等效剪切波速计算表格
- 格式:xls
- 大小:18.50 KB
- 文档页数:1
等效剪切波速、覆盖层厚度、确定场地类别和特征周期。
计算场地等效剪切波速 式中:vse -土层等效剪切波速(m/s);
d0-计算深度(m),取覆盖层厚度和20m 二者的较小值;
t -剪切波在地面至计算深度之间的传播时间(s);
di -计算深度范围内第i 土层的厚度(m);
vsi -计算深度范围内第i 土层的剪切波速(m/s);
n -计算深度范围内土层的分层数。
特征周期是根据覆盖层厚度H 和土层剪切波速Vs 按公式T =4H/Vs 计算的周期
例:两个建筑场地在特征周期第2分区,土层波速测试成果如下表所示,试判定各土层的场地土类型、确定场地的覆盖层厚度、计算深度、等效剪切波速、场地类别、场地特征周期
影响砂土液化的因素主要有:土的类型和性质,包括:土颗粒粒径(以平均粒径d50表示)、密实度、土的成因和堆积年代;液化土体的埋藏条件,包括:上覆不透水土层厚度、地下水的埋藏深度;地震动的强度和历时。
崩塌和滑坡的区别: ①运动方式 ②破坏形式 ③地形条件 ④是否脱离母体,存在滑动面 ⑤规模、速度
泥石流的形成条件:地形(有陡峻便于集物、集水的适当地形)、地质(上游堆积有丰富的松散固体物质)和水文气象条件(短期内有突然性大量水的来源)
标贯与圆锥动力触探的区别主要是:(1)探头不同;可取扰动样;(2)标贯是连续贯入,分段计锤击数
岩石质量指标(RQD )分类:用直径为75mm 的金钢石钻头和双层岩芯管在岩石中钻进,连续取芯,回次钻进所取岩芯中,长度大于10cm 的岩芯段长度之和与该回次进尺的比值,以百分数表示。
目力鉴别方法对土的描述等级
t d v se /0=∑==n
i si i v d t 1)/(。
常用剪切波剪切波波速成果图相关公式编辑剪切波速测试单孔法压缩波或剪切波从振源到达测点时间得确定,应符合下列规定:(1)确定压缩波得时间,应采用竖向传感器记录得波形;(2)确定剪切波得时间,应采用水平传感器记录得波形。
压缩波或剪切波从振源到达测点得时间,应按下列公式进行斜距校正:式中T —-压缩波或剪切波从振源到达测点经斜距校正后得时间(s)(相应于波从孔口到达测点得时间);TL —--—压缩波或剪切波从振源到达测点得实测时间(s);K --斜距校正系数;H -—测点得深度(m);H0 —-振源与孔口得高差(m),当振源低于孔口时,H0为负值;L —-从板中心到测试孔得水平距离(m)。
时距曲线图得绘制,应以深度H为纵坐标,时间T为横坐标。
波速层得划分,应结合地质情况,按时距曲线上具有不同斜率得折线段确定。
每一波速层得压缩波波速或剪切波波速,应按下式计算:式中V-—波速层得压缩波波速或剪切波波速(m/s);△H——波速层得厚度(m);△T——压缩波或剪切波传到波速层顶面与底面得时间差(s)。
剪切波速测试跨孔法压缩波或剪切波从振源到达测点时间得确定,应符合下列规定:(1)确定压缩波得时间,应采用水平传感器记录得波形;(2)确定剪切波得时间,应采用竖向传感器记录得波形。
由振源到达每个测点得距离,应按测斜数据进行计算。
每个测试深度得压缩波波速及剪切波波速,应按下列公式计算:式中VP—-压缩波波速(m/s);VS——剪切波波速(m/s);TP1—-压缩波到达第1个接收孔测点得时间(s);TP2——压缩波到达第2个接收孔测点得时间(s);TS1—-剪切波到达第1个接收孔测点得时间(s);TS2——剪切波到达第2个接收孔测点得时间(s);S1——由振源到第1个接收孔测点得距离(m)S2——由振源到第2个接收孔测点得距离(m)△S——由振源到两个接收孔测点距离之差(m)。
[1]卓越周期得计算《高层建筑岩土工程勘察规程JGJ72-2004》条文说明[2]规范重点摘录编辑剪切波速土得类型划分与剪切波速范围波速2、5倍得土层,且该层与其下卧岩土得剪切波速均不小于400m/s时,可按地面至该土层顶面得距离确定。
常用剪切波剪切波速测试单孔法压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:(1)确定压缩波的时间,应采用竖向传感器记录的波形;(2)确定剪切波的时间,应采用水平传感器记录的波形。
压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正:式中T ——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间);TL ————压缩波或剪切波从振源到达测点的实测时间(s);K ——斜距校正系数;H ——测点的深度(m);H0 ——振源与孔口的高差(m),当振源低于孔口时,H0为负值;L ——从板中心到测试孔的水平距离(m)。
时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。
波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。
每一波速层的压缩波波速或剪切波波速,应按下式计算:式中V——波速层的压缩波波速或剪切波波速(m/s););m波速层的厚度(——H△.△T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。
剪切波速测试跨孔法压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:(1)确定压缩波的时间,应采用水平传感器记录的波形;(2)确定剪切波的时间,应采用竖向传感器记录的波形。
由振源到达每个测点的距离,应按测斜数据进行计算。
每个测试深度的压缩波波速及剪切波波速,应按下列公式计算:式中VP——压缩波波速(m/s);VS——剪切波波速(m/s);TP1——压缩波到达第1个接收孔测点的时间(s);TP2——压缩波到达第2个接收孔测点的时间(s);TS1——剪切波到达第1个接收孔测点的时间(s);TS2——剪切波到达第2个接收孔测点的时间(s);S1——由振源到第1个接收孔测点的距离(m)S2——由振源到第2个接收孔测点的距离(m)[1])。
m——由振源到两个接收孔测点距离之差(△S 卓越周期的计算《高层建筑岩土工程勘察规程JGJ72-2004》条文说明[2]规范重点摘录编辑.剪切波速土的类型划分和剪切波速范围[5。
一、前言受※的委托,※省※院于※年※月※日对※工程拟建场地进行单孔波速法、地脉动测试。
该场地位于※路※号,根据场地条件及《建筑抗震设计规范》(GB50011-2001)等有关规定,本场地共完成K16#、K37#、K69#、K75#、K82#、K96#六个孔剪切波速及场地脉动测试工作。
测试的目的是对拟建建筑场地土的类型及建筑场地类别进行划分,以确定建筑抗震有利、不利和危险地段。
本项目工作技术要求:1、 测定场地20米以内的等效剪切波速;2、 测定场地地脉动;3、 确定场地土类型及建筑场地类别。
二、检测设备、基本原理1、检测设备检测设备采用武汉建科科技有限公司制造的W A VE2000场地振动测试仪,检测设备及现场联接见图1。
1-场地振动测试仪 2-重物 3-木板4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳)图1 单孔波速测试示意图2、剪切波速及地脉动测试基本原理单孔剪切波速法(检层法)测试基本原理:用木锤或适宜的铁锤分别水平敲击水平放置孔口的木板两端,地表产生的剪切波经地层传播,由孔内三分量检波器的水平向检波器接收SH 波信号,然后读取正、反两方向的实测波形,找出波形交叉点,读取初至波传播时间,进而计算出各测点(层)剪切波速值及其它相关参数。
地脉动测试原理:地脉动测试时应选择外界环境干扰极小的深夜进行。
测试时将地脉动拾振器放置于平整场地地表土上,一般按东西向EW 、南北向SN 、垂直向VR 三个方向放置。
测试时由三分量拾振器分别接收三个方向的脉动信号,信号再通过放大,采集仪记录,即可在时域曲线上分析信号幅值大小,从频率域曲线上分析其频率组成并确定场地卓越周期值。
土层的等效剪切波速,按下列公式计算:∑=÷=÷=ni si i sc v d t t d v 10)(式中 Vsc ——土层等效剪切波速度;d 0——计算深度(m),取覆盖层厚度和20m 二者的较小值; t —— 剪切波在地面至计算深度之间抟播时间; di ——计算深度范围内第i 层的厚度(m);Vsi ——计算深度范围内第i 层土的剪切波速(m/s); n —— 计算深度范围内土层的分层数。
附表1:游泳、体育馆工程zk3孔单层检层法波速测试成果表附表2:游泳、体育馆工程zk29#孔单层检层法波速测试成果表单孔法剪切波速及地脉动测试报告工程名称:潜江市体育活动中心游泳、体育馆勘察单位:潜江市建筑设计院测试日期:2010年2月26日报告编写:工程负责:审核批准:湖北万钧工程技术有限责任公司2010年2月28日目录Ⅰ、文字部分一、前言二、测试方法原理三、仪器设备四、测试结果分析五、结论Ⅱ、图表部分附表1:单孔检层法波速测试成果表(zk3#)附表2:单孔检层法波速测试成果表(zk29#)潜江市体育活动中心游泳、体育馆波速及地脉动测试报告一、前言湖北万钧工程技术有限责任公司于2010年2月26日对潜江市体育活动中心游泳、体育馆工程的场地地层采用单孔法进行了剪切波波速原位测试工作,其目的为查明场地各土层的剪切波速(Vs)及场地的卓越周期(Tp)。
本次共测试2个孔位(zk3#、zk29#)。
本次提交的报告为zk3#、zk29#孔位的剪切波速测试结果。
二、测试依据《建筑抗震设计规范》(GB50011 ─ 2001)(2008年版)《地基动力特性测试规范》(GB/T 50269-97)三、方法原理1. 单孔法波速测试采用叩击法正反向击发震源板,震源板的底部制成搓板状,顶部压上适当的重物,激收水平距均为1.0米。
根据土层情况,根据工程情况及地质分层,采用三分量检波器每隔1~3m布置一个测点,并宜自下而上按预定深度进行测试,选择恰当的激发能量,增益、记录长度及延迟时间,并利用仪器的迭加、信号保持、记忆和比较等功能来获得可靠的原始记录。
土层等效剪切波速度,按下列公式计算: td v se/0= )/(1si ni i v d t ∑==式中 V se ---土层等效剪切波速(m/s);d 0---计算深度(m ),取覆盖层厚度和20m 二者的较小值; t ----剪切波在地面至计算深度之间的传播时间; d i ----计算深度范围内第i 层的厚度(m ); v si ---计算深度范围内第i 层土的剪切波速(m/s ); n -----计算深度范围内土层的分层数。
等效剪切波速在线计算等效剪切波速是地震勘探中一个重要的参数,用于描述地下岩石的性质。
通过测量地震波在地下传播的速度,可以推断出地下岩石的构造和性质,为油气勘探和地质勘探提供重要信息。
在地震勘探领域,等效剪切波速的计算是一个关键的步骤,下面将介绍如何在线计算等效剪切波速。
等效剪切波速可以通过地震反射波速和地震纵波速来计算得到。
地震反射波速和地震纵波速是地震波在地下传播的两种主要波速。
等效剪切波速通常是地震反射波速和地震纵波速的平均值。
通过在线工具或软件,可以方便地输入地震反射波速和地震纵波速的数值,然后计算得到等效剪切波速。
等效剪切波速的计算对于地震勘探中的地质解释非常重要。
地震勘探通过记录地震波在地下的传播情况,可以推断出地下不同岩层的性质和分布。
而等效剪切波速是描述地下岩石的一种重要参数,可以帮助地质学家判断不同岩石的性质和边界。
因此,准确计算等效剪切波速对于地震勘探的解释和分析至关重要。
在进行等效剪切波速的计算时,需要注意选择合适的工具和方法。
目前,有许多在线工具和软件可以帮助地震学家计算等效剪切波速,例如MATLAB等。
在使用这些工具时,需要确保输入的地震反射波速和地震纵波速数据是准确的,以保证计算结果的可靠性。
此外,还需要根据具体的地质情况和勘探需求,选择适合的计算方法和参数,以获得更准确的等效剪切波速。
等效剪切波速是地震勘探中一个重要的参数,通过测量地震波在地下传播的速度,可以推断出地下岩石的性质。
在线计算等效剪切波速是地震学家进行地质解释和勘探分析的重要工具,可以帮助他们更好地了解地下岩石的构造和性质。
因此,在进行等效剪切波速的计算时,需要选择合适的工具和方法,确保数据的准确性和结果的可靠性,为地震勘探提供有力的支持。
常用剪切波剪切波速测试单孔法压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:(1)确定压缩波的时间,应采用竖向传感器记录的波形;(2)确定剪切波的时间,应采用水平传感器记录的波形。
压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正:式中T ——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间);TL ————压缩波或剪切波从振源到达测点的实测时间(s);K ——斜距校正系数;H ——测点的深度(m);H0 ——振源与孔口的高差(m),当振源低于孔口时,H0为负值;L ——从板中心到测试孔的水平距离(m)。
时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。
波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。
每一波速层的压缩波波速或剪切波波速,应按下式计算:式中V——波速层的压缩波波速或剪切波波速(m/s);△H——波速层的厚度(m);△T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。
剪切波速测试跨孔法压缩波或剪切波从振源到达测点时间的确定,应符合下列规定:(1)确定压缩波的时间,应采用水平传感器记录的波形;(2)确定剪切波的时间,应采用竖向传感器记录的波形。
由振源到达每个测点的距离,应按测斜数据进行计算。
每个测试深度的压缩波波速及剪切波波速,应按下列公式计算:式中VP——压缩波波速(m/s);VS——剪切波波速(m/s);TP1——压缩波到达第1个接收孔测点的时间(s);TP2——压缩波到达第2个接收孔测点的时间(s);TS1——剪切波到达第1个接收孔测点的时间(s);TS2——剪切波到达第2个接收孔测点的时间(s);S1——由振源到第1个接收孔测点的距离(m)S2——由振源到第2个接收孔测点的距离(m)△S——由振源到两个接收孔测点距离之差(m)。
[1]卓越周期的计算《高层建筑岩土工程勘察规程JGJ72-2004》条文说明[2]规范重点摘录编辑剪切波速土的类型划分和剪切波速范围。
等效剪切波速在线计算等效剪切波速(equivalent shear wave velocity)是地震勘探领域中一个重要的参数,用于描述地下介质的性质。
它是指在弹性介质中,剪切波传播的速度,它与介质的密度和剪切模量有关。
等效剪切波速的计算对于地震勘探的解释和地质灾害评估具有重要的意义。
在地震勘探中,常常通过地震波传播的速度来研究地下介质的结构和性质。
而剪切波是一种能够在介质内部传播的波动,它的传播速度与介质的物理性质有关。
在地震勘探中,为了研究地下介质的结构和性质,我们需要计算等效剪切波速。
计算等效剪切波速需要考虑地震波的传播路径和传播时间。
地震波在地下介质中传播时,会受到介质的反射、折射、散射等因素的影响。
为了准确计算等效剪切波速,需要利用地震波的传播路径和传播时间信息。
在地震勘探中,常常利用地震台阵的数据来计算等效剪切波速。
地震台阵是一组分布在地面上的地震观测仪器,可以记录地震波在不同位置的到达时间。
通过分析地震台阵的数据,可以确定地震波的传播路径和传播时间,从而计算等效剪切波速。
计算等效剪切波速的方法有很多种,常用的方法包括叠加法、拾取法、层析成像法等。
这些方法都是基于地震波传播的特点和地下介质的性质进行的。
通过这些方法,可以获得地下介质的等效剪切波速分布图,进而研究地下介质的结构和性质。
等效剪切波速的计算在地震勘探中具有重要的应用价值。
它可以用于地下介质的结构解释、油气勘探、地质灾害评估等方面。
通过计算等效剪切波速,可以揭示地下介质的特点和性质,为地震勘探和地质灾害评估提供重要的参考依据。
等效剪切波速是地震勘探中一个重要的参数,它描述了地下介质的性质。
通过计算等效剪切波速,可以研究地下介质的结构和性质,为地震勘探和地质灾害评估提供重要的参考依据。
计算等效剪切波速的方法有很多种,其中常用的方法包括叠加法、拾取法、层析成像法等。
通过这些方法,可以获得地下介质的等效剪切波速分布图,进而揭示地下介质的特点和性质。