七年级数学上册第三章整式及其加减3整式课标解读素材北师大版课件
- 格式:doc
- 大小:29.50 KB
- 文档页数:1
七年级数学上册第三章整式及其加减4 整式的加减课标解读素材(新版)北师大一、课标要求整式的加减一节主要内容包括合并同类项、去括号法则、整式加减的运算法则和求多项式的值等.《义务教育数学课程标准(2011 年版)》对整式加减相关内容提出的教学要求是:1.掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算.2.会求整式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.二、课标解读1.整式的加减是学生进入第三学段后最先遇到的有关式子的运算,是由具体的数字运算发展到代数式运算的转折点.整式的加减运算是今后学习整式的乘除、分式的化简等涉及(代数)式运算的基础.由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律来学习,进一步体会“(有理)数”与“(整)式”运算的相通性.2.整式的加减法运算的实质是“合并同类项”,需要应用到去括号、加法和乘法的运算律等相关知识.因此,整式加减的学习通常从“同类项”的概念和“去括号”的法则开始.同类项是继单项式、多项式等概念后,另一个研究整式的加减运算需要学习的重要概念.判断两个单项式是否为同类项,关键要紧扣两个条件:一是含有相同的字母,二是相同字母的指数分别相同,它们缺一不可。
同时需要注意,常数项都是同类项.这些是判别同类项的基本要领.3.合并同类项是整式加减运算的基础,也是以后学习解方程、解不等式的基础.合并同类项的根据是加法的交换律、结合律及乘法的分配律.合并同类项的法则是类比有理数的加减法运算得到的,因此,合并同类项是有理数加减法运算的延伸与拓广,具有承上启下、由(有理)数运算过渡到(整)式运算的桥梁作用.4.去括号是数式运算重要的基础知识和基本方法,在今后代数式运算、分解因式、解方程(组)与不等式(组)等问题中经常用到.去括号的法则打破了有理数混合运算“有括号先算括号里面的”限制,使某些运算变得更加简便,如计算45-(-35+8),若先算括号里面的,则相对较为繁杂,而先去括号再进行加减运算则相对容易得出结果.去括号法则对七年级学生来说,在理解和应用上应该有一个逐步深入的思维过程,初次接触应该有一定的难度,是本节教学的重点与难点.5.用字母可以表示数或数量关系,也可以表示特定意义的公式或具有某些规律的数.用整式表示和分析实际问题中的数量关系,能使数量之间的关系更简明,更具有普遍意义.当整式中所含字母的取值确定后,可以求得此时整式的值,通常的做法是,先将整式化简,即先去括号、合并同类项,再将字母的值代入计算,这样可以化繁为简,使运算简便,这也说明,式的运算更具有一般性,数的运算是式的运算的特殊情形.6.同类项概念的产生源于生活中的归类思想.同类项概念及合并同类项法则的产生,都是因为数式运算的需要.由有理数概念与运算的学习,过渡到整式的相关概念与运算的学习,集中体现了由特殊到一般、由具体到抽象的认知过程,学生通过本小节内容的学习,能够感受到数学知识、思想和方法的形成和发展过程,逐步增强自身的数学思维能力.。
七年级数学上册第三章整式及其加减3 整式课标解读素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第三章整式及其加减3整式课标解读素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第三章整式及其加减 3 整式课标解读素材(新版)北师大版的全部内容。
整式一、课标要求1整式,包括用含字母的式子表示数量关系和整式的有关概念等内容.《义务教育数学课程标准(2011年版)》对整式相关内容提出了教学要求:1.能够分析简单问题中的数量关系,并用含有字母的式子表示出来;2.借助现实情境理解整式的有关概念,进一步理解用字母表示数的意义.二、课标解读1.整式及其相关概念是在小学第二学段已经学习了用字母表示数、用含字母的式子表示实际问题中的数量关系和简易方程,以及初中学段第一章学习了有理数的相关概念与运算后,正式进入代数内容学习的起始章节,是由(有理)数的学习转入到(代数)式的学习的重要起点,是学习整式的运算、方程、不等式和函数等知识的基础,因此本节内容具有承上启下的地位.在小学第二学段学习用字母表示数时,当时的数只是非负(有理)数,限于认知水平,没有上升到整式(或代数式)的角度进行系统地学习,没有给出相关的概念和名词.本节中,字母可以表示任意的有理数,同时给出了整式的相关概念,正式由“数”的学习进入到“式”的学习.2.用字母表示数、用含字母的式子表示数量关系,是由“数”过渡到“式"的重要桥梁.由于用字母表示的数已经扩充到有理数,所以可以根据有理数的运算法则和运算律,对表示数的字母或表示数量关系的式子进行运算,其间体现了“数式相通性”,体现了转化和类比的思想,以及由特殊到一般的认识过程.3.本小节涉及单项式、多项式、整式等相关概念.单项式、多项式的概念,是在用字母表示数、用含字母的式子表示数量关系的过程中,通过观察和比较这一系列式子的特点,归纳概括得出的.学生的认知需要经历对现实情境问题中数量关系的分析和表示过程,从中可以让学生真切体会到用字母表示数、含字母的式子表示数量关系后,字母与式子所具有的一般性和代表性,这也是学习代数式、整式的目的之一.4.用字母表示数、用含字母的式子表示数量关系,是人们对现实世界认知发展的必然结果,是解决实际问题的需要.本小节教学时,一要注意与小学相关内容的联系与衔接,二要注意从实际问题中选取和抽象出数学问题,让学生多感知列式表示数量关系的过程,让学生理解由特殊的“数”过渡到一般的“式"的必要性,逐步由“数感"发展上升到“符号意识”,不断增强学生的代数意识和代数观念,努力提高他们数学地分析问题和解决问题的能力.以上就是本文的全部内容,可以编辑修改。
整式
一、课标要求
1整式,包括用含字母的式子表示数量关系和整式的有关概念等内容.《义务教育数学课程标准(2011年版)》对整式相关内容提出了教学要求:
1.能够分析简单问题中的数量关系,并用含有字母的式子表示出来;
2.借助现实情境理解整式的有关概念,进一步理解用字母表示数的意义.
二、课标解读
1.整式及其相关概念是在小学第二学段已经学习了用字母表示数、用含字母的式子表示实际问题中的数量关系和简易方程,以及初中学段第一章学习了有理数的相关概念与运算后,正式进入代数内容学习的起始章节,是由(有理)数的学习转入到(代数)式的学习的重要起点,是学习整式的运算、方程、不等式和函数等知识的基础,因此本节内容具有承上启下的地位.在小学第二学段学习用字母表示数时,当时的数只是非负(有理)数,限于认知水平,没有上升到整式(或代数式)的角度进行系统地学习,没有给出相关的概念和名词.本节中,字母可以表示任意的有理数,同时给出了整式的相关概念,正式由“数”的学习进入到“式”的学习.
2.用字母表示数、用含字母的式子表示数量关系,是由“数”过渡到“式”的重要桥梁.由于用字母表示的数已经扩充到有理数,所以可以根据有理数的运算法则和运算律,对表示数的字母或表示数量关系的式子进行运算,其间体现了“数式相通性”,体现了转化和类比的思想,以及由特殊到一般的认识过程.
3.本小节涉及单项式、多项式、整式等相关概念.单项式、多项式的概念,是在用字母表示数、用含字母的式子表示数量关系的过程中,通过观察和比较这一系列式子的特点,归纳概括得出的.学生的认知需要经历对现实情境问题中数量关系的分析和表示过程,从中可以让学生真切体会到用字母表示数、含字母的式子表示数量关系后,字母与式子所具有的一般性和代表性,这也是学习代数式、整式的目的之一.
4.用字母表示数、用含字母的式子表示数量关系,是人们对现实世界认知发展的必然结果,是解决实际问题的需要.本小节教学时,一要注意与小学相关内容的联系与衔接,二要注意从实际问题中选取和抽象出数学问题,让学生多感知列式表示数量关系的过程,让学生理解由特殊的“数”过渡到一般的“式”的必要性,逐步由“数感”发展上升到“符号意识”,不断增强学生的代数意识和代数观念,努力提高他们数学地分析问题和解决问题的能力.
1。