数控技术1. 引言数控技术是一种将计算机控制与机械加工相结合的技术。
它通过数控系统控制机床进行精确的加工和切削操作,能够实现高效、精确和自动化的加工过程。
在现代制造业中,数控技术已经成为一种重要的生产工具,被广泛应用于各种工业领域。
2. 数控技术的原理与发展数控技术的发展源于20世纪50年代计算机技术的出现,随着电子技术、自动控制技术和机械制造技术的进步,数控机床的产生和应用逐渐成熟。
数控技术的核心原理是利用数字数据控制机床运动,通过数控程序控制机床进行精确的加工操作。
数控技术的发展经历了几个阶段。
早期的数控技术主要采用绝对编程和固定循环控制方式,限制了数控系统的灵活性和应用范围。
随着计算机技术和软件技术的飞速发展,数控技术逐渐转向相对编程和自适应控制,使数控系统能够更好地适应不同的加工需求。
3. 数控技术的应用领域数控技术在制造业的应用非常广泛,涵盖了机械加工、汽车制造、航空航天、电子和医疗设备制造等多个领域。
在机械加工领域,数控机床可以替代传统的人工操作,提高加工精度和生产效率。
在汽车制造领域,数控技术可以实现汽车零部件的自动化生产,提高生产质量和降低成本。
航空航天领域对精密零部件的需求非常高,数控机床在这个领域发挥着重要作用。
电子和医疗设备制造领域对产品精度要求严格,数控技术可以保证产品质量的一致性和稳定性。
4. 数控技术的优势数控技术相比传统的机械加工方法具有多个优势:•高精度:数控机床可以实现微米级的加工精度,比传统的人工操作更加准确和精确。
•高效率:数控机床可以进行多轴联动控制,实现同时加工多个工序,提高生产效率。
•灵活性:数控机床可以通过调整数控程序来适应不同的加工需求,具有较强的灵活性和适应性。
•自动化:数控机床可以实现自动换刀、自动上下料、自动测量等操作,减轻操作人员的工作负担。
•节约成本:数控机床的使用可以减少人工操作和人工错误带来的损失,降低生产成本。
5. 数控技术的挑战与前景随着科技的不断进步,数控技术也在不断发展和完善。
数控技术是什么数控技术是现代制造工业中一种重要的数字化控制技术,通过计算机控制程序对机床进行精确的控制和操作。
它是数学、物理、机械、电子等多学科综合应用的一门技术,为工业自动化生产提供了重要的技术保障。
本文将就数控技术的定义、发展历程、应用领域以及未来发展进行介绍。
数控技术的出现可以追溯到二战之后的美国。
当时制造业为了满足大规模生产的需求,迫切需要提高生产效率和质量。
由于传统机床的操作过于依赖熟练的操作工人,而且难以确保加工精度和一致性,这给企业生产增加了许多困难和成本。
为了改善这一现状,科学家们开始寻找一种能够精确控制机床的新方法,最终发展出了数控技术。
数控技术通过将机床的运动控制参数编程输入计算机控制器,实现对机床的全自动控制。
相比传统的手工操作,数控技术可以提高生产效率,降低成本,并且保证加工质量的一致性。
同时,数控技术还可以实现复杂曲线的加工和多轴联动控制,从而实现更高的加工精度和灵活性。
目前,数控技术已广泛应用于各个领域。
在机械加工行业,数控技术已成为标配,几乎取代了传统的手工操作。
无论是车削、钻孔、铣削还是磨削,都可以通过数控技术来实现高效、精确的加工。
在航空航天、汽车、电子、医疗器械等领域,数控技术也得到了广泛应用。
它不仅可以提高生产效率,还可以实现产品的个性化定制和柔性生产。
未来,数控技术将继续发展壮大。
随着互联网和物联网技术的不断发展,数控技术将进一步与信息技术融合。
通过实时监测和远程控制,工业生产将更加智能化和自动化。
同时,随着人工智能和机器学习等领域的快速发展,数控技术也将应用于自主学习和决策的新型智能机床。
这将使得机床具备更高的自主性和适应性,提高生产效率和灵活性。
总结起来,数控技术作为现代制造技术的重要组成部分,已经在工业生产中得到广泛应用。
它通过计算机编程对机床进行精确控制,提高了生产效率、加工精度和灵活性。
随着技术的不断发展,数控技术还将与信息技术和人工智能等领域融合,实现更高水平的智能化制造。
第一章绪论1.1数控机床就是由哪几部分组成,它得工作流程就是什么?答:数控机床由输入装置、CNC装置、伺服系统与机床得机械部件构成。
数控加工程序得编制-输入—译码—刀具补偿-插补—位置控制与机床加工1.2数控机床得组成及各部分基本功能答:组成:就是由输入输出设备、数控装置、伺服系统、测量反馈装置与机床本体组成输入输出设备:实现程序编制、程序与数据得输入以及显示、存储与打印数控装置:接受来自输入设备得程序与数据,并按输入信息得要求完成数值计算、逻辑判断与输入输出控制等功能。
伺服系统:接受数控装置得指令,驱动机床执行机构运动得驱动部件、测量反馈装置:检测速度与位移,并将信息反馈给数控装置,构成闭环控制系统。
机床本体:用于完成各种切削加工得机械部分1、3什么就是点位控制、直线控制、轮廓控制数控机床?三者如何区别?答:(1)点位控制数控机床特别点:只与运动速度有关,而与运动轨迹无关、如:数控钻床、数控镗床与数控冲床等。
(2)直线控制数控机床特点:a、既要控制点与点之间得准确定位,又要控制两相关点之间得位移速度与路线。
b。
通常具有刀具半径补偿与长度补偿功能,以及主轴转速控制功能。
如:简易数控车床与简易数控铣床等。
(3)连续控制数控机床(轮廓控制数控机床):对刀具相对工件得位置,刀具得进给速度以及它得运动轨迹严加控制得系统、具有点位控制系统得全部功能,适用于连续轮廓、曲面加工。
1.4数控机床有哪些特点?答:a、加工零件得适用性强,灵活性好;b。
加工精度高,产品质量稳定;c.柔性好;d、自动化程度高,生产率高;e。
减少工人劳动强度;f.生产管理水平提高。
1、5按伺服系统得控制原理分类,分为哪几类数控机床?各有何特点?答:(1)开环控制得数控机床:其特点:a、驱动元件为步进电机;b.采用脉冲插补法:逐点比较法、数字积分法;c。
通常采用降速齿轮;d。
价格低廉,精度及稳定性差、(2)闭环控制系统:其特点:a。
反馈信号取自于机床得最终运动部件(机床工作台)b、主要第二章数控加工编程基础2.1数控编程就是指从零件图样到制成控制介质得全部过程手工编程得内容:分析零件图样、确定加工工艺过程、数值计算、编写零件加工程序、制作控制介质、程序校验与试切削1、数控编程得方法及特点手工编程:用人工完成程序编制得全部工作,对于几何形状较为简单,数值计算比较简单得,程序段不多采用手工编制容易完成。
数控是什么工作数控,全称为数控机床,是一种通过数字化程序控制机床运动和加工工艺的自动化加工设备。
它是利用数控系统对机床进行控制,实现对工件的加工。
数控技术是现代制造业中的重要组成部分,它的出现和发展,极大地提高了生产效率和加工精度,为制造业的发展做出了巨大贡献。
数控工作的核心是数控系统,它由硬件和软件两部分组成。
硬件部分包括数控装置、伺服系统、传感器等,软件部分则包括数控编程、加工工艺、仿真模拟等。
数控系统能够将加工工艺和加工程序转化为数控指令,通过控制机床的各个运动轴,实现对工件的加工。
数控系统的发展,使得数控机床能够实现多种复杂的加工工艺,如铣削、车削、钻削、镗削等,大大扩展了数控机床的应用范围。
数控工作的重要性不言而喻。
首先,数控机床具有高精度、高效率、高稳定性的特点,能够满足对工件加工精度和表面质量要求较高的需求。
其次,数控机床能够实现自动化加工,减少了人工干预,降低了劳动强度,提高了生产效率。
此外,数控机床还具有灵活性强、适应性广的特点,能够满足多品种、小批量、高精度的加工需求,为灵活生产提供了可能。
随着信息技术的发展,数控工作也在不断创新和进步。
现代数控系统已经实现了网络化、智能化、柔性化的发展方向,使得数控机床能够更好地适应市场需求的变化。
同时,数字化制造技术的发展,也为数控工作提供了新的发展机遇,如工业互联网、大数据、人工智能等技术的应用,将进一步提升数控工作的水平和效率。
总的来说,数控工作是现代制造业中不可或缺的重要环节,它的发展和应用,对于提高制造业整体水平,促进经济发展,具有重要意义。
随着科技的不断进步,数控工作也将迎来更广阔的发展空间,为制造业的转型升级和高质量发展注入新的动力。
数控技术毕业论文(5篇)1.数控编程与其发展数控编程是目前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作用。
在诸如航空工业、汽车工业等领域有着大量的应用。
由于生产实际的强烈需求,国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。
下面就对数控编程及其发展作一些介绍。
1.1数控编程的基本概念数控编程是从零件图纸到获得数控加工程序的全过程。
它的主要任务是计算加工走刀中的刀位点(cutterlocationpoint简称CL点)。
刀位点一般取为刀具轴线与刀具表面的交点,多轴加工中还要给出刀轴矢量。
1.2数控编程技术的发展概况为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。
其后,APT几经发展,形成了诸如APTII、APTIII、APT(算法改进,增加多坐标曲面加工编程功能)APTAC(Advancedcontouring),APT/SS(SculpturedSurface)等先进版。
采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素。
APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。
针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为为CATIA。
随后很快出现了象EUCLID,UGII,INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP 等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。
数控技术名词解释数控技术名词解释数控技术:采用数字控制的方法对某一工作过程实现自动控制的技术。
加工中心:数控铣床引是在一般铣床的基础上发展起来的,两者的加工工艺基本相同,结构也有些相似,但数控铣床是靠程序控制的自动加工机床,所以其结构也与普通铣床有很大区别。
半闭环控制系统:在开环控制系统的伺服机构中装有角位移检测装置,通过检测伺服机构的滚珠丝杠转角,间接检测移动部件的位移,然后反馈到数控装置的比较器中,与输入原指令位移值进行比较,用比较后的差值进行控制,使移动部件补充位移,直到差值消除为止的控制系统。
重复定位精度:在在相同条件下(同一台数控机床上,操作方法不同,应用同一零件程序)加工一批零件所得到的连续结果的一致程度。
最小分辨率:两个相邻的分散细节之间的可以分辨的最小间隔。
脉冲当量:相对于每一脉冲信号的机床运动部件的位移量点位控制系统:是指数控系统只控制刀具或机床工作台,从一点准确地移动到另一点,而点与点之间运动的轨迹不需要严格控制的系统。
进给功能:定义进给率技术规范的指令。
插补运算和插补功能:在机床运动过程中,为了实现轮廓的控制,数控系统必须根据零件轮廓的曲线形式和进给速度的要求,实时计算出介于轮廓起点和终点之间的所有折线端点的坐标。
笛卡尔坐标系:直角坐标系和斜角坐标系的统称。
机床主轴:机床上带动工件或刀具旋转的轴。
刀位点:刀具的定位基准点。
对刀点:在数控机床上加工零件,刀具相对零件运动的起始点。
刀具偏置:刀具位置沿平行于控制坐标方向上的补偿位移。
刀位轨迹:切削刀具上规定点所走过的轨迹。
插补器:在CNC中,插补功能由软件或者软硬件结合来实现,称为插补器。
刀具半径补偿:数控机床在加工过程中,它所控制的是刀具中心的轨迹,为了方便起见,用户总是按零件轮廓编制加工程序,因而为了加工所需的零件轮廓,在进行内轮廓加工时,刀具中心必须向零件的内侧偏移一个刀具半径值;在进行外轮廓加工时,刀具中心必须向零件的外侧偏移一个刀具半径值。
数控技术的基本知识数控技术是一种运用计算机数字控制系统进行加工的技术,在制造业中广泛应用。
随着数控技术的不断进步和发展,其应用范围也越来越广泛。
本文将介绍数控技术的基础知识。
一、数控系统的概述数控系统是一种通过编写程序控制数控机床进行精密加工的系统。
数控系统软件的主要部分是计算机程序,该程序包括数控机床所需的运动指令。
硬件部分主要包括数控机床、数控装置、电机和传感器等。
二、数控系统的三个坐标轴数控系统的机床主要由三个坐标轴控制:X、Y、Z三个轴。
其中,X轴代表水平方向移动,Y轴代表一个垂直方向移动,Z 轴代表一个前后方向移动。
这些轴可以在不同的方向上运动,从而实现三维加工的目的。
三、数控系统的编程方法数控系统的编程方法包括手工编程和计算机编程两种。
手工编程是通过手动操作进行编码,主要用于简单的加工任务。
计算机编程是通过计算机编写程序进行控制,主要用于更复杂的加工任务。
计算机编程是更常用的编程方法,因为它可以更准确地控制机床。
四、数控系统的工作流程数控系统的工作流程包括输入加工参数、编写加工程序、将程序加载到数控装置、数控装置将程序解释为运动命令、机床根据指令开始移动、传感器检测加工过程,并将数据反馈给数控装置、完成加工任务后卸载程序。
五、数控系统的优势相对于传统加工方法,数控系统具有以下优越性:1.精度高:数控系统具有非常高的精度,能够完成复杂的加工任务2.效率高:数控机床的加工速度比传统机床更快,可大大缩短加工周期3.适应性强:数控系统可以根据加工物体的形状和尺寸自动调整加工方式4.减少人力:数控系统可以实现全自动化加工,不需要人工操作6.数控系统的前景随着社会的不断进步,人们对生产效率和精度的要求越来越高,数控系统有着广阔的应用前景。
未来,数控系统将会进一步发展和完善,在制造业中的应用将更加广泛。
总之,数控技术是一种非常先进的加工技术,在制造业中具有重要的地位和作用。
掌握数控技术的基础知识对提高生产效率和质量有着重要的意义,希望各位读者能够关注并学习。
一、数控技术的定义和基本原理1.1 什么是数控技术数控技术是一种以数字信号为控制指令,对机床、自动化装置和其他生产设备进行自动化控制的技术,它将数字化的信息传输到机床上,从而实现机床的自动加工。
数控技术的应用领域非常广泛,不仅可以用于金属加工,还可以用于木工、陶瓷等材料的加工。
1.2 数控技术的基本原理数控技术的基本原理是通过计算机控制系统,将数字化的加工程序信息传输到机床上,从而实现工件的自动加工。
数控技术的核心是数控系统,它包括数控设备和数控编程两部分。
数控设备主要包括数控机床、数控工作台等,而数控编程则是将人工编制的加工工艺通过计算机编程软件转化为机床可执行的加工程序。
二、数控技术在智能制造中的应用2.1 数控技术在智能制造中的地位智能制造是当前制造业的发展趋势,其核心是通过信息技术、自动化技术和智能化技术实现制造过程的智能化。
而数控技术作为智能制造的核心技术之一,其应用在智能制造中具有重要的地位。
数控技术不仅可以提高生产效率,降低生产成本,还可以实现个性化定制和灵活生产。
2.2 数控技术在智能制造中的应用案例数控技术在智能制造中的应用案例非常丰富。
例如在汽车制造领域,数控技术可以实现汽车零部件的精密加工,提高汽车的制造质量和性能;在航空航天领域,数控技术可以实现飞机零部件的高精度加工,保障飞机的飞行安全;在家居设计领域,数控技术可以实现家具等产品的个性化定制,满足消费者个性化需求。
三、数控技术在智能制造中的发展趋势3.1 数控技术在智能制造中的发展现状当前,随着智能制造的不断发展,数控技术在智能制造中的应用越来越广泛。
在工业机器人、3D打印、柔性制造系统等领域,数控技术已经成为智能制造的重要支撑技术。
3.2 数控技术在智能制造中的发展趋势未来,随着人工智能、大数据、云计算等技术的不断发展,数控技术在智能制造中的应用将更加广泛。
智能数控机床将会实现智能化的生产调度和过程监控,柔性制造系统将会实现高度自动化和个性化定制,工业机器人将会实现更加智能、灵活的生产。
数控技术标准
数控技术标准涉及多个方面,包括机床结构、加工工具、控制系统和
安全防护等。
以下是一些常见的数控技术标准:
1. 机床结构:数控机床的结构应满足刚性好、稳定性高、能够保证加
工精度的要求。
同时,机床应具有可靠性强、使用寿命长、加工范围广、操作方便、易于维护和保养的特点。
2. 加工工具:数控机床的加工工具应满足刀具刚性好、能够承受高速
旋转和大力矩的要求。
切削刃质量高,能够保证高精度加工。
刀柄精
度高,能够保证刀具的精确定位。
3. 控制系统:数控机床的控制系统应满足控制精度高、响应速度快、
具备自我检测和诊断功能的要求。
同时,控制系统还应具备通信功能,能够与其他设备实现数据交换和联网操作。
4. 安全防护:数控机床的安全防护应满足设备符合国家安全标准和规
定的要求。
设备应具备自动报警和停机保护功能,能够及时发现和解
决安全问题。
什么是数控技术
数控技术是指利用计算机技术、传感器技术、精密机械技术等现代科技手段,对数码信号进行加工,从而控制机床或机器人等精密机械设备,实现零件的精密加工,提高工艺品质和生产效率,从而让机器代替人类完成工业生产。
数控技术是现代制造业的重要技术之一,实现了数字化设计、数控加工、在线检测等一体化精密制造过程,能够快速高效的生产出复杂的机械零件,产品的精度、稳定性和一致性得到了很大的提高,大大提高了生产效率,降低了生产成本。
在数控技术中,计算机是核心控制设备,承担了数控系统中最重要的任务,它接受数控程序,控制各种电气执行元件的动作,实现零件的加工。
数控系统根据数控程序生成相应的加工路径和加工参数,通过控制主轴的转速、进给速度、刀具位置等来控制加工过程,从而实现对零件的精密加工。
数控技术在制造业中的应用越来越广泛,它已经成为现代化制造业的必要条件。
在机床制造、汽车轮毂加工、模具制造、航空、航天等领域都有广泛的应用。
目前国内的数控技术仍然处于发展阶段,需要加强相关科研,推广应用,实现数控技术的优化和进一步提升产业竞争力。
总之,数控技术是一种统合了机械、电子、计算机、控制与工程技术的高科技,它代表了现代制造业的先进水平,为实现产业升级与转型发挥着重要的作用。
数控(Numerical Control)是数字控制的简称,是一种利用数字化信息对机械运动及加工过程进行控制的方法。
数控技术是集成了计算机、信息处理、自动控制、机械制造等多个领域的一种综合技术,其通过使用专用的计算机硬件和软件,实现对加工过程的精确控制,从而提高制造效率、加工精度和产品质量。
数控通常使用专门的计算机,操作指令以数字形式表示,机器设备按照预定的程序进行工作。
数控技术可以通过对输入的数字信息进行运算和加工,实现机床的自动控制。
其核心技术包括数控编程技术、数控机床加工工艺、计算机数控系统等。
数控技术广泛应用于制造业中,可用于控制车床、铣床、加工中心等各类机床设备。
它不仅可以大幅度提高加工精度和生产效率,减少人力成本,而且还能实现多轴联动加工、复合加工等复杂工艺,为制造业的发展提供了强大的支持。
随着科技的不断发展,数控技术也在不断进步和完善。
现代数控系统已经实现了高精度、高速度、高效率的加工能力,同时还能够进行复杂的运动轨迹控制、动态响应控制、自动补偿控制等多项技术,使得数控技术在航空、汽车、医疗器械等多个领域得到广泛应用。
此外,现代数控技术还注重人机交互界面的人性化和智能化,使得操作更加简便和直观。
同时,随着云计算、物联网等新技术的融合应用,数控技术将进一步向智能化、网络化、柔性化等方向发展,为制造业的转型升级提供更加有力的技术支持。
数控技术的概念一、引言数控技术是现代制造业中的关键技术之一,它通过计算机数值控制机床或其他加工设备的运动轨迹和加工参数,实现对零件的精密加工和生产自动化。
随着科技的不断进步和人们对质量和效率要求的提高,数控技术在各个领域得到了广泛应用。
二、数控技术的发展历程1. 早期阶段20世纪50年代初期,美国麻省理工学院开发出了第一台数控机床,标志着数控技术的诞生。
此后,欧美等发达国家相继开展了相关研究,并开始应用于军事、航空航天等领域。
2. 中期阶段20世纪70年代至80年代初期,随着计算机技术和电子技术的迅速发展,数控技术得到了进一步发展。
出现了多轴联动、高速切削等新型数控系统,并开始应用于汽车、船舶、模具等行业。
3. 现代阶段20世纪90年代以来,随着信息技术和网络通信技术的快速发展,数控技术进入了一个全新的发展阶段。
出现了基于云计算、物联网等新技术的智能制造和数字化工厂,数控技术在生产自动化、智能化和柔性化方面得到了广泛应用。
三、数控技术的主要特点1. 精度高数控机床通过计算机程序精确控制加工过程,可以实现高精度的加工,满足复杂零件加工的要求。
2. 生产效率高数控机床具有自动化程度高、操作简便等优点,可以大大提高生产效率和生产质量。
3. 加工范围广数控机床不仅可以加工传统的金属材料,还可以加工非金属材料如陶瓷、塑料等。
4. 制造成本低相对于传统机床而言,数控机床具有更高的生产效率和更低的人力成本,从而降低制造成本。
四、数控技术在各行业中的应用1. 机械制造业数控技术在机械制造业中得到了广泛应用,包括航空航天、汽车、模具等行业。
数控机床可以加工各种复杂的零件,提高生产效率和质量。
2. 电子制造业数控技术在电子制造业中也有广泛应用,如印刷电路板、手机外壳等的加工。
数控机床可以实现高精度、高速度的加工,满足电子产品对零件精度和质量的要求。
3. 医疗器械制造业数控技术在医疗器械制造业中也有应用,如人工关节、牙科种植等产品的制造。
数控技术知识点数控技术作为现代制造业中的重要组成部分,已经成为提高生产效率和产品质量的重要手段。
数控技术的应用范围日益广泛,对于制造业的发展起着至关重要的作用。
下面将介绍一些数控技术的知识点。
一、数控系统的基本构成数控系统主要由数控设备、数控程序、数控执行系统和输入输出设备等组成。
数控设备包括数控主机和外围设备,数控程序是控制加工过程的程序指令,数控执行系统负责接收数控程序并控制机床进行加工,输入输出设备包括键盘、显示屏等。
二、数控系统的工作原理数控系统通过接收数学模型和加工过程参数等输入,将其转换为相应的程序指令,经过数控主机进行处理后,通过数控执行系统控制机床进行自动加工。
数控系统具有高精度、高效率的特点,提高了生产制造的精度和效率。
三、数控编程数控编程是指根据零件的图样和工艺要求,编写数控加工程序的过程。
数控编程包括手工编程和自动编程两种方式,手工编程需要编程人员具备较强的数学基础和编程能力,而自动编程则由专门的软件进行生成。
四、数控加工工艺数控加工是指通过数控系统控制机床进行加工,包括铣削、钻孔、车削、磨削等多种加工工艺。
数控加工具有高精度、高质量和高效率的特点,广泛应用于航空航天、汽车制造、模具加工等行业。
五、数控机床分类数控机床根据其加工方式和结构特点可分为铣床、车床、磨床、钻床等多种类型。
不同类型的数控机床适用于不同的加工要求,能够实现各种零件的精密加工。
六、数控系统的应用领域数控技术在机床制造、汽车制造、航空航天等领域得到广泛应用,有效提高了生产效率和产品质量。
随着科技的发展,数控技术将继续发展壮大,推动着制造业的进步。
综上所述,数控技术是现代制造业中不可或缺的重要技术,掌握数控技术知识点对于提高生产效率和产品质量具有重要意义。
希望以上内容能为您对数控技术有更深入的了解。
数控学徒一般学多久零基础在当今社会,数控技术逐渐成为各行各业的一项必备技能,而成为一名合格的数控操作员并不是一蹴而就的事情。
对于零基础的数控学徒来说,学习数控技术并不简单,需要积极学习和不断实践。
那么,数控学徒一般需要学习多久才能具备基本的技能呢?数控技术概述数控技术是指利用数字化设备来控制机器和设备的加工过程的技术。
数控技术在制造业中有着广泛的应用,能够提高生产效率,降低成本,保证加工精度。
因此,掌握数控技术对于现代制造行业而言至关重要。
学习路径建议基础知识学习作为零基础的数控学徒,首先需要掌握一定的数学和物理知识,包括几何知识、代数知识以及机械原理等。
这些知识是学习数控技术的基础,可以通过自学或者参加培训课程来获得。
编程语言学习数控编程是数控技术的核心内容,学习数控编程需要掌握相应的编程语言。
常见的数控编程语言包括G代码和M代码,学习这些编程语言可以帮助学徒理解数控系统的工作原理。
实践操作在掌握了基础知识和编程语言之后,数控学徒需要进行实践操作,通过操作数控设备进行加工,加深对数控技术的理解。
实践操作是学习数控技术中最为重要的环节,只有通过实践才能真正掌握数控技术。
学习时间展望针对一个零基础的数控学徒,学习数控技术一般需要6个月至1年的时间。
在这段时间内,学徒需要全身心投入到学习中,积极参与实践操作,才能够在较短的时间内掌握数控技术的基本知识和技能。
总结学习数控技术对于零基础的学徒来说并不是一项容易的任务,但只要有足够的耐心和努力,都可以学会这门技术。
通过系统学习和实践操作,数控学徒可以在相对较短的时间内掌握数控技术的基本知识和技能,为今后的工作打下基础。
因此,对于想要成为数控操作员的学徒来说,一定要坚持学习,不断提升自己的技能水平。
1数控机床是一种典型的机电一体化产品,较好的解决了复杂、精密、小批量、多品种的零件加工问题。
2CNC装置的组成部分:输入输出装置,数控装置,伺服驱动装置,辅助控制装置,位置检测装置,机床的机械部件。
3高柔性化:柔性加工单元(FMC),柔性制造系统(FMS)。
4数控机床的分类:
A按运动控制方式分类1)点位控制系统2)点位直线控制系统3)轮廓控制系统
B按伺服系统控制方式分类1)开环伺服系统2)闭环伺服系统3)半闭环伺服系统
C按可控制联动的坐标轴分类1)两坐标联动机床2)三坐标联动机床3)两轴半坐标联动机床4)多坐标联动机床
5坐标系的确定原则:1)数控机床的标准坐标系采用笛卡尔直角坐标系2)采用假设工件固定不动3)正方向的确定原则:坐标系以增大刀具与工件之间距离的方向为各坐标轴的正方向,反之则为负方向。
规定以传
递切削动力的主轴为Z轴;X轴为水平方向且垂直于Z轴并平行于工件装夹面。
按右手法则确定Z轴。
6机床零点:机床坐标系的原点,即机床基本坐标系的原点,它是一个被确定的点,称为机床零点或机械零点(M)
7机床参考点:与机床坐标系相关的另一个点叫做机床参考点,又称机械原点(R),它指机床各运动部件在各自的正方向自动退至极限的一个固定点,可由限位开关精密定位
8对刀点:指刀具相对于工件运动的起点。
选择对刀点原则:1)便于数学处理和使程序编制简单2)在机床上容易找正3)加工过程中便于测量检查4)引起的加工误差小
9A程序段的顺序号字:由地址N及其后的数字组成
B准备功能字:由G代码表示,使机床建立起某种工作方式的指令
C坐标尺寸字:尺寸字地址为XYZ
D进给功能字:由地址码F及其后续的数值组成。
进给速度的指定方法有直接法和代码法
mm/min或者mm/r。
E主轴转速功能字:由地址码S及其后续的数值组成r/min
F刀具功能字:由地址码T及其后续的数值组成,一般常取刀号与补偿号的数字相同
(T0101)
10G代码分为模态代码和非模态代码。
模态代码表示该代码一经在一个程序段中指定,直到出现同组的另一个G代码时才失效。
非模态代码只在有该代码的程序段中有效。
11坐标系设定指令:G92X_Y_Z_;
编程原点偏置:G54—G59;
13目前使用最多最广泛的是字地址可变程序段格式。
字母和数字一起组成字,故称为字地址格式
14顺序号就是程序段号,常用顺序号表示顺序。
第四章
15数控机床的CNC系统:中央处理单元CPU,存储器(ROM/RAM),输入输出设备(I/O),可编程控制器
16单CPU结构CNC系统的特点和结构:特点:
CNC的所有功能都通过一个CPU进行集中控制,分时处理来实现。
功能受字长,数据宽度,寻址能力和运算速度等因素的限制。
所以,可以集中控制,分时处理数控装置的各个任务。
结构:CPU、总线、I/O接口、存储器、串行接口和CRT/MDI接口。
17多微处理器结构:在一个数控系统中有两个或两个以上的微处理器,每个微处理器通过数据总线或通信方式进行连接,共享系统的公用存储器与I/O接口,每个微处理器分担系统的一部分工作。
18多CPU CNC的典型结构:1)共享总线结构:各模块之间的通信,主要依靠存储器实现,采用公共存储器的方式。
优先权判别方式:串行,并行2)共享存储器结构:采用多端口存储器来实现各CPU之间的互连和通信,每个端口都配有一套数据,地址,控制线,以供端口访问。
19多CPU CNC系统基本功能模块:管理模块,插补模块,位置控制模块,PLC模块,命令与数据输入输出模块,存储器模块
20CNC任务分解:1)系统管理:输入,I/O
处理,通信,显示,诊断以及加工程序的编制管理2)系统控制:译码,刀补,速度处理,插补,位置控制
21CNC系统的软件分为前台程序和后台程序。
前后台型结构模式:1)前台程序:实时中断服务程序,可以实现插补,伺服,机床监控后台程序等实时功能。
2)后台程序:一个循环运行程序,完成管理功能和输入、译码、数据处理等非实时性任务。
后台程序运行中,实时中断程序不断插入,与后台程序相配合,共同完成零件加工任务22插补:协调各坐标的移动使其合成的轨迹近似于理想轨迹的方法,是指数据密化的过程。
23插补运算采用的原理和方法:1)数字脉冲增量插补:以行程为标量,每来一个F脉冲进行插补运算一次,相应有一个脉冲当量的位移输出;2)数据采样插补:以时间为标量,当选定插补周期的时间后,根据给定的F值,在一个插补周期时间内输出相应的一小段步长数据,也称作时间分割法或数字
增量法。
24关系:1)插补周期必须大于插补运算所占用的CPU时间,2)插补周期T必须大于插补运算时间与完成其他实时任务所需时间之和,3)插补周期和采样周期相同或是其整数倍
25在给定圆弧半径和弧线误差极限的情况下,插补周期应尽可能小,以便获得尽可能大的加工速度
26实现B刀补的常用方法有一个共同特点,就是对于加工轮廓的转接是以圆弧方式进行的,会产生两个问题1)在外轮廓尖加工时,尖角加工的工艺性差,尖角变成小圆角2)在内轮廓尖角加工时,必须人为插入辅助加工的圆弧轨迹,给程序编制带来麻烦
27直线和圆弧过渡的转接形式:缩短型转接,伸长型转接,插入型转接
28进给速度控制:控制插补运算的频率来控制进给速度。
常用方法:软件延时法,中
断控制法
29加减速控制:1)前加减速控制,仅对合成速度进行控制,优点不会影响实际插补输出的位置精度,缺点需要预测减速点2)后加减速控制是对各运动轴分别进行加减速控制,不需要专门预测减速点,是在插补输出为零时开始减速,缺点由于是对各运动轴分别进行控制,使实际的各坐标轴的合成位置可能不准确
第五章
30若通电顺序改为A—C—B—A、、、,步进电动机的转子将逆时针转动,这种通电方式称三相三拍,而通常的通电方式为三相六拍,其通电顺序A—AB—B—BC—C—CA—A、、、及A—AC—C—CB—B—BA—A、、、
31步进电动机的工作原理:1)步进电动机定子绕组的通电状态每改变一次,它的转子便转过一个确定的角度2)改变步进电动机定子绕组的通电顺序,转子的旋转方向改变3)步进电动机定子绕组通电状态的改变速度越快,其转子旋转的速度越快4)步进电
动机的步距角α与定子绕组的相数m,转子的齿数z,通电方式k有关α=360°/(mzk)
32步进电动机的控制方式:控制脉冲必须按一定的顺序分别供给电动机各相
33感应同步器的测量方式分为鉴相式和鉴幅式。
的工作原理:1)滑尺U随时间变化产生定尺互感电势2)定尺滑尺绕组的相对位置影响互感的强度3)滑尺每移动一个节距,感应电压就变化一个周期
34脉冲编码器分为增量式编码器和绝对式编码器。
增量式编码器只能进行相对测量,一旦在测量过程中出现计数错误,在以后的测量中会出现计数误差,绝对式编码器克服其缺点
35光栅:指示光栅装在光栅读数头中,标尺光栅和指示光栅平行度及二者之间的间
隙(0.05—0.1)要严格保证
36莫尔条纹特点:1)当用平行光束照射光栅时,莫尔条纹由亮带到暗带,再由暗带到亮带,透过的光强度分布近似于正弦函数2)
起放大作用3)起平均误差作用4)莫尔条纹的移动与光栅之间的移动成比例
莫尔条纹的移动方向与光栅移动方向垂直,这样测量光栅水平方向移动的微小距离就用检测垂直方向的宽大的莫尔条纹的变化代替!。