伽马测井
- 格式:ppt
- 大小:10.13 MB
- 文档页数:177
自然伽马测井的测量原理嘿,朋友们!今天咱来唠唠自然伽马测井的测量原理。
你说这自然伽马测井啊,就好像是地层的“史官”。
它是咋工作的呢?就好比我们人啊,有一双特别的“眼睛”,能看到地层里那些看不见的秘密。
想象一下,地层里有各种矿物质吧,这些矿物质有的就带有放射性。
自然伽马测井仪呢,就专门去捕捉这些放射性物质发出的伽马射线。
这就好像是在黑暗中寻找闪光点一样,神奇吧!你可能会问啦,那它找到这些伽马射线能干啥呀?嘿嘿,这用处可大了去了!通过测量这些伽马射线的强度啥的,就能知道地层里的情况啦。
比如说,能知道地层里放射性物质的多少,这就像我们通过一个人的穿着打扮能大概了解他的性格一样。
而且啊,自然伽马测井仪可不管地层是深是浅,它都能努力去探测。
这多厉害呀!不管地层藏得多深的秘密,它都能给挖出来。
你说这自然伽马测井是不是很有意思?它就像是地层的“情报员”,默默地工作着,给我们带来关于地层的重要信息。
它不需要我们过多的操心,自己就能把活儿干得漂亮。
咱们在石油勘探、地质研究这些领域,自然伽马测井可发挥了大作用呢!没有它,很多事情可就难办咯!就像我们走路没有了眼睛,那还不得磕磕碰碰呀。
它能帮我们了解地层的岩性、划分地层啥的,这多重要啊!就好比我们要盖房子,得先知道地基稳不稳呀。
所以啊,可别小看了这自然伽马测井的测量原理。
它虽然看起来很复杂,但其实就是这么个道理,就是用特别的方法去发现地层里的秘密。
它就像是一把钥匙,能打开地层这个神秘宝库的大门。
总之呢,自然伽马测井的测量原理真的很神奇,很实用!它为我们探索地球内部的奥秘提供了有力的工具,让我们能更好地了解我们脚下的这片大地。
怎么样,是不是对自然伽马测井有了更深的认识和理解呀?。
(北京)
CHINA UNIVERSITY OF PETROLEUM
油气地球物理测井工程
★自然伽马测井的测量原理
通过探测器(晶体和光电倍增管)把地层中放射的伽马射线转变为电脉冲,经过放大输送到地面仪器记录下来。
高放射性地层,地层中点取得极大值;
V:测井速度;
τ:积分电路的时间常数。
值低);
与地层分别地质年代有关的经验参数,
;
y = 8.4179e2.7793x
R = 0.937
20
40
60
80
100
00.20.40.60.81
自然伽马相对值
岩
心
泥
质
含
量
(
%
)
密度中子交会法自然伽马法
泥质
指示
长
4
+
52
原解释厚度4m,现解释
厚度11m
油:22.1t/d
X衍射和薄片分析表明:该段岩石骨架为石英、长石;石英
含量47.23%,长石含量38.63%,粘土含量较常规高
粘土中富含高放射性的云母等矿物。
1) 钍系:钍系是从232Th开始的,到206Pb结束,半衰
放射系长期平衡:
Examples of Spectral Gamma Ray Log。
自然伽马测井名词解释
自然伽马测井是一种采用伽马射线来测量地层岩石物性的测井
方法。
在这个过程中,使用伽马探测器来测量地下岩石内的自然伽马辐射,并将其转换成对应的计数率。
这些计数率可以帮助地质学家确定地层的岩性、厚度和密度等信息。
以下是自然伽马测井中一些常见的名词及其解释:
1. 伽马射线(Gamma Ray):一种高能电磁波,由放射性核衰变产生。
在自然伽马测井中,伽马射线可以用来测量地层的放射性特性,从而确定地层类型和分界面。
2. 自然伽马辐射(Natural Gamma Radiation):指来自地下岩石的自然放射性元素(如铀、钍、钾等)所发出的伽马射线。
自然伽马测井利用这种辐射来识别地层特征。
3. 计数率(Count Rate):指测量仪器在一定时间内记录到的伽马射线计数数目。
计数率越高,表示所测地层中放射性物质的含量也越高。
4. 电阻率(Resistivity):指材料对电流通过的阻力。
自然伽马测井中,电阻率可以用来确定地层的导电特性。
通过与伽马计数率结合使用,可以帮助地质学家确定地层的矿物组成和岩性。
5. 伽马探测器(Gamma Ray Detector):一种专门用于检测伽马射线的探测器。
常见的探测器包括NaI(Tl)闪烁体探测器、BGO晶体探测器等,这些探测器可以测量伽马射线的能量和计数率,并将其转换成电信号输出。
总的来说,自然伽马测井是一种重要的地球物理勘探方法,广泛应用于油气勘探、地质调查和环境监测等领域。
了解自然伽马测井中的相关名词及其解释,有助于深入理解这一技术,并更好地应用于实际工作中。
自然伽马测井原理
自然伽马测井(Natural Gamma Ray Logging)是一种用于地质勘探和地层解释的测井方法。
其原理是通过测量地层中存在的天然伽马射线强度来获取地层的放射性元素含量,进而推断地层的成分和性质。
伽马射线是一种能够穿透物质的高能电磁辐射,常常与放射性同位素的衰变过程相关。
地层中的放射性元素如钾、铀和钍会以不同的比例存在,它们的核衰变会释放出伽马射线。
这些伽马射线的能量和强度与地层中的放射性元素含量有关。
在自然伽马测井中,测井仪器将伽马射线传感器降入井中,通过探测上下井段的伽马射线强度差异来识别地层。
伽马射线强度通常以计数率 (counts per second,cps) 的形式进行测量。
通
过观察伽马射线计数率的变化,可以确定地层中放射性元素的含量及其分布。
自然伽马测井可以提供许多地层信息。
例如,钾元素主要存在于黏土矿物中,可用于判断地层的砂岩和页岩含量。
铀和钍元素主要存在于砂岩中,可以用于识别砂岩体。
此外,自然伽马测井还可用于确定地层的厚度和边界、识别化石层、建立地质模型等。
需要注意的是,自然伽马测井的应用需要考虑伽马射线的穿透能力和侵入深度等因素。
不同元素对伽马射线的敏感度也不同,因此对于复杂地层,可能需要结合其他测井方法进行综合解释。
总之,自然伽马测井是一种重要的地质勘探工具,通过测量地层中的伽马射线强度,可以获取地层的放射性元素含量和地质信息,为勘探工作提供有价值的数据支持。
伽马测井第四节伽马测井⼀、⾃然伽马测井1.岩⽯的⾃然伽马放射性岩⽯的⾃然放射性是由岩⽯中的放射性同位素的种类和含量决定的。
岩⽯中的⾃然放射性核素主要是铀(U238)、钍(Th232 )、锕(Ac227)及其衰变物和钾的放射性同位素K40等,这些核素的原⼦核在衰变过程中能放出⼤量的α、β、γ射线,所以岩⽯具有⾃然放射性。
沉积岩按放射性浓度可粗略分为三类:1)放射性⾼的岩⽯:包括粘⼟岩、⽕⼭灰、海绿⽯砂岩、独居⽯砂岩、钾钒矿砂岩、含铀钒矿的灰岩及钾盐等。
深海相泥岩的放射性浓度常达90×10-12克镭当量/克;浅海相泥岩的放射性浓度为(20-30)×10-12克镭当量/克。
钾盐中的K40可达60×10-12 克镭当量/克2) 放射性中等的沉积岩:包括砂层、砂岩和含有少量泥质的碳酸盐岩等,其放射性浓度为(1-8)×10-12克镭当量/克。
3)放射性低的沉积岩:包括⽯膏、硬⽯膏、岩盐、纯的⽯灰岩、⽩云岩和⽯英砂岩等。
根据实验和统计,沉积岩的⾃然放射性⼀般有以下变化规律:(1)随泥质含量的增加⽽增加。
(2)随有机物含量增加⽽增加。
如沥青质泥岩的放射性很⾼。
在还原条件下,六价铀能被还原成四价铀,从溶液中分离出来⽽沉淀在地层中,且有机物容易吸附含铀和钍的放射性物质。
(3)随着钾盐和某些放射性矿物的增加⽽增加。
在油⽓⽥中常遇到的沉积岩的⾃然伽马放射性主要决定于泥质含量的多少。
但必须注意:从问题的实质来看,岩⽯⾃然放射性的强度是由单位质量或单位体积岩⽯的放射性同位素的含量决定的,当利⽤⾃然伽马测井资料求地层泥质含量时应做全⾯考虑。
2.⾃然伽马射线强度分布研究⾃然伽马射线在地层中和沿井轴的强度分布,是⾃然伽马测井基本理论的重要组成部分。
现按⼏种情况分别进⾏讨论。
1)⽆限均匀放射性地层中伽马射线的强度为了便于研究,先考虑⽆限均匀放射性地层的原始状态,即在尚未钻井之前地层中伽马射线的强度。
自然伽马测井原理
自然伽马测井是一种常用的测井方法,它利用地层中天然放射性元素的辐射来获取地层信息。
自然伽马测井原理是基于地层中放射性元素的特性,通过测量地层中放射性元素的辐射强度来推断地层的性质。
本文将介绍自然伽马测井的原理及其在油田勘探中的应用。
地层中的放射性元素主要包括钍、钾和铀等,它们的放射性衰变会产生伽马射线。
当伽马射线穿过地层时,会与地层中的原子核发生相互作用,导致伽马射线的能量发生变化。
通过测量伽马射线的能量变化,可以推断地层中的放射性元素含量,从而得知地层的性质。
自然伽马测井的原理是基于伽马射线在地层中的衰减规律。
地层中的不同岩石对伽马射线的吸收能力不同,因此伽马射线在地层中的传播会受到地层岩石成分的影响。
通过测量伽马射线的衰减情况,可以推断地层的厚度、密度和岩性。
自然伽马测井在油田勘探中有着重要的应用价值。
首先,通过自然伽马测井可以获取地层的放射性元素含量,从而判断地层的含
油气性。
含油气层通常具有较高的放射性元素含量,因此可以通过自然伽马测井来识别潜在的油气层。
其次,自然伽马测井可以提供地层的密度和岩性信息,有助于评价地层的储集性能和渗透性。
最后,自然伽马测井还可以用于识别地层中的放射性矿物,对于矿产勘探具有重要意义。
总之,自然伽马测井原理是基于地层中的放射性元素的辐射特性,通过测量伽马射线的能量变化和衰减规律来推断地层的性质。
在油田勘探中,自然伽马测井具有重要的应用价值,可以帮助地质工作者更好地理解地下地层的情况,为油气勘探和开发提供重要的地质信息。