氧吸收与解吸说明书
- 格式:docx
- 大小:134.99 KB
- 文档页数:10
第二节吸收与解吸2.1 概述吸收(absorption)是依据不同组分在溶剂中溶解度不同,让混合气体与适当的液体溶剂相接触,使气体中的一个或几个组分溶解于溶剂中形成溶液,难以溶解的组分保留在气相中,从而达到混合气体初步分离的操作。
所用液体称为吸收剂(或溶剂)。
气体中能被溶解的组分称为溶质或吸收质。
不被溶解的组分称为惰性气体或载体。
使溶质从溶液里脱除的过程称为解吸或脱吸。
它是吸收操作的逆过程,一个完整的吸收过程往往包括吸收与解吸两个部分。
为实现气体吸收过程,需要解决的问题是:①选择合适的溶剂(吸收剂);②溶剂的再生,这项费用往往占整个吸收操作费用的很大比例;③设计或选用合适的传质设备。
吸收操作根据物系气—液组分间是否发生发生化学反应分为化学吸收和物理吸收;根据吸收过程热效应是否显著分为等温吸收和非等温吸收;根据混合气体浓度高低分为低浓度吸收和高浓度吸收;根据被吸收组分数分为单组分吸收和多组分吸收。
本节主要讨论单组分、低浓度、等温、物理吸收。
2.2 气液相平衡2.2.1 气体在液体中的溶解度在恒定温度和压力下气液两相接触时将发生溶质气体向液相转移,使其在液相中的浓度增加,当充分接触,两相达到相平衡。
此时,溶质在液相中的浓度称为平衡溶解度,简称溶解度;溶解度随温度和溶质气体的分压而不同,平衡时溶质在气相中的分压称为平衡分压。
平衡分压p ﹡与溶解度间的关系曲线,这些曲线称为溶解度曲线。
加。
故加压和降温有利于吸收操作。
反之,升温和减压则有利于解吸过程。
2.2.2 亨利定律亨利定律:当总压不太高(一般约小于500kPa)时,在一定温度下,稀溶液(或理想溶液)上方气相中溶质的平衡分压与液相中溶质的摩尔分数成正比。
Ex p A =*式中——*A p 溶质A 在气相中的平衡分压,kPa ;x ——液相中溶质的摩尔分数;E ——称为亨利系数,kPa 。
采用其他的气、液相组成时,亨利定律有如下几种表达形式:(1)气相组成用溶质A 的分压*A p ,液相组成用溶质的浓度c A 表示时,亨利定律可表示为Hc p A A =*式中c A ——液相中溶质的浓度kmol/m 3;H ——溶解度系数,kmol/(m 3﹒kPa)。
吸收与解吸实验实验报告吸收与解吸实验实验报告引言:吸收与解吸是化学实验中常见的操作和现象。
通过这个实验,我们可以了解物质在溶液中的吸收和解吸的过程,以及相关的实验技巧和方法。
本实验报告将详细介绍吸收与解吸实验的步骤、结果和分析。
实验目的:1. 了解物质在溶液中的吸收和解吸过程;2. 掌握吸收和解吸实验的基本操作技巧;3. 分析吸收和解吸实验的结果,探讨影响吸收和解吸的因素。
实验材料和仪器:1. 玻璃试管;2. 氢氧化钠溶液;3. 氯化铵溶液;4. 氢氧化钠固体;5. 氯化铵固体;6. 酚酞指示剂;7. 打火石;8. 酒精灯;9. 钳子;10. 温度计。
实验步骤:1. 准备两个玻璃试管,分别标记为A和B。
2. 在试管A中加入适量的氢氧化钠溶液,试管B中加入适量的氯化铵溶液。
3. 向试管A中加入少量的酚酞指示剂,使溶液呈现红色。
4. 将试管A和B放置在一个装有水的容器中,保持试管A的底部接触水面,试管B则悬空于水中。
5. 用打火石点燃酒精灯,将试管B加热至沸腾状态。
6. 观察试管A中溶液的颜色变化。
实验结果:在进行实验的过程中,我们观察到以下现象:1. 在试管A中,溶液的颜色由红色逐渐变为无色。
2. 在试管B中,溶液开始加热后,溶液的颜色保持不变。
实验分析:根据实验结果,我们可以得出以下结论:1. 氢氧化钠溶液中的酚酞指示剂在加热的过程中逐渐褪色,说明溶液中的氢氧化钠被吸收了。
2. 氯化铵溶液中的酚酞指示剂在加热的过程中保持不变,说明溶液中的氯化铵没有被吸收。
进一步分析:吸收和解吸实验的结果可以归因于溶液中物质的化学性质和溶解度。
氢氧化钠是一种强碱,具有很强的吸收能力,可以与酚酞指示剂发生化学反应,导致溶液颜色的变化。
而氯化铵是一种盐类,其溶解度较高,不容易被吸收。
因此,在加热的过程中,氢氧化钠被吸收,而氯化铵保持不变。
结论:通过吸收与解吸实验,我们了解到物质在溶液中的吸收和解吸过程。
氢氧化钠溶液具有较强的吸收能力,可以吸收酚酞指示剂,导致溶液颜色的变化。
氧吸收/解吸系数测定实验报告一、实验目的1、了解传质系数的测定方法;2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响;3、掌握气液吸收过程液膜传质系数的实验测定方法;4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。
二、实验原理1) 吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度气体混合物单组分物理吸收过程,计算公式如下。
气相内传质的吸收速率:)(i y A y y F k N -=液相内传质的吸收速率:)(x x F k N i x A -=气、液相相际传质的吸收速率:)()(**x x F K y y F K N x y A -=-=式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数;x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数;k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。
对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。
对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。
本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。
解吸是吸收的逆过程,传质方向与吸收相反,其原理和计算方法与吸收类似。
但是传质速率方程中的气相推动力要从吸收时的(y -y *)改为解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x *)。
2) 吸收系数和传质单元高度吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。
化工基础实验报告实验名称 氧吸收/解吸系数测定班级 分2 姓名 李上 学号 2012011849 成绩 实验时间 12月18日 同组成员 董昊、李寒松 1.实验目的1了解吸收(解吸)操作的基本流程和操作方法。
2测定氧解吸塔内空塔气速和液体流量对传质系数的影响。
2.实验原理吸收是工业上常用的操作,常用于气体混合物的分离。
在吸收操作中,气体混合物和吸收剂分别从塔底和塔顶进入塔内,气、液两相在塔内实现逆流接触,使气体混合物中的溶质较完全地溶解在吸收剂中,于是塔顶获得较纯的惰性组分,从塔底得到溶质和吸收剂组成的溶液(通称富液)。
当溶质有回收价值或吸收价格较高时,把富液送入再生装置进行解吸,得到溶质或再生的吸收剂(通称贫液),吸收剂返回吸收塔循环使用。
(1)吸收速率吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间的传质速率来表示。
在连续吸收操作中,这三种传质速率表达式计算结果相同。
对于低浓度气体混合物单组分无力吸收过程,计算公式如下。
气相内传质的吸收速率:)y y (F k N i y A -=液相内传质的吸收速率:)x x (F k N i x A -=气、液两相相际传质的吸收速率:)x x (F K )y y (F K N *x *y A -=-=式中:y 、i y ——气相主体和气相界面处的溶质摩尔分数;x 、i x ——液相主体和液相界面处的溶质摩尔分数;*x 、*y ——与y 和x 呈平衡的液相和气相摩尔分数;x k 、x K ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; y k 、y K ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数;F ——传质面积,2m 。
对于难溶溶质的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达的吸收速率式。
对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达的吸收速率式。
本实验为一解吸过程,将空气与富氧水接触,因富氧水中养的浓度高于同空气处于平衡的水中的氧浓度。
氧吸收与解吸实验装置说明书天津大学化工基础实验中心一、实验目的:1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法。
2.通过实验测定数据的处理分析可加深对填料塔流体力学性能基本理论的理解,测定压降与气速的关系曲线,加深对填料塔传质性能理论的理解。
3.练习并掌握填料吸收塔传质能力和传质效率的测定方法并分析影响因素;学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、实验原理:本装置先用吸收塔将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a ,并进行关联,得到K x a=AL a ·V b 的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
1.填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得直线(图中aa 线)。
当有喷淋量时,在低气速下(c 点以前)压降也正比于气速,但大于同一气速下干填料的压降(图中bc 段)。
随气速的增加,出现截点(图中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。
到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。
2.传质实验:填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:m p x A x V a K G ∆∙∙= m p A x x V G a K ∆∙=其中 22112211ln)()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω∙=Z V p 相关的填料层高度的基本计算式为:OL OL x x e x N H xx dxa K L Z ∙=-Ω∙=⎰12 即 OL OL N Z H /= 其中 m x x e OL x x x x x dx N ∆-=-=⎰2112, Ω∙=a K LH x OL 式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h •Δx] V P —填料层体积[m 3] Δx m —液相对数平均浓度差x 1 —液相进塔时的摩尔分率(塔顶)图-2 解吸塔气相液相传递图x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y 2平衡的液相摩尔分率(塔底) Z —填料层高度[m] Ω —塔截面积[m 2] L —解吸液流量[Kmol/h]H OL —以液相为推动力的传质单元高度 N OL —以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x =k x , 由于属液膜控制过程,所以要提高总传质系数K x a ,应增大液相的湍动程度。
吸收解吸单元仿真培训系统操作说明书北京东方仿真软件技术有限公司2009年1月目录一、工艺流程说明 (2)1、工艺说明 (2)2、本单元复杂控制方案说明 (3)3、设备一览 (3)二、吸收解吸单元操作规程 (4)1、开车操作规程 (4)2、正常操作规程 (7)3、停车操作规程 (7)4、仪表及报警一览表 (10)三、事故设置一览 (13)四、仿真界面 (16)附:思考题 (20)一、工艺流程说明1、工艺说明吸收解吸是石油化工生产过程中较常用的重要单元操作过程。
吸收过程是利用气体混合物中各个组分在液体(吸收剂)中的溶解度不同,来分离气体混合物。
被溶解的组分称为溶质或吸收质,含有溶质的气体称为富气,不被溶解的气体称为贫气或惰性气体。
溶解在吸收剂中的溶质和在气相中的溶质存在溶解平衡,当溶质在吸收剂中达到溶解平衡时,溶质在气相中的分压称为该组分在该吸收剂中的饱和蒸汽压。
当溶质在气相中的分压大于该组分的饱和蒸汽压时,溶质就从气相溶入溶质中,称为吸收过程。
当溶质在气相中的分压小于该组分的饱和蒸汽压时,溶质就从液相逸出到气相中,称为解吸过程。
提高压力、降低温度有利于溶质吸收;降低压力、提高温度有利于溶质解吸,正是利用这一原理分离气体混合物,而吸收剂可以重复使用。
该单元以C6油为吸收剂,分离气体混合物(其中C4:25.13%,CO和CO2:6.26%,N2:64.58%,H2:3.5%,O2:0.53%)中的C4组分(吸收质)。
从界区外来的富气从底部进入吸收塔T-101。
界区外来的纯C6油吸收剂贮存于C6油贮罐D-101中,由C6油泵P-101A/B送入吸收塔T-101的顶部,C6流量由FRC103控制。
吸收剂C6油在吸收塔T-101中自上而下与富气逆向接触,富气中C4组分被溶解在C6油中。
不溶解的贫气自T-101顶部排出,经盐水冷却器E-101被-4℃的盐水冷却至2℃进入尾气分离罐D-102。
吸收了C4组分的富油(C4:8.2%,C6:91.8%)从吸收塔底部排出,经贫富油换热器E-103预热至80℃进入解吸塔T-102。
一、实验目的1、了解吸收与解吸装置的设备结构、流程和操作;234二、实验原理1、吸收实验根据传质速率方程,在假定Kxa浓、难溶等)条件下推导得出吸收速率方程:Ga=Kxa·V·ΔXm则:Kxa=Ga/(V·ΔXm)式中:Kxa——体积传质系数[kmolCO2/m3·h]Ga——填料塔的吸收量[kmol CO2/h]V——填料层的体积[m3]ΔXm——填料塔的平均推动力⑴、Ga的计算已知可测出:由涡轮流量计和质量流量计分别测得水流量Ls[m3/h]、空气流量V B[m3/h](显示流量为20℃,101.325KPa标准状态流量);Ls(kmol/h)=Vs×ρ水/M水B 0B V G M •ρ=空气标准状态下ρ0=1.205,M 空气=29 因此可计算出L S 、G B 。
又由全塔物料衡算:Ga=Ls(X 1-X 2)=G B (Y 1-Y 2)22211111y y Y y y Y -=-=认为吸收剂自来水中不含CO 2,则X 2=0,则可计算出Ga 和X 1 ⑵、ΔX m 的计算根据测出的水温可插值求出亨利常数E(atm),本实验为P=1(atm) 则m=E/P22222212111111ln e e m e e Y X X X X X X m X X X X X Y X X m=∆=-∆-∆∆=∆∆=-=∆ 1y Y y Y y=-根据公式将换算成附: 不同温度下CO 2—H 2O 的相平衡常数2、解吸实验根据传质速率方程,在假定K Ya 为常数、等温、低解吸率(或低浓、难溶等)条件下推导得出解吸速率方程:Ga=K Ya ·V·ΔYm则: K Ya =Ga/(V·ΔYm)式中:KYa ——体积解吸系数 [kmol CO 2/m 3·h] Ga ——填料塔的解吸量 [kmol CO 2/h] V ——填料层的体积 [m 3] ΔYm——填料塔的平均推动力y1y 212Δy 11x2Δy 22x 1=0⑴、Ga 的计算已知可测出:由流量计测得Vs[m 3/h]、V B [m 3/h], 图2.解吸流程图 y1及y2(体积浓度,可由二氧化碳分析仪直接读出)Ls(kmol/h)=Vs×ρ水/M 水B 0B V G M •ρ=空气标准状态下ρ0=1.205 因此可计算出L S 、G B 。
2017—2018学年度第二学期高一期末考试生物试卷一.单项选择题:本大题共20小题,共40分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得2分,选错或不选的得0分。
1.下列关于植物呼吸作用的叙述,正确的是( )A.呼吸作用的中间产物丙酮酸可以通过线粒体双层膜B.是否产生二氧化碳是有氧呼吸和无氧呼吸的主要区别C.高等植物只进行有氧呼吸不能进行无氧呼吸D.种子库中贮藏的风干种子不能进行呼吸作用2.右图中①~④表示某细胞内的部分细胞器。
下列有关叙述正确的是( )A.该图是在高倍光学显微镜下看到的结构B.此细胞不可能是原核细胞,只能是动物细胞C.结构①不能将葡萄糖直接分解成二氧化碳和水D.结构①和④都存在碱基A和T的互补配对3.氧的浓度会影响细胞呼吸。
在a、b、c、d条件下,底物是葡萄糖,测得某植物种子萌发时CO2和O2体积变化的相对值如图。
则下列叙述中正确的是( )A.a、b、c、d条件下,细胞呼吸的场所均为细胞质基质和线粒体B.a条件时,细胞呼吸最终有[H]的积累C.b、c条件下,细胞呼吸的产物只有二氧化碳和水D.若底物是等量的脂肪,则在d条件下释放的CO2与吸收的O2的比值可能不为14.ATP(甲)是生命活动的直接能源物质,据图判断下列叙述正确的是( )A.在主动运输过程中,乙的含量会明显增加B.甲→乙和乙→丙过程中,其催化作用的酶空间结构相同C.丙中不含磷酸键,是RNA基本组成单位之一D.丁由腺嘌呤和核糖组成,而戊可用于甲的合成5.上海生命科学研究院成功诱导人成纤维细胞重编程为hiHep细胞。
hiHep细胞具有肝细胞的许多功能。
下列相关叙述中,错误的是( )A.人成纤维细胞重编程为hiHep细胞并未体现细胞的全能性B.该项成果表明,分化了的细胞其分化后的状态是可以改变的C.人成纤维细胞与hiHep细胞内的核酸是完全一样的D.hiHep细胞的诱导成功为人类重症肝病的治疗提供了可能性6.下列关于细胞癌变的叙述,错误的是( )A.癌细胞在条件适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差别C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖7.将豌豆的一对相对性状的纯合显性个体和纯合隐性个体间行种植,另将玉米一对相对性状的纯合显性个体与纯合隐性个体间行种植。
氧气的吸收与解吸实验报告一、实验目的探究氧气在水中的溶解与解吸过程,了解氧气在水中的溶解度与温度、压强的关系。
二、实验原理氧气在水中的溶解度与温度、压强和溶液中其他物质浓度有关。
当温度升高或压强降低时,氧气的溶解度会减小;而当温度降低或压强增加时,氧气的溶解度会增大。
此外,当水中其他物质浓度增加时,也会影响氧气的溶解度。
三、实验器材1. 水槽2. 水银汞柱3. 热水器4. 水银汞球四、实验步骤1. 将水槽内注满水,并放入一个水银汞柱。
2. 将热水器接通电源,将其放入水槽内加热。
3. 在热水器加热过程中,用手持式吸管将一只装有少量水银汞球的试管倒置于水槽内。
4. 观察试管内汞球变化情况,并记录下时间和温度。
5. 等热水器加热至一定温度后,关闭电源,等待水温下降。
6. 当水温下降至一定程度时,观察试管内汞球变化情况,并记录下时间和温度。
7. 将实验数据整理并进行分析。
五、实验结果在加热过程中,试管内的汞球逐渐变小;而在停止加热后,试管内的汞球逐渐变大。
随着时间的推移,汞球的大小逐渐趋于稳定。
六、实验分析根据实验结果可以得出结论:氧气在水中的溶解度与温度有关。
当水温升高时,氧气的溶解度减小;而当水温降低时,氧气的溶解度增大。
此外,在压强不变的情况下,溶液中其他物质浓度增加也会导致氧气的溶解度减小。
七、实验注意事项1. 实验过程中要注意安全。
2. 水槽内应注满水,并保持水平。
3. 实验过程中要注意控制热水器加热时间和温度。
4. 实验结束后要将器材清洗干净。
八、实验总结通过本次实验,我们了解了氧气在水中的溶解与解吸过程,并探究了氧气的溶解度与温度、压强和溶液中其他物质浓度的关系。
同时,我们也学会了如何进行实验并分析数据。
这些知识对我们深入理解化学原理和应用化学具有重要意义。
氧吸收解吸实验报告氧吸收解吸实验报告引言:氧气是地球上最重要的元素之一,对于维持生命活动至关重要。
人类和其他生物通过呼吸将氧气吸入体内,然后将其与食物中的营养物质一起利用,产生能量和二氧化碳。
为了更好地理解氧气在生物体内的吸收和解吸过程,我们进行了一系列实验。
实验一:氧气吸收速率与温度的关系我们首先研究了氧气吸收速率与温度之间的关系。
为此,我们准备了三个试管,分别装有20°C、30°C和40°C的水。
在每个试管中,我们加入了相同量的酵母和蔗糖溶液。
然后,我们立即将一个试管放入恒温箱中,将另一个试管放在常温下,将第三个试管放入冰水中。
结果显示,随着温度的升高,氧气吸收速率明显增加。
在40°C的试管中,氧气吸收速率最高,而在冰水中的试管中,氧气吸收速率最低。
这表明温度对氧气吸收过程有显著影响,高温有利于氧气的吸收。
实验二:氧气解吸速率与压力的关系为了研究氧气解吸速率与压力之间的关系,我们使用了一个封闭的容器,并在其中放入了一定量的氧气和水。
然后,我们逐渐增加容器内的压力,观察氧气解吸的速率。
结果显示,随着压力的增加,氧气解吸速率也随之增加。
当压力达到一定值时,氧气解吸速率开始饱和,不再随压力的增加而增加。
这说明压力对氧气解吸过程有一定的影响,但并非线性关系。
实验三:氧气吸收速率与浓度的关系为了探究氧气吸收速率与浓度的关系,我们分别准备了不同浓度的氧气溶液。
然后,我们将相同量的酵母和蔗糖溶液加入不同浓度的氧气溶液中,并观察氧气吸收的速率。
结果显示,随着氧气浓度的增加,氧气吸收速率也随之增加。
当氧气浓度达到一定值后,氧气吸收速率开始饱和,不再随浓度的增加而增加。
这表明氧气浓度对氧气吸收过程有一定的影响,但并非线性关系。
结论:通过以上实验,我们可以得出以下结论:1. 温度对氧气吸收速率有显著影响,高温有利于氧气的吸收。
2. 压力对氧气解吸速率有一定的影响,但并非线性关系。
氧气吸入知识及操作概述说明以及解释1. 引言1.1 概述氧气吸入是一种常见的医疗护理方法,通过给予患者纯净的氧气来满足其身体对氧气的需求。
这种治疗方法被广泛应用于急性和慢性呼吸系统疾病、心血管疾病及其他导致低血氧水平的情况。
了解和正确操作氧气吸入装置对保证治疗效果至关重要。
1.2 文章结构本文将围绕着氧气吸入知识及操作展开详细的阐述。
首先,将解释什么是氧气吸入以及它在医疗护理中的作用。
接下来,将介绍哪些人群适合接受氧气吸入治疗,并提供相关的注意事项。
然后,我们将说明正确的操作步骤以及常见问题与解决方法。
此外,还将讨论如何监测血氧饱和度并调整吸入流量与浓度,以及设备的定期维护与附件更换。
最后,我们将总结本文内容,并提出实际应用建议和知识拓展方向。
1.3 目的本文的目的是为读者提供全面而系统的氧气吸入知识及操作指南,帮助读者准确理解氧气吸入的定义、作用和适用人群,并能正确地使用吸氧装置。
同时,我们还希望通过介绍监测与调整方法以及设备维护与附件更换等内容,提高读者对氧气吸入治疗的实施水平。
最后,本文还将总结主要要点,并给出一些建议,以期能够为医护人员和患者在实际应用中提供参考。
2. 氧气吸入知识2.1 氧气吸入的定义氧气吸入是通过特定装置将纯净的氧气输送到人体呼吸系统中,以提高血液中的氧含量和供应给身体组织的氧浓度。
2.2 氧气吸入的作用氧气吸入可以增加血液中的氧含量,改善组织和器官的供血情况。
它在以下情况下尤为重要:- 缺乏供氧:当身体无法充分从空气中摄取足够的氧气时,如高海拔地区、呼吸系统疾病或心脏功能障碍等。
- 呼吸困难:当呼吸肌肉无法有效工作,需要额外提供足够的氧来辅助呼吸过程时,如患有哮喘、慢性阻塞性肺疾病患者。
- 重症监护:在某些情况下,如重度休克、创伤、中毒或严重感染等危急状态下,为了维持生命体征稳定及辅助治疗效果, 氧气吸入是必需的。
2.3 氧气吸入的适用人群- 呼吸系统疾病患者:哮喘、慢性阻塞性肺疾病、肺纤维化等。
吸收与解吸实训装置说明书天津大学化工基础实验中心2011.12一、吸收与解吸实训装置目的和功能:1.实训装置要求学生掌握吸收与解吸分离过程的原理和流程,吸收与解吸塔的操作及影响因素,填料塔的结构与附属设备,了解填料塔塔内压降、液泛等不正常情况。
2.实训装置能够承担化工工艺专业学生技能培训工作,要求根据国家职业标准完成化工总控工和吸收工初、中、高级的技能等级鉴定工作。
3.实训装置要求承担化工企业操作工的技能培训、完成化工总控工和吸收工高级工、技师、高级技师的技能培训和技能鉴定工作。
4.能够熟练运用基本技能完成工业吸收与解吸操作,独立处理吸收与解吸操作中出现的问题,解决本吸收与解吸操作中的工艺难题。
在工艺革新和技术改革方面有一定的资源分配能力。
5.实训装置要求具有模拟实际生产过程容易出现故障的功能,从而为训练学生判断故障名称、分析故障原因以及确定排除故障方法,到最终动手排除故障,都提供了真实可信的平台。
6.实训装置要求实训物系为二氧化碳-水体系,要求学生选择适宜的吸收液流量、温度,通过实际操作完成指标。
7.实训装置要求完成解吸塔内上升气体流量自动控制,吸收与解吸塔内液体流量自动控制,意外事故出现时,实训装置具有自锁和联动功能。
二、实训内容:1.工艺文件准备:能识记吸收、解吸生产过程工艺文件,能识读吸收岗位的工艺流程图、实训设备示意图、实训设备的平面和立面布置图,能绘制工艺配管简图,能实读仪表联锁图。
熟悉吸收塔、解吸塔、填料及附属设备的结构和布置。
2.开车前动、静设备检查训练(检查吸收塔、解吸塔、管件、仪表、离心泵、漩涡气泵等是否完好,检查阀门、测量点、分析取样点是否灵活好用):(1)开车前检查T101吸收塔、T102解吸塔的玻璃段完好情况有无破损;(2)开车前检查各个管件有无破损;(3)开车前检查仪表,检查办法:打开吸收与解吸实训装置的控制柜上总电源开关,仪表全亮并无异常现象(如不断闪烁为异常现象),说明仪表能正常工作;(4)检查离心泵P102、P103的叶轮是否能转动自如;(5)检查漩涡气泵P104的叶轮能否转动自如;(6)检查所有阀门能否开关,保证灵活好用;(7)检查测量点、分析取样点能否正常取样分析。
吸收解吸装置实训操作手册一、实训目的1.认识吸收-解吸设备结构2.认识吸收-解吸装置流程及仪表3.掌握吸收-解吸装置的运行操作技能4.学会常见异常现象的判别及处理方法二、实训原理1.填料塔流体力学特性压强降决定了塔的动力消耗,是塔设计的重要参数。
压强降与气液流量有关,不同喷淋与气速u的关系如下图所示:量下填料层的压强降p当无液体喷淋即喷淋量L0=0时,干填料的ΔP~u的关系是直线,如图中的直线0。
当有一定的喷淋量时,ΔP~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。
这两个转折点将ΔP~u关系分为三个区段:恒持液量区、载液区与液泛区。
2.传质性能吸收系数是决定吸收过程速率高低的重要参数,实验测定是获取吸收系数的根本途径。
对于相同的物系及一定的设备(填料类型与尺寸),吸收系数将随着操作条件及气液接触状况的不同而变化。
本实验采用水吸收二氧化碳,二氧化碳在常温常压下溶解度较小,属难溶气体吸收,吸收的主要阻力在液膜中。
三、实训流程1.装置认识●认识目标熟悉装置流程、主体设备及其名称、各类测量仪表的作用及名称。
(1)装置流程吸收解吸实训流程DCS图:吸收解吸实训流程现场图:吸收质(纯二氧化碳气体)由钢瓶经减压阀、调节阀与空气混合成一定比例进入吸收塔T101塔底,气体由下向上经过填料层与液相逆流接触,到塔顶经液封放空;吸收剂(纯水)由解吸液储槽V201经吸收液泵P201、调解阀、孔板流量计进入塔顶,喷洒而下;吸收后富液从塔底溢流进入吸收液储槽V101,经解吸液泵P101、调解阀、孔板流量计进入解吸塔顶T201,喷洒而下,由塔底进入解吸液储槽V201;空气从解吸塔底由下向上经过填料层与液相逆流接触,自塔顶放空。
利用压降传感器测量吸收塔、解吸塔的填料层压降。
(2)主体设备位 号 名 称 用 途 类 型T101 吸收塔 吸收传质设备 mm 3300*100φ T201解吸塔解吸传质设备mm 3800*100φP101 吸收液泵 吸收液供给动力设备型 号:WB50流 量:3 m 3/h 扬 程:8 m 功 率:0.25 KW P201 解吸液泵 解吸液供给动力设备型 号:WB50流 量:3 m 3/h 扬 程:8 m表1 吸收解吸设备结构认识(3)测量仪表2.开车前的准备工作(1)了解吸收解吸基本原理;(2)熟悉吸收解吸实训工艺流程, 实训装置及主要设备;四、实训步骤(一)正常开车1. 吸收剂进料操作(1)在“实训装置图”中,打开阀门V A116,向解吸液储槽注入吸收剂水;(2)待V201液位达到340~350mm,关闭阀门V A116;(3)在“仪表面板二”中,打开总电源开关;(4)在“实训装置图”中,打开阀V A114;(5)在“仪表面板二”中,打开P201吸收泵开关;(6)在“仪表面板二”中,启动吸收塔水泵变频器开关,使泵处于运行状态;(7)在“DCS图”中,将FIC03调为自动;(8)将FIC03的SV值设定在200~400之间;(9)将LIC03的SV值设定为200;(10)在“实训装置图”中,打开阀VA109;(11)在“仪表面板二”中,开启P101解吸泵的电源开关;(12)检查LIC03的液位高度是否满足200设定要求;2. 吸收塔空气进料操作(1)在“仪表面板二”中,开启吸收塔气泵开关;(2)在“仪表面板二”中,启动吸收塔气泵变频器开关,使气泵处于运行状态;(3)在“实训装置图”中,打开阀门V A104,开度为50;(4)在“DCS图”中,将FIC02调为自动;(5)将FIC02的SP设定值为1.4,使FIC02的流量为1.4;(6)检查FIC02流量是否维持在1.4m3/h;3. 吸收质进料操作(1)在“实训装置图”中,打开二氧化碳钢瓶阀门V A001;(2)在“实训装置图”中,开启二氧化碳减压阀V A002,阀门开度为30~40%左右;(3)在“仪表面板二”中,开启二氧化碳减压阀加热开关;(4)在“实训装置图”中,打开阀门VA101,开度为50~90%左右;(5)在“仪表面板一”中,检测混合气体进料摩尔比AI02<=20.0%;4. 解吸塔气体进料(1)在“仪表面板二”中,开启解吸塔气泵开关;(2)在“DCS图”中,点击FIC01,在将FIC01设为自动;(3)将FIC01的SV设定值为10.0;(4)检查FIC01流量是否在10.0m3/h;5.生成实训报告(1)确保FIC03解吸液流量恒定,在“实训数据”中点击“吸收塔数据记录”按钮、“解吸塔数据记录”按钮,点击软件下方的“实训报告”,弹出数据处理框。
氧吸收与解吸实验实验日期:2011/4/8班级:*****姓名:**学号:********同组人: *** *** **实验装置:1号陶瓷拉西环摘要:填料塔是化工过程重要的单元,本实验在室温、常压下,通过分别测定干、湿填料层压降与空塔气速的数据,并作图分析得到两种情况下塔压降与空塔气速关系,从而熟悉填料塔的构造与操作、确定填料塔流体力学特性,进而得知填料塔的处理能力及性能高低。
同时,本实验通过对富氧水进行解吸,测定了解吸液相体积的总传质系数K x a,进而确定液相总传质单元高度H OL。
一、实验名称:氧吸收与解吸实验二、目的及任务:1.熟悉填料塔的构造与操作;2.观察填料塔流体力学状况,测定压降与气速的关系曲线;3.掌握总传质系数K x a的测定方法并分析影响因素;4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
三、基本原理:本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作,该步实验中省略),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。
本实验手工采集数据,具有可操作性。
1.填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。
在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。
当有喷淋量时,在低气图1-1 填料层压降–空塔气速关系示意图速下(c 点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc 段)。
随气速的增加,出现截点(图中c 点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd 段)。
到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。
2. 传质实验:填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。
氧气吸入器使用说明使用说明:氧气吸入器是一种常用的医疗设备,用于给予患者纯氧气。
本文将为您提供氧气吸入器的详细使用说明,以确保您正确、安全地使用该设备。
一、准备工作1. 首先,确保氧气吸入器已经连接好氧气气源,并且氧气瓶中有足够的供应。
2. 检查氧气吸入器的清洁度,确保外部无菌,内部无异味或残留物。
3. 检查氧气吸入器的电源是否充足,如果使用电池供电,确保电池电量足够。
二、正确使用1. 将氧气吸入器轻轻放置在平稳的表面上,确保设备的稳定性。
2. 请患者面朝上,轻松舒适地坐在椅子上或平躺在床上。
3. 将吸气管插入氧气吸入器的出气口,并确保连接牢固。
同时,确保吸气管的末端没有任何阻塞物。
4. 将另一端的鼻插或面罩轻轻安放在患者的鼻孔或嘴巴上,确保与面部完全贴合,避免氧气泄漏。
5. 打开氧气吸入器的开关,开始供氧。
三、使用注意事项1. 使用过程中,请确保氧气吸入器周围的环境安静、无烟,并保持充足的通风。
2. 患者在吸氧过程中应尽量保持放松的姿势,避免过度移动或剧烈活动。
3. 氧气吸入器应定期清洁和消毒,以避免细菌滋生。
使用并按照操作手册中的清洁方法进行清洁。
4. 若氧气吸入器出现异常,如氧气流量不稳定、设备发生损坏等情况,请立即停止使用,并与售后服务中心联系。
5. 患者在使用氧气吸入器时,应根据医生的指导和处方来调整氧气流量,不可随意改变。
6. 定期检查氧气瓶的压力,确保足够的氧气供应,及时更换空瓶。
四、常见问题解答1. 氧气吸入器使用后感觉不到明显效果怎么办?可能是因为您没有正确贴合鼻插或面罩。
请重新调整,确保与面部贴合紧密。
如果问题仍然存在,请咨询医生。
2. 吸氧过程中感到不适如头晕、咳嗽等症状怎么办?请降低氧气流量,并通知医生,以寻求进一步建议和指导。
3. 氧气吸入器需要多长时间替换一次?根据设备的类型和使用频率的不同,替换时间会有所不同。
请参考操作手册或联系氧气吸入器制造商了解更多信息。
以上就是氧气吸入器的使用说明。
呼吸道疾病的氧气吸入器使用说明使用说明一、氧气吸入器简介氧气吸入器是一种帮助患者呼吸系统更好地吸收氧气的设备,常用于治疗呼吸道疾病。
本使用说明将详细介绍氧气吸入器的使用方法和操作注意事项,以确保患者能够正确、安全地使用氧气吸入器。
二、准备工作1. 检查设备在使用氧气吸入器之前,请检查设备是否正常工作。
确保氧气吸入器的连接管路完整、无损,并检查氧气气瓶中的氧气储量是否足够。
2. 准备清洁用品为了保证使用的卫生和安全,请准备一些清洁用品,如纱布、清洁剂和消毒酒精。
三、使用方法1. 就位准备将氧气吸入器放置在离患者床边等位置,确保吸氧管能够顺畅连接到患者面罩或鼻导管上。
2. 患者操作(1)洗手并佩戴口罩请患者在使用氧气吸入器前先洗手,并佩戴口罩以避免氧气吸入时呼出的细菌或病毒进入呼吸道。
(2)连接吸氧设备患者将鼻导管插入鼻孔或佩戴面罩,确保鼻导管或面罩与患者面部贴合紧密。
然后,将吸氧管的一端连接到氧气吸入器上,并确保连接牢固。
(3)调节氧气流量根据医生的建议或指示,患者可以根据自身需要适当调节氧气流量大小,以确保正常呼吸。
注意不要将氧气流量调节得过大或过小,避免对患者的健康造成不良影响。
3. 设备保养(1)保持设备清洁每次使用后,将鼻导管或面罩进行清洁,以避免细菌滋生。
可以将鼻导管或面罩浸泡在清洁剂溶液中一段时间,然后用清水冲洗干净并晾干。
不要忘记定期更换清洁剂,以确保清洁效果。
(2)定期消毒定期消毒氧气吸入器上的接口和连接管路,可使用消毒酒精擦拭或其他医用消毒剂。
(3)正确存放在不使用氧气吸入器时,请将其存放在干燥、洁净的环境中,避免阳光直射或潮湿的地方。
四、注意事项1. 使用安全在使用氧气吸入器时,请遵循医生的指导和建议,并确保患者操作正确。
请注意不要让氧气吸入器过接触开火物品,并避免其他可能引起火灾的物质近距离接触。
2. 定期检查请定期检查氧气吸入器的连接管路和设备是否有损坏或老化现象。
如发现问题,请及时更换部件或联系相关维修人员。
氧吸收解吸实验报告实验目的本实验旨在研究氧气在水中的溶解和解吸过程,通过实验观察和数据分析,探讨氧气在水中溶解和解吸的影响因素。
实验原理氧气是水生生物生存和呼吸必不可少的物质,其在水中的溶解和解吸过程是生物呼吸的重要环节。
水中的溶解氧量受到多种因素的影响,如温度、压力、水的酸碱度、水流和生物代谢等。
在实验中,我们将通过控制这些因素来研究氧气的溶解和解吸规律。
实验材料和设备•氧气气瓶•氧气压力表•实验水槽•温度计•pH计•实验记录表格实验步骤1.准备实验设备:将实验水槽放置在实验台上,连接氧气气瓶和氧气压力表,确保氧气供应畅通。
2.调节水槽温度:使用温度计测量实验水槽的温度,并根据实验要求调节水槽温度。
记录下水槽的初始温度。
3.调节水槽酸碱度:使用pH计测量实验水槽中水的酸碱度,并根据实验要求调节水槽的酸碱度。
记录下水槽的初始酸碱度。
4.开始实验:打开氧气气瓶,将氧气注入实验水槽中,观察氧气在水中的溶解过程。
记录下注氧气时的氧气压力和时间。
5.观察和记录:观察实验水槽中氧气的溶解情况,记录下水槽内溶解氧的浓度和溶解时间。
6.增加温度:根据实验要求,逐步增加水槽的温度,观察氧气的解吸现象。
记录下每次温度变化后的溶解氧浓度和解吸时间。
7.调节酸碱度:根据实验要求,逐步调节水槽的酸碱度,观察氧气的解吸现象。
记录下每次酸碱度变化后的溶解氧浓度和解吸时间。
8.数据处理与分析:根据实验记录的数据,绘制溶解氧浓度和解吸时间的曲线图,分析氧气在水中溶解和解吸的规律。
实验结果与讨论根据实验数据,我们可以观察到氧气在水中的溶解和解吸过程受到温度和酸碱度的影响。
首先,我们发现随着温度的升高,氧气在水中的溶解速度增加,溶解氧浓度也相应增加。
这是因为温度升高会增加氧气分子的热运动速度,加快氧气分子与水分子之间的碰撞频率和能量,从而促进氧气的溶解过程。
其次,我们观察到在酸性环境下,氧气的解吸速度明显增加。
这是因为酸性环境下水分子会与氧气分子发生化学反应,使氧气从水中解吸出来。
氧吸收与解吸实验装置
说明书
天津大学化工基础实验中心
、实验目的:
1. 了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法。
2. 通过实验测定数据的处理分析可加深对填料塔流体力学性能基本理论的理解, 测定压降与气速的关系曲线,加深对填料塔传质性能理论的理解。
3. 练习并掌握填料吸收塔传质能力和传质效率的测定方法并分析影响因素; 学习 气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。
二、实验原理:
本装置先用吸收塔将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶 再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数
K<a ,并进
行关联,得到K<a=AL • V b 的关联式,同时对四种不同填料的传质效果及流体力 学性能进行比较。
1. 填料塔流体力学特性:
气体通过干填料层时,流体流动引起的压降和湍流 流动引起的压降规律相一致。
在双对数坐标系中,此压 降对气速作图可得直线(图中aa 线)。
当有喷淋量时, 在低气速下(c 点以前)压降也正比于气速,但大于同 一气速下干填料的压降(图中bc 段)。
随气速的增加, 出现截点(图中c 点),持液量开始增大,压降-气速 线向上弯,斜率变陡(图中cd 段)。
到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升 2•传质实验:
填料塔与板式塔气液两相接触情况不同。
在填料塔中,两相传质主要是在填 料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有: 传质系数法、传质单兀法和等板高度法。
本实验是对富氧水进行解吸。
由于富氧水浓度很小,可认为气液两相的平衡 关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓 度差计算填料层传质平均推动力。
整理得到相应的传质速率方式为:
G A =K x a ・V p ・ X m K x a 二 G A . V p * X m
图-1填料层压降吨 塔气速关系示意图
相关的填料层高度的基本计算式为:
Z =
K^ X21
%"OL
・N OL
即 H O ’Z/N OL
X e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) X 2 —液相出塔的摩尔分率(塔底)
X e2 —与进塔气相y 平衡的液相摩尔分率(塔底) Z —填料层高度[m ]
Q —塔截面积[m 2]
L —解吸液流量[Kmol/h ]
H X —以液相为推动力的传质单元高度
N O L —以液相为推动力的传质单元数
由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于 液膜中,即K<=k x ,由于属液膜控制过程,所以要提高总传质系数 Ka ,应增大液
相的湍动程度。
在y —x 图中,解吸过程的操作线在平衡线下方,本实验中还是一条平行于横 坐标的水平线(因氧在水中浓度很小)。
本实验在计算时,气液相浓度的单位用摩尔分率而不用摩尔比,这是因为在 y —x 图中,平衡线为直线,操作线也是直线,计算比较简单。
二、实验装置简介:
其中
(X i - X el ) - (x 2 - X e2)
X i —'Xei
X
2 _ X e2
Vp =z 小
其中 筋 dx X t —x 2
N OL 二 =1
2
'X 2
X e — X
心X m
H OL =
K X a
1
式中:
G A —单位时间内氧的解吸量[Kmol/h ] K X a —总体积传质系数[Kmol/m 3?h?A x ]
W
A X m —液相对数平均浓度差
X 1 —液相进塔时的摩尔分率(塔顶)
图-2解吸塔气相液相传递图 X2兀
1. 实验设备主要技术参数:
(1)填料塔:吸收塔--玻璃管内径D = 0.030m,
内装© 6X 10mm陶瓷拉西环;填料层高度Z= 1.0m;
解吸塔--玻璃管内径D = 0.1m,
内装© 10X 10mm陶瓷拉西环;填料层高度Z=0.8m;
( 2)流量测量仪表:
Q转子流量计:型号LZB-3;流量范围100〜1000L/h;精度2.5 %;
空气转子流量计:型号LZB-40;流量范围4〜40m/h;精度2.5 %;水转子流量计:型号LZB-15;流量范围16〜160 L/h;精度2.5%;
(3)浓度测量:YSI550A型溶氧仪(用户自备);
(4)温度测量:PT100铂电阻;
(5)风机:XGB-12型旋涡气泵;
( 6)氧气钢瓶1 个、减压阀 1 个(用户自备)。
2. 实验装置流程图及面板示意图:
氧气吸收与解吸实验装置流程图见图-3
氧气吸收与解吸实验仪表面板图见图-4
图1氧吸收与解吸实验流程示意图
1-吸收塔;2-氧气缓冲罐;3-水箱;4-离心泵;5-吸收塔;6-玻璃管压差计;
7-空气缓冲罐;8-漩涡气泵
F1、F3、F4-转子流量计;F2-涡轮流量计;T-温度计;
VI、V2、V3、V4 V5、V6 V7、V8、V9、V10 V11、V12、V13-阀门。
孔板压差(KPa)
总电源风机离心泵
图-4 实验装置仪表面板图
三、实验方法及步骤:
1. 测量解吸塔干填料层(△ P/Z)〜u关系曲线:
首先全开空气旁路调节阀,然后启动风机。
通过旁路调节阀和空气流量计调节阀16,调节进塔的空气流量。
空气流量从小到大。
稳定后读取填料层压降厶P, 测取6-8 组数据。
然后在对数坐标纸上以空塔气速u 为横坐标,以单位高度的压降△ P/Z 为纵坐标,标绘出干填料层(△ P/Z)〜u关系曲线。
2. 测量解吸塔在一定喷淋量下填料层(△ P/Z)〜u关系曲线:
(1 )先进行预液泛,使填料表面充分润湿。
(2)固定水在某一喷淋量下(100、120、160),关闭离心泵出口阀,启动离心泵,调节进水流量到指定流量,按上述步骤改变空气流量,测定填料塔压降,测取8-10 组数据。
然后在对数坐标纸上以空塔气速u 为横坐标,以单位高度的压降厶
P/Z为纵坐标,标绘出干填料层(△ P/Z)〜u关系曲线。
(3)改变水喷淋量,再做两组数据,并比较。
注意:实验接近液泛时,进塔气体的增加量不要过大,否则泛点不容易找到。
密切观察表面气液接触状况,并注意填料层压降变化幅度,务必让各参数稳定后
再读数。
3. 传质实验:
(1)熟悉实验流程及弄清溶氧仪的结构、原理、使用方法及注意事项。
(2)水喷淋密度取10-15m3/(m2?h),将氧气瓶打开,氧气减压后进入缓冲罐,氧气转子流量计保持0.05m3/h 左右。
为防止水倒灌进入氧气转子流量计中,要先通入氧气后通水。
启动离心泵,调节水流量至100L/h ,当富氧水从解析塔顶流下时,打开风机调节流量至10m3/h。
(3)塔顶和塔底液相氧浓度测定:分别从塔顶与塔底取出富氧水和贫氧水,注意在每次更换流量的第一次所取样品要倒掉,第二次以后所取的样品方能进行氧含量的测定,并且富氧水与贫氧水同时进行取样。
(4)用溶氧仪分析其氧的含量。
同时记录对应的水温。
四、实验注意事项:
1. 启动风机前必须确保风机有一路阀门开启,避免风机在出口阀门全部关闭后
启动烧坏。
2. 做氧气吸收和解吸时要注意先通氧气后通水,避免水倒回进入缓冲罐内表1干填料时厶P/z〜u关系测定
表2湿填料时厶P/z〜u关系测定
图-5 P Z 〜u 关系曲线
表3填料解吸塔传质实验数据表
1 塔类型 解吸塔
2 填料种类 拉西环
3 填料尺寸 (mm ) 10x10
4 Z 填料层高度 (m )
0.8
5 空气转子流量计读数 (m3/ h )
6 气相温度 「C )
7 液相温度 (C )
8 02的体积流量 (m3/h )
9 水转子流量计读数L (l/h )
10 填料塔压降△ P (Kpa )
11 水流量
(l/h )
12 富氧水含氧量C1 (mg/l )
13
贫氧水含氧量C2
(mg/l )
14 x1液相进塔的摩尔分率(塔顶)
N1LP
mao
Di n
附录:
氧气不同温度下的亨利系数E可用下式求取:E - L8.5694 10占t2 0.07714t 2.56】106[Kpa] 表4不同温度氧在水中的浓度:。