KSD1588RTU中文资料
- 格式:pdf
- 大小:47.10 KB
- 文档页数:4
Absolute maximum ratingsSymbol Conditions Unit I IN MAX Maximum permanent input current A RMS I OUT MAX Maximum permanent output current A RMS V IN MAX Maximum input voltage V AC V OUT MAX Maximum output voltage V AC V BUS MAX Maximum DC Bus voltage V DC F IN MAX Inverter input frequency Hz F OUT MAX Inverter output frequency Hz F SW MAX Maximum switching frequency kHzElectrical characteristics TAMBIENT= 40°C unless otherwise specifiedSymbol Conditionsmin typ max UnitI OUT RATED Rated output current 2 400A RMSI OUT OVL Overload output current 2 640A RMSt OVL Overload duration60sT OVL Time between 2 overloads10minV OUT Output voltage620690760V AC SKiiPRACK® - Type 6A P OUT Rated output power 2 870kW 4-Quadrant 3-phase IGBT converter F SW Inverter switching frequency2kHzF OUT Output frequency50HzPF Power factor1-P LOSS INV2)Losses at rated current28 320W Ordering No.08800600η2)Efficiency at rated current99% Description SKS C 240 GDD 69/11 – A6A MA B1C AC phase GeneratorI IN RATED Rated input current 2 400A RMS Features I IN OVL Overload input current 2 640A RMSt OVL Overload duration60sDesigned in regard to EN50178 recommendations T OVL Time between 2 overloads10min Designed for a 1200 x 600 x 2000 mm cabinet V OUT Output voltage620690760V AC Embedded SKiiP® Technology 3P OUT Rated output power 2 870kW SKiiP 2403GB172-4DW, Trench 3 1700V IGBT, CAL3 diode F SW Inverter switching frequency2kHz Integrated current and temperature sensors F OUT Output frequency20100Hz Water cooling PF Power factor-1-P LOSS INV2)Losses at rated current28 320Wη2)Efficiency at rated current99% Typical ApplicationsDC BusWind generators (SG and DFIG)V BUS Rated DC voltage applied to the capacitor bank 1 100V DC High power AC drives V BUS MAX Max DC voltage applied to the caps bank (max 30% of LTE) 1 200V DCτd5%Discharge time of the capacitors (V DC < 60 V)6min Footnotes C DC Capacitor bank capacity27,0mFLTE Calculated LTE of the capacitors with forced air cooling100kh 1) Absolute maximum ratings are values not to beexceeded in any case and do not imply that the stack Stack Insulationcan operate in all these conditions taken together Crd Minimum creepage distance8,7 mm 2) fan consumption and losses in air included Cld Minimum clearance distance7,1 mmVisol Chassis / Power stage AC/DC (insulation test voltage DC, 5 s)-4 200 4 200V DC REMARKSVisol12SKiiP driver only, output 1 / output 2 (AC, rms, 2 s) 1 500Vdv/dt SKiiP driver only, secondary to primary side75kV/µs B6CI + B6CISKiiP stackV BUS = 1 100 V DCT INLET = 45°C, 50% glycolFlowrate = 12 L/min per cellT J < 125°CAir extraction according to thermaldata page 2V BUS = 1 100 V DCT INLET = 45°C, 50% glycolFlowrate = 12 L/min per cellT J < 125°CAir extraction according to thermaldata page 2This technical information specifies semiconductor devices butpromises no characteristics. No warranty or guarantee,expressed or implied is made regarding delivery, performanceor suitability.Before using the converter, please read carefully theSKiiPRACK® user manual.Values2 400760AC phase Grid2 40010010057601 200Environmental conditions T AMBIENT=40°C unless otherwise specified Characteristics Conditions min typ max UnitAmbiant temperature 1)HumidityInstallation altitude without derating 1 000mMax. installation altitudewith derating 4 000mProtection degreeIEC 60529IP00-IEC 60721-3-2, storage & transportation, 1 cell2M1-IEC 60721-3-3, in operation, 1 cell3M3-Pollution degree EN 501782-Cell80kg4-Quadrant converter550kgThermaldataSKiiPRACK® - Type 6A Water flow per cell81224L/min 4-Quadrant 3-phase IGBT converter Water flow per 4Q-converter4872144L/minOrdering No.08800600Description SKS C 240 GDD 69/11 – A6A MA B1C Water pressure Maximum water pressure permissible per cell3barCoolant type Recommended coolant50% Glycol / 50% water-Features T INLET Cooling water inlet temperature-204560°CExternal cooling airflow Snubbers, required airflow direction bottom-top1ms-1 Designed in regard to EN50178 recommendations V SUPPLY[fan]Capacitor DC fan operating voltage182428V DC Designed for a 1200 x 600 x 2000 mm cabinet P FAN per fan Fan power consumption at typical voltage supply3,6W Embedded SKiiP® Technology 3LTE[fan]Capacitor DC fan life time expectancy (L10 method)65kh SKiiP 2403GB172-4DW, Trench 3 1700V IGBT, CAL3 diodeIntegrated current and temperature sensors Gate Driver Characteristics T AMBIENT=25°C unless otherwise specified Water cooling Symbol Conditions min typ max UnitGate Driver / controler dataV S2 supply voltage non stabilized 132430V DC Typical Applications I S2 V S2 = 13V - 30 V, F SW in kHz, I AC in A330 + 55×F SW + 0.00035×I AC2mAViT+input threshold voltage HIGH 12,3V DC Wind generators (SG and DFIG)ViT-input threshold voltage LOW 4,6V DC High power AC drives R IN Input resistance10kΩC IN Input capacitance1nF Footnotes Measurement & protectionHB_I Analogue current signal HB_I245250255 A.V-1 1) the user shall ensure that the ambiant air is sufficiently I TRIPSC over current trip level(Ianalog OUT=10V) 2 450 2 500 2 550A PEAK ventilated to avoid hot spots.min17 + 10,3×CMN_TMP°CCMN_TMP Analogue temperature signal Th < 80°C typ19 + 10,5×CMN_TMP°Cmax20 + 10,5×CMN_TMP°Cmin26 + 8,8×CMN_TMP°C REMARKS CMN_TMP Analogue temperature signal Th > 80°C typ28 + 8,8×CMN_TMP°Cmax30 + 8,9×CMN_TMP°CT trip Over temperature protection110115120°C This technical information specifies semiconductor devices butpromises no characteristics. No warranty or guarantee,expressed or implied is made regarding delivery, performanceor suitability.Before using the converter, please read carefully theSKiiPRACK® user manual.5°C-2055°C∆P WATER150mbarMass∆V/∆t WATERPressure drop per cell with male and femaleconnectors, 50% glycol, 12 L/minPressure drop per 4Q converter with male andfemale connectors, 50% glycol, 72 L/min150 B6CI + B6CIClimaticMechanicalSKiiP stack6085%Vibrations & ShocksIEC 60721-3, class 1K2 & 2K2Storage & transportationIEC 60721-3-3, class 3K3 extendedIn operation-25IEC 60721-3-3, class 3K3no condensation no icingmbarDC+ DC-V1W1L31L21Phase driver connectorsDC BUS detailsDC BUS connection L11U2V2W2L32L22L12HE10-14 male connectorPinDesignation1+24VDC 2+24VDC 3GND 4GNDLEFT SIDE VIEW DC FAN CONNECTION (6 times)This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee 12 3 4View XFRONT VIEW REAR VIEWU, V, W are generator side converter phasesL1, L2, L3 are grid side converter phases2 SKiiPs in parallel cannot be on the same SKiiPRACK cellThis technical information specifies semiconductor devices but promises no characteristics. No warranty or guaranteeDetails - View XThis technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.6Rev. 0 - 03.06.201300,0020,0040,0060,0080,010,0120,0145101520253035R t h (°C /W )Flowrate per cell (L/min)Stack Rth 50% glycol (°C/W)Stack Rth 10% glycol (°C/W)50010001500200025003000303540455055O u t p u t c u r r e n t (A R M S )Ambient air temperature (°C)Cooling liquid 45°C Cooling liquid 60°CV BUS = 1 100 V DCVac IN/OUT =690 V RMS F IN/OUT = 50 Hz f SW IN/OUT = 2 kHz cos ϕIN/OUT = 1Flowrate = 12 L/min per cell Glycol/water ratio = 50%Altitude <1000 m 0500100015002000250030005001000150020002500300035004000O u t p u t c u r r e n t (A R M S )Altitude (m)Cooling liquid 45°C, ambient 40°C Cooling liquid 60°C, ambient 55°CV BUS = 1 100 V DCFlowrate = 12 L/min per cell Vac IN/OUT =690 V RMS Glycol/water ratio = 50%F IN/OUT = 50 Hz Altitude <1000 mf SW IN/OUT = 2 kHz cos ϕIN/OUT = 1050010001500200025003000200400600800100012001400M a x c u r r e n t s w i t c h e d (A )DC bus voltage (V)0100200300400500600700510152025P r e s s u r e d r o p p e r S K i i P R A C K c e l l (m b a r )Flowrate (L/min)Pressure drop with 50% glycolPressure drop without glycol (mbar)0500100015002000250051015O u t p u t C u r r e n t (A R M S )AC Fundamental Frequency (Hz)V BUS = 1 100 V DCVac IN/OUT =690 V RMS f SW IN/OUT = 2 kHz cos ϕIN/OUT = 1Water temperature = 45°C Flowrate = 12 L/min per cell Glycol/water ratio = 50%Air temperature = 40°C T J = 125°C。
目录前言 (4)1概述 (5)1.1产品介绍 (5)1.2特性 (5)1.3应用领域 (5)1.4产品命名规则 (6)2性能指标 (7)2.1电气特性 (7)2.2使用环境 (7)3安装 (8)3.1安装尺寸 (8)3.2安装方法 (8)4 驱动器端口与接线 (9)4.1接线示意图 (9)4.2端口定义 (10)4.2.1状态指示灯 (10)4.2.2控制信号输入/输出端口 (10)4.2.3电源输入/电机输出端口 (11)4.2.4拨码开关 (11)4.2.5 MODBUS总线端口 (11)4.3输入/输出端口操作 (11)4.4拨码开关设定 (13)4.5 RS485通讯端口 (15)5适配电机 (16)5.1 电机尺寸 (16)5.2 技术参数 (16)5.3 电机接线图 (17)6 MODBUS通讯协议 (18)6.1 MODBUS寄存器地址定义 (18)6.2 MODBUS常用功能码 (24)6.2.1读保持寄存器命令03 (24)6.2.2写单个寄存器命令06 (25)6.2.3写多个寄存器命令16 (25)6.2.4通讯错误码 (26)6.2.5应用示例 (27)7运动控制功能介绍 (29)7.1位置模式 (29)7.2速度模式 (30)7.3多段位置模式 (30)7.3.1 位置段参数介绍 (30)7.3.2 多段位控制方式 (31)7.4多段速度模式 (32)7.4.1 速度段参数介绍 (32)7.4.2 多段速度控制方式 (32)7.5回原点功能 (33)7.6运动控制命令 (34)7.6.1 启动命令(0x0027) (34)7.6.2 停止命令(0x0028) (34)7.6.3 回原点命令(0x0030) (35)8报警排除 (36)9版本修订历史 (37)10保修及售后服务 (38)10.1保修 (38)10.2售后服务 (38)前言感谢您使用本公司总线型步进驱动器。
天津贝尔自动化仪表技术有限公司TIANJIN BELL AUTOMATICINSTRUMENTTECHNOLOGY CO.,LTDISO9001 质量认证企业推荐单位天津市企业联合会理事单位RDKZ、ZKZ 直行程电动执行机构系列使用说明书目 录一、概述 (1)二、使用条件 (1)三、规格参数 (2)四、主要技术性能 (2)五、结构工程原理说明 (3)六、电动执行机构的校核 (6)七、电动执行机构的安装使用 (11)八、贮存 (14)九、保证事宜 (14)十、附注 (14)十一、推荐使用说明 (14)十二、户外型、电子式型、隔爆型、隔爆电子式型使用说明 (14)天津贝尔自动化仪表技术有限公司TIANJIN BELL AUTOMATIC INSTRUMENT TECHNOLOGY CO.,LTD地址:天津市西青区泰和工业园大明道营盛路13号邮编:300112电话:022-********/27772369传真:022-********网址:电子邮箱:fw@感谢您订购贝尔公司产品,欢迎您给我们的产品和工作提出宝贵意见。
DKZ、ZKZ系列直行程电动执行机构是工业过程测量和控制系统的终端控制装置,它能够将系统的控制信号转换成输出杆的直线位移以控制阀门内截流件的位置或其它调节机构,使被控介质按系统规定的状态工作。
新一代DKZ、ZKZ系列性能完全一致。
电动执行机构按控制方式分为比例式和积分式。
比例式执行机构由电动伺服放大器和积分式执行机构组成,它能够将系统的控制信号与关于输出杆位置的反馈信号加以比较(闭环控制)以改变输出杆的行程,使之与输入信号成比例关系。
积分式执行机构由伺服电动机、减速器及位置发送器组成,它能够与电动操作器配合对阀门或其它调节机构实现远方操作。
电动执行机构的自动控制系统配用DFD系列电动操作器可以实现控制系统“自动”—“手动”工作状态的无扰动切换。
电动执行机构安全可靠,安装、调试、操作、维修方便,广泛应用在能源、冶金、化工、建材等行业,在工业过程测量和控制系统中发挥重要作用。
e-mail:**************For latest product manuals: TX92AMiniature Temperature Transmitters Shop online at User’s G ui de***********************Servicing North America:U.S.A. Omega Engineering, Inc.Headquarters: Toll-Free: 1-800-826-6342 (USA & Canada only)Customer Service: 1-800-622-2378 (USA & Canada only)Engineering Service: 1-800-872-9436 (USA & Canada only)Tel: (203) 359-1660 Fax: (203) 359-7700e-mail:**************For Other Locations Visit /worldwideThe information contained in this document is believed to be correct, but OMEGA accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.T A B L E O F C O N T E N T S P A G E 1.0GETTING STARTED1.1Unpacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2Safety and EMC Considerations. . . . . . . . . . . . . . . . . . . . 1 1.3General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4Available Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5Ordering Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6Shock Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.0CONNECTING POWER AND SIGNAL INPUTS. . . . . . . . . 43.0CALIBRATING THE TRANSMITTER. . . . . . . . . . . . . . . . . 54.0SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 LIST OF FIGURES AND TABLESFigure 2-1Power Input Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2-2Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3-1Calibration Setup (Resistance Source). . . . . . . . . . . . . . . . 5 Figure 3-2Calibration Setup (RTD Simulator). . . . . . . . . . . . . . . . . . . 6 Figure 4-1Case Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4-2Transmitter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 8 Table 1-1Range/Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table 2-1Screw-Terminal Pin Assignment. . . . . . . . . . . . . . . . . . . . 4 Table 3-1Fahrenheit Temperature to OHMs Conversion Chart. . . . . 6 Table 3-2Celsius Temperature to OHMs Conversion Chart. . . . . . . . 6iiiSECTION 1 GETTING STARTED1.1UnpackingRemove the packing list and verify that you have received all equipment.If you have any questions, contact the nearest Customer Service Department, as listed on the cover of this manual.Upon receipt of shipment, inspect the container and equipment for any signs of damage. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent.Note: The carrier will not honor any claims unless all shipping material is saved for their examination. After examining and removing contents, save packing materials and carton in the event reshipment is necessary.1.2 Safety and EMC ConsiderationsThis instrument is a Class III device (8 to 50 Vdc).Always use a power supply, which complies with EN 60950 safety standard.EMC Considerations•Whenever EMC is an issue, always use shielded cables.•Never run signal and power wires in the same conduit.•Use signal wire connections with twisted-pair cables.•Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.Failure to follow all instructions and warnings may result in injury!1.3General DescriptionThe TX92A Series transmitter accepts platinum 100 ohm sensor type RTDs and will produce a standard 4-20 mA output signal proportional to that produced by its attached RTD input. The transmitter does NOT provide isolation between its input and the 4-20 mA output; therefore, an ungrounded RTD is suggested to prevent possible ground loops.The transmitter provides amplification, common-mode rejection and controlling the current draw from an 8-to-50 Vdc source to produce the 4-to-20 mA output signal.As much as 800 ohms dropping resistance may be used in the power leads of theTX92A when the unit is energized from a 24 Vdc source because of the small compliance voltage needed by the unit.11.4Available RangesAs specified in Table 1-1, the transmitter has 10 ranges. Depending upon the range, the transmitter can measure temperature span as narrow as 180°F or as wide as 1000°F. A multi-turn, top-accessible potentiometer provides fine span tuning. A second top-accessible, multi-turn potentiometer provides a zero adjustment which allows placement of the 4-mA output temperature within +/- 25% for Fahrenheit and +/- 10% for Celsius of nominal span (refer to Section 3.0, Calibrating the Transmitter, for more details). Models TX92A-*-L are transmitters with the 4-20mA output linearized to temperature.Table 1-1. Range/ModelsR a n g e M o d e l-40 to 140°F TX92A-1TX92A-1-L0 to 200°F TX92A-2TX92A-2-L0 to 300°F TX92A-3TX92A-3-L0 to 500°F TX92A-4TX92A-4-L0 to 750°F TX92A-5TX92A-5-L0 to 1000°F TX92A-6TX92A-6-L-0 to 100°C TX92A-7TX92A-7-L-0 to 150°C TX92A-8TX92A-8-L-0 to 250°C TX92A-9TX92A-9-L-0 to 400°C TX92A-10TX92A-10-L21.5 Ordering GuideThe model number describes the functionality of the transmitter.Model Temperature RangeTX92A-1-40 to 140°F2-0 to 200°F3-0 to 300°F4-0 to 500°F5-0 to 750°F6-0 to 1000°F7-0 to 100°C8-0 to 150°C9-0 to 250°C10-0 to 400°C-L4-20mA output linearized to temperatureFS**Factory Scaling Option:**Factory Scaling available for additional charge. Consult factory.To order additional transmitters, specify TX92A followed by the model number. For example:TX92A-2 = RTD Transmitter with a temperature range of -0 to 200°F.orTX92A-2-L = RTD Transmitter with the 4-20mA output linearized to temperature and a temperature range of -0 to 200°F.1.6Shock ResistanceLightweight TX92A transmitter circuit boards are fabricated from rigid, shock resistant materials with the components soldered to the circuit board.The TX92A transmitter's small size permits mounting into thermowells or wall mount-ing in confined areas.32.0CONNECTING POWER AND SIGNAL INPUTS1.Verify that the transmitter is connected for the correct powervoltage rating.2.Connect the power supply to pin 4 and the resistance load to pin 5.3.Connect the sensor to pins 1, 2 and 3.The transmitter has no power on switch, so it will be in operation as soon asyou apply power.Figure 2-1 Power Input Setup+PS and -PS screws accept 2mm (13 gauge) or lighter wire. Input range is 8-50 Vdc.Table 2-1. Screw-Terminal Pin Assignment1RTD2RTD3M (Sense)4+Power/Signal Output5-Power/Signal OutputFigure 2-2 Pin Assignment43.0CALIBRATING THE TRANSMITTERCalibration Setup:1.Insert the reference RTD.2.Connect RTD simulator.3.Connect DMM monitor and power supply.WIREFigure 3-1. Calibration Setup (Resistance Source)To calibrate the transmitter, follow these steps (refer to Figure 3-1):1.Locate the model number in Table 3-1 or 3-2 and set the resistance source tothe LO-IN value.2.Adjust the Zero potentiometer until the milliammeter reads 4.00 mA.3.Set the resistance source to the HI-IN value (in your appropriate table) and readthe output current on the milliammeter.4.Adjust the Span potentiometer to obtain the 20 mA on the milliammeter.5.Set the resistance source to LO-IN resistance. If the output current is not 4.00mA, repeat steps 2 through 7.6.When calibration is complete, remove the transmitter from the setup.53.0CALIBRATING THE TRANSMITTER (Continued)An RTD calibrator may be used in place of the resistance source - refer to Figure 3-2.WIREFigure 3-2. Calibration Setup (RTD Simulator)Table 3-1. Fahrenheit Temperature to OHMS Conversion Chart V a l u e M o d e l N u m b e r/R a n g eT X92A-123456(-40 to 140°F)(0 to 200°F) (0 to 300°F)(0 to 500°F)(0 to 750°F)(0 to 1000°F) LO IN84.27 Ω92.95 Ω92.95 Ω92.95 Ω92.95 Ω92.95 ΩHI IN123.24 Ω135.85 Ω156.96 Ω197.71 Ω246.74 Ω293.56 ΩTable 3-2. Celsius Temperature to OHMS Conversion ChartV a l u e M o d e l N u m b e r/R a n g eT X92A-78910(0 to 100°C)(0 to 150°C) (0 to 250°C)(0 to 400°C)LO IN100 Ω100 Ω100 Ω100 ΩHI IN138.51 Ω157.33 Ω194.10 Ω247.09 Ω64.0 SPECIFICATIONSI N P U TConfiguration:Non-isolated inputTransducer types:Platinum RTDBurnout indication:Upscale over-range indication, 40 mA max.O U T P U TLinear range: 4 to 20 mAdcCurrent Output limits: <2 to >40 mA (open RTD)Compliance (supply-voltage):8 to 50 VdcReverse polarity protection:350 V peakMaximum loop resistance:(Supply Voltage - 8V)/20 mAA C C U R A C YHysteresis and repeatability:Within ±0.1% of FSLinearity with respect to input:± 0.1% of FSFor -L models: linearity withrespect to temperature:± 0.2% of FSPower supply effect:Within ±0.01%/VTemperature effect:Zero and Span: Within ±0.1% FS/°FE N V I R O N M E N T A LOperating temperature:-40 to 185°F (-40 to 85°C)Storage temperature:-50 to 250°F (-45 to 121°C)Humidity:To 90% (non-condensing)M E C H A N I C A LWeight:less than 1.2 oz (34g)Diameter: 1.75 in (44.34 mm)Height (including barriers): 1.25 in (31.75 mm)4.0 SPECIFICATIONS (Continued)Figure 4-1. Case DimensionsFigure 4-2. Transmitter Block DiagramOMEGA’s policy is to make running changes, not model changes, whenever an improvement is possible. T his affords ourcustomers the latest in technology and engineering.FOR WARRANTY RETURNS, please have thefollowing information available BEFORE contactingOMEGA:1. P urchase Order number under which the productwas PURCHASED,2. M odel and serial number of the product underwarranty, and3. Repair instructions and/or specific problemsrelative to the product.FOR NON-WARRANTY REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:1. Purchase Order number to cover the COST of the repair,2. Model and serial number of the product, and 3. Repair instructions and/or specific problems relative to the product.RETURN REQUESTS/INQUIRIESDirect all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RET URNING ANY PRODUCT (S) T O OMEGA, PURCHASER MUST OBT AIN AN AUT HORIZED RET URN (AR) NUMBER FROM OMEGA’S CUST OMER SERVICE DEPART MENT (IN ORDER T O AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.T he purchaser is responsible for shipping charges, freight, insurance and proper packaging to preventbreakage in transit.WARRANTY/DISCLAIMEROMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of 61 months from date of purchase. OMEGA’s WARRANTY adds an additional one (1) month grace period to the normal five (5) year product warranty to cover handling and shipping time. This ensures that OMEGA’s customers receive maximum coverage on each product.If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA’s WARRANT Y does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. T his WARRANT Y is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA’s control. Components in which wear is not warranted, include but are not limited to contact points, fuses, and triacs.OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by the company will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLU DING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICU LAR PU RPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANT Y /DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of theProduct(s) in such a manner.Where Do I Find Everything I Need for Process Measurement and Control?OMEGA…Of Course!Shop online at TEMPERATUREM U Thermocouple, RTD & Thermistor Probes, Connectors,Panels & AssembliesM U Wire: Thermocouple, RTD & ThermistorM U Calibrators & Ice Point ReferencesM U Recorders, Controllers & Process MonitorsM U Infrared PyrometersPRESSURE, STRAIN AND FORCEM U Transducers & Strain GagesM U Load Cells & Pressure GagesM U Displacement TransducersM U Instrumentation & AccessoriesFLOW/LEVELM U Rotameters, Gas Mass Flowmeters & Flow ComputersM U Air Velocity IndicatorsM U Turbine/Paddlewheel SystemsM U Totalizers & Batch ControllerspH/CONDUCTIVITYM U pH Electrodes, Testers & AccessoriesM U Benchtop/Laboratory MetersM U Controllers, Calibrators, Simulators & PumpsM U Industrial pH & Conductivity EquipmentDATA ACQUISITIONM U Communications-Based Acquisition SystemsM U Data Logging SystemsM U Wireless Sensors, Transmitters, & ReceiversM U Signal ConditionersM U Data Acquisition SoftwareHEATERSM U Heating CableM U Cartridge & Strip HeatersM U Immersion & Band HeatersM U Flexible HeatersM U Laboratory HeatersENVIRONMENTALMONITORING AND CONTROLM U Metering & Control InstrumentationM U RefractometersM U Pumps & TubingM U Air, Soil & Water MonitorsM U Industrial Water & Wastewater TreatmentM U pH, Conductivity & Dissolved Oxygen Instruments。
D2008型电子称重仪表使用说明书2022年3月版●使用前请仔细阅读本产品说明书●请妥善保管本产品说明书,以备查阅目录第一章技术参数 (1)第二章常规操作说明 (2)一、开机及开机自动置零 (2)二、手动置零 (2)三、去皮 (2)四、清皮 (2)五、日期与时间查询与设置 (2)第三章称重记录的储存与打印 (2)一.称重记录的储存 (2)二.车号皮重的设置与清除方法: (3)三、车号皮重的批量查看与清除方法: (3)四.称重记录的打印 (3)五.明细报表打印 (4)六.称重记录的查询与清除 (4)七.称重记录和车号皮重的全部删除操作 (5)八.查询打印 (5)第四章信息提示 (5)附录A:打印操作举例: (6)附录B:明细表及统计报表示例 (7)▲仪表电源接地线必须符合电气安全规定,接线盒、传感器的外壳必须接地良好。
▲数字传感器与仪表的连接必须可靠,数字传感器的屏蔽线必须可靠接地。
▲在仪表通电状态下,所有连接线不允许进行插拔,防止静电和漏电损坏仪表或传感器。
▲传感器和仪表都是静电敏感设备,在使用中必须切实采取防静电措施。
▲在雷雨季节,系统必须落实可靠的避雷措施,防止因雷击造成传感器和仪表的损坏,确保操作人员的人身安全和称重设备及相关设备的安全运行。
▲不得在有可燃性气体或可燃性蒸汽的场合使用,不得在有压力的罐装系统中使用。
▲仪表和传感器须远离强电场强磁场,远离强腐蚀性物体,远离易燃易爆物品。
▲严禁使用强溶剂(如:苯、硝基类油)清洗机壳。
▲不得将液体或其他导电颗粒注入仪表内,以防仪表损坏和触电。
▲本产品非经技术监督部门授权,不得擅自开启铅封,不破坏铅封不能标定。
◆为保证仪表显示清晰和使用寿命,仪表不宜放在阳光直射下使用,放置地点应较平整。
◆仪表不宜放在粉尘及振动严重的地方使用,避免在潮湿的环境中使用。
◆在插拔仪表与外部设备连接线前,必须先切断仪表及相应设备电源。
◆仪表对外接口须严格按使用说明书中所标注的方法使用,不得擅自更改连接。
国电怀安热电有限公司KCD-2 20T实物校验装置使用说明书上海诚知自动化仪表有限公司目录一、概述 (1)二、产品简介 (1)1.料斗秤技术指标 (1)2.传感器技术指标 (2)3.进料皮带机技术指标 (2)4.出料皮带机技术指标 (2)5.系统组成 (2)5.1 承载架 (2)5.2 承重及传力系统 (3)5.3 料斗 (3)5.4 挂码装置 (3)5.5 振动装置 (3)5.6 弧门卸料装置 (3)三、操作简介 (3)四、面板操作 (4)1.卸料电动弧门 (4)2.砝码提升与下降 (5)3.料仓振动器 (5)4.进料皮带机 (5)5.出料皮带机 (5)五、触摸屏操作 (5)1.系统上电 (5)2.进入各操作界面 (6)3.料斗秤校验 (6)4.皮带秤检校 (10)5.系统参数 (13)六、电脑操作 (14)1.料斗秤校验 (14)2.系统参数设置 (17)七、设备维护与保养 (18)一、概述电子皮带秤是在动态状态下对被称量物料进行连续称量的计量器具,其计量准确度不仅取决于称重传感器、传力机构和二次仪表,同时受皮带输送机的跑偏、皮带打滑、张力变化、环境温度、风力、物料等各项因素的影响,为保证计量准确,定期对其进行校验是很有必要的。
实物校验装置是通过实物对电子皮带秤进行校验的设备,该设备为高精度静态秤,其校验过程的优点是简易、直观、准确。
校验用实物(煤)先经静态秤称量,然后再经皮带秤称量,以实物校验装置称量值作为标准值,皮带秤称量值相对此标准值的差值即为皮带秤的计量误差,此误差应在其允许误差范围内。
实物校验装置配有标准砝码,为保证该设备的自身精度,应定期进行自检。
实物校验装置的称量实物为煤、矿石、粮食等松散物料,可用于校验称量松散物料的电子皮带秤,也可以作为静态电子料斗秤使用。
本项目实物校验装置的设计有效容积为20m3,最大称量为20t,准确度等级为Ⅲ级,可以校验准确度等级为0.5级或以下的电子皮带秤。
科蒂斯CURTIS系列电动汽车电机控制系统系列产品技术资料由于是进口产品!中文资料较少!这是我花费了不少时间搜集整理出来的!型号:1204/1205:串励电机速度控制器类型:电压:24-48V;电流:175-400A适用范围:科蒂斯1204/1205/1209型串励电机速度控制器是多种工业电动车辆的理想选择。
广泛应用于电动搬运车、电动装载车、物料搬运车、高尔夫球车以及其他小型串励机设备应用场合。
型号:1207A:串励电机速度控制器(CURTIS/PMC1270A)类型:额定电流:250A/300A;额定电压:24V。
可编程适用范围:可编程科蒂斯1207A型串励电机速度控制器是小型电动车辆的理想选择。
广泛应用于电动托盘车、堆垛车、电动搬运车、清扫车以及其他小型串励和复励电机设备应用场合。
型号:科蒂斯1209B:串励电机速度控制器类型:电压:36-48V/48-72V电流:400-450A适用范围:是多种工业电动车辆的理想选择。
广泛应用于电动搬运车、电动装载车、物料搬运车、高尔夫球车以及其他小型串励电机设备应用场合。
类型:科蒂斯1210:永磁电机速度控制器:类型:符合欧洲及美国标准,可编程。
电压:24V;电流:45A/70A适用范围:科蒂斯1210型永磁电机速度控制器适用于3-4轮的电动休闲车及代步车及清扫车等小型工业车辆。
型号:科蒂斯1214/1215/1219类型:可编程额定电压:48V额定电流:250A/300A/400A/500A/600A;适用范围:是电动车辆的理想选择。
广泛应用于电动托盘车、堆垛车、电动搬运车、清扫车以及其他小型串励和复励电机设备应用场合。
串励电机速度控制器。
型号:科蒂斯1221B串励电机速度控制器类型:24-36 V, 600 A;36-48 V, 550 A;48-72 V, 500 A适用范围:是多种工业电动车辆的理想选择。
广泛应用于电动搬运车、电动装载车、物料搬运车、高尔夫球车以及其他小型串励电机设备应用场合。
APPLICATION NOTES船舶市场改造方案 2009年12月,第一期巴斯勒电气数字式电压调节器DECS-100替换COSIMAT N+型调压器船舶市场介绍早期船舶市场随AVK 发电机一起进来的大多数配套COSIMAT N+调压器。
COSIMAT N+是一款模拟式调压器,开发年代比较久远。
随着船舶市场日新月异的发展,大量变频负载的广泛使用,广大客户对船用AVR 的性能要求越来越高,COSIMAT N+由于其自身的发展,并且目前市场上备件购买困难,已无法满足客户的需求。
巴斯勒电气(苏州)有限公司通过专业的技术分析,多次的现场试验数据采集,长时间性能对比试验等,提出可靠的替代方案。
即用高性能、数字式电压调节器DECS-100替代COSIMAT N+。
DECS-100是一款数字式的电压调节器,IGBT 控制,宽频输入,有效值检测,抗谐波干扰能力强,适合船上变频负载的使用。
并且改造起来极其方便,在不改动发电机外部任何接线的前提下,进行完全覆盖。
巴斯勒电气数字式励磁调压器DECS-100功能描述:1、 励磁控制单元:额定输出为7Adc@63Vdc ;2、 四种控制模式:自动电压调节(AVR),励磁电流调节(FCR),无功功率调节(VAR),功率因数调节(PF);3、 并车功能:DECS-100提供外部52L/M 接点,当接点打开时,启动DROOP(调差)功能。
DROOP 值可通过DECS-100软件设定,调试起来更便捷,可以很好的解决船上大量变频负载使用时无功不均的问题;4、 并网功能:DECS-100提供外部52J/K 接点,当节点打开并且软件功能同时激活时,启动VAR 或PF 功能。
并且可以通过软件设定,使并网后发电机运行在额定功率因数下;5、 发电机单机运行或并车运行时,DECS-100仅仅工作在自动电压调节(AVR)或者励磁电流调节(FCR)两种模式下。
当发电机与电网并联运行时,可以工作在无功功率调节(VAR)或功率因数调节(PF)模式下;6、 空载状态动态信息分析功能:此功能可以在发电机空载状态下,按一定比率提高或降低发电机的电压,并可记录发电机的波形。
TOSHIBA TRANSISTOR SILICON NPN TRIPLE DIFFUSED MESA TYPE2SC5858HORIZONTAL DEFLECTION OUTPUT FOR HDTV, DIGITAL TV, PROJECTION TVz High Voltage: V CBO = 1700 V z Low Saturation Voltage : V CE (sat) = 1.5 V (Max) z High Speed : t f(2) = 0.1 μs (Typ.)ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)CHARACTERISTIC SYMBOL RATING UNITCollector −Base Voltage V CBO 1700 V Collector −Emitter Voltage V CEO 750 V Emitter −Base Voltage V EBO5 V DC I C 22 Collector Current PulseI CP 44ABase CurrentI B 11 ACollector Power Dissipation P C 200 W Junction Temperature T j 150 °C Storage Temperature RangeT stg−55~150 °CNote: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change intemperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook(“Handling Precautions”/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).Unit: mmJEDEC ― JEITA ―TOSHIBA 2-21F2AWeight: 9.75 g (typ.)ELECTRICAL CHARACTERISTICS (Tc = 25°C)CHARACTERISTIC SYMBOL TEST CONDITION MIN TYP. MAX UNITCollector Cut −off Current I CBO V CB = 1700 V, I E = 0 ― ― 1 mA Emitter Cut −off CurrentI EBO V EB = 5 V, I C = 0 ― ― 100μACollector − Emitter Breakdown VoltageV (BR) CEO I C = 10 mA, I B = 0 750 ―― Vh FE (1)V CE = 5 V, I C = 2 A 30 ― 60 h FE (2) V CE = 5 V, I C = 8 A 11 ― 19 DC Current Gainh FE (3)V CE = 5 V, I C = 17 A 5 ― 7.5 ― Collector −Emitter Saturation Voltage V CE (sat) I C = 17 A, I B = 4.25 A ―― 1.5 VBase −Emitter Saturation Voltage V BE (sat) I C = 17 A, I B = 4.25 A ― 1.0 1.5 V Transition Frequency f T V CE = 10 V, I C = 0.1 A ― 2 ― MHz Collector Output CapacitanceC ob V CB = 10 V, I E = 0, f = 1 MHz ― 280 ― pF Storage Timet stg(1) ― 4.5 ― Fall Time t f(1) I CP = 9 A , I B1 (end) = 1.4 Af H = 32 kHz―0.1―μsStorage Time t stg(2) ― 3.5 ― Switching TimeFall Timet f(2)I CP = 8 A, I B1 (end) = 1.2 A f H = 45 kHz―0.1―μsCollector-emitter voltage V CE (V)I C – V CEC o l l e c t or c u r r e n t I C (A )Collector current I C (A)h FE – I CD C c u r r e n t g a i n h F E0.010.1 10 100 1C o l l e c t o r c u r r e n t I C (A )Base −emitter voltage V BE (V)I C – V BE0.2 0.4 0.6 1.21.00.8 10 02 4 6 8 10Collector current I C (A)V CE (sat) – I CC o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V C E (s a t ) (V )1001100.10.01101Collector current I C (A)V CE (sat) – I CC o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V C E (s a t ) (V )100.10.0111001 10Base current I B (A)V CE – I BC o l l e c t o r -e m i t t e r v o l t a g e V C E (V )0.8 1.6 Base current I B (A) V CE – I Bo l l e c t o r -e m i t t e r v o l t a g e V C E (V )4.00.8 1.6 3.22.4V CE(sat) – I CC o l l e c t o r-e m i t t e r s a t u r a t i o n v o l t a g e V C E (s a t ) (V )Collector current I C (A)0.01110.11010 100C o l l e c t o r -e m i t t e r v o l t a g e V C E (V )Base current I C (A)V CE – IB4.00.8 1.6 3.2 2.4C o l l e c t o r p o we r d i s s i p a t i o n P C (W )Case temperature Tc (°C)P C – Tc25 75 100 125 15050Collector-emitter voltage V CE (V)Reverse Bias – Safe Operating AreaC o l l e c t o r c u r r e n t I C (A )1000.10.001101000010 100 10.011000r th(j-c) – t wT r a n s i e n t t h e r m a l i m p e d a n c e (j u n c t i o n −c a s e ) r t h (j -c ) (°C /W )Pulse width t w(s)10μ1000100μ 1m 100m10100 10m1Collector-emitter voltage V CE (V)Safe Operating AreaC o l l e c t o r c u r r e n t I C (A )1100 100010RESTRICTIONS ON PRODUCT USE20070701-EN •The information contained herein is subject to change without notice.•TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk.•The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.• Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.。
KDC Series : SpecificationsOutputPower: Maximum 5, 10 or 15 KWVoltage: Line Regulation: < 0.1% of Range Load Regulation: < 0.1% of Range Accuracy: ± 0.05% Setting + 0.1% Range Transient Response: Voltage will recover to within 2% of voltage range within 2 msec fora 30 % load step.Stability: ± 0.05% of max. rating per 8 hoursafter 30 mins warmup at fixed line,load and temperature.CurrentLine Regulation: < 0.1% of RangeLoad Regulation: < 0.1% of Range Accuracy: ± 0.05% Setting + 0.1% Range Stability: ± 0.05% of setting after 8 hourwarmup at fixed line, load andtemperature.InputVoltage: 208 - 10 % to 230 + 10% VAC400 ± 10 % VAC480 ± 10 % VACAll inputs are L-L, 3 phase, 3- wire plussafety ground. Input rating must bespecified at time or order.Current RMS: Typical RMS current per phase atlow line input voltage.Power Factor: > 0.65Efficiency: > 85 % at full load.MeasurementsVoltageAccuracy: 0.05% + 0.1% Full Scale Resolution: 0.025% Full ScaleCurrentAccuracy: 0.1% + 0.2% Full Scale Resolution: 0.025% Full ScalePowerAccuracy: 0.2% + 0.3% Full Scale Resolution: 0.05% Full ScaleProtectionOver temperature, short circuit, over current protection, open sense.Controls and IndicatorControls: Dual digitally encoded rotary knobs,Function keys, Output on/off, Poweron/offIndicatorsDisplay: Alphanumeric LCD, dual line.LED’s for: Output on/off, CC mode, CV mode,CP mode and Remote.Remote ControlA standard RS232C is included with all KDC Series DC Power Supplies. An optional GPIB/IEEE-488 with analog RPV (0-10 VDC) input is available as well.RS232C / RS485 - Standard9 pin D-shell connector, 115200 baud max., SCPI syntax.-IF option:IEEE-488 InterfaceIEEE-488 (GPIB) talker listener.Subset: AH1, C0, DC1, DT1, L3, PP0, RL2,SH1, SR1, T6IEEE-488.2 SCPI syntaxAnalog interface:Voltage control: 0-10 VDC, 0-5 VDC or R for0-100% rangeCurrent control: 0-10 VDC, 0-5 VDC or R for0-100% rangeI/O Connectors: Analog I/O, 15 Pin D-sub, isolated Auxiliary I/IO, 9 Pin D-sub nonisolated. Functions:Remote Output On/OffTrigger InputFunction strobe out.Volt Monitor outCurrent Monitor out EnvironmentalTemperature CoefficientVoltage set point: 0.02%/°C of V Range Current set point: 0.03%/°C of I Range Ambient TemperatureOperating: 0° to 40° C / 32° to 104° F Storage: -40° to 75° C / -40° to 167° F HumidityOperating: 0 to 80% RH, non condensing CoolingForced air, side and top intake, rear exhaust.Power LevelVlow 5 kW10 kW15 kW187 V27 A54 A81 A360 V15 A30 A45 A432 V12 A24 A36 A© 2009 AMETEK Programmable Power All rights reserved. AMETEK Programmable Power is the trademark of AMETEK Inc., registered in the U.S. and other countries.Elgar, Sorensen, California Instruments, and Power Ten are trademarks of AMETEK Inc., registered in the U.S.64KDC Series : SpecificationsMechanicalDimensionsHeight: 5.25” / 133.35 mmWidth: 19” / 482.6 mmDepth: 22.19” / 563.3 mm excl. bus barsand cover 24.74” / 628.4 mm incl. busbars and coverWeight 15 KW 10 KW 5KWNet: 84 lbs. 70 lbs. 56 lbs.38.1 Kg 32 Kg 25.4 KgShipping (approx.): 110 lbs. 96 lbs. 82 lbs.50 Kg 44 Kg 37.2 KgRack MountingUnit must be supported by shelf or brackets when mounted in 19” cabinet. No provisions for rack slides are made on instrument.Ordering InformationModelAll KDC Series model numbers specify voltage and current range.KDC VVV-CCC-LLL-XX.VVV = VoltageCCC = CurrentLLL = Input Line VoltageXX = OptionsRefer to table shown for model numbers and configurations.Supplied withUser manual and programming manualon CD ROM.Windows GUI software on CD ROM.RS232C serial cable.Options-IF GPIB / IEEE-488 interface and analog remote voltage programming option.Ordering Examples:Model DescriptionKDC 50-200-208 Output voltage 50 Vdc,maximum current is200 Adc, line input is 208V line to line, three phase.Includes standard RS232Cremote interface.KDC 80-187-400-IF Output voltage 80 Vdc,maximum current is 187Adc, line input is 400 V lineto line, three phase. Includesoptional IEEE/RS232 andanalog interfaces.XDS Series ProductsFor applications requiring only basic controller functions but similar power levels and voltage ranges as the KDC Series, refer to the Argantix XDS Series.KDC Series - Models¹ModelOutputRMS Noise & Ripple (Typ.) KW Volts AmpsKDC 30-167530166.715 mVKDC 30-3331030333.315 mVKDC 30-500153050015 mVKDC 50-10055010015 mVKDC 50-200105020015 mVKDC 50-300155030015 mVKDC 80-6258062.525 mVKDC 80-125108012525 mVKDC 80-1871580187.525 mVKDC 100-5051005025 mVKDC 100-1001010010025 mVKDC 100-1501510015025 mVKDC 150-33515033.325 mVKDC 150-661015066.725 mVKDC 150-1001515010025 mVKDC 300-17530016.7100 mVKDC 300-331030033.3100 mVKDC 300-501530050100 mVKDC 600-856008.3250 mVKDC 600-171060016.7250 mVKDC 600-251560025250 mVNote 1: Contact factory for availability of models with output voltage ranges not listed here.5–15 kW858.458.0223sales@65。
SCD8000/8100 Temperature ControllerInstruction SheetThank you very much for choosing SCD8000/8100 series temperature controller. Please read this instruction sheet carefully before using your SCD8000/8100 to ensure proper operation. Keep this instruction sheet handy for quick reference.!1Precaution!DANGER! CAUTION! ELECTRIC SHOCK!SCD8000/8100 is an OPEN-TYPE device and therefore should be installed in an enclosure free of airborne dust, humidity, electric shock and vibration. The enclosure should prevent non-maintenance staff from operating the device (e.g. key or specific tools are required for opening the enclosure) in case danger and damage on the device may occur .1. Prevent dust or metallic debris from falling into the device and cause malfunctions. DO NOT modify or uninstall the circuitboard of SCD8000/8100 without being permitted. DO NOT use empty terminals. 2. Keep away from high-voltage and high-frequency environment during the installation in case of interference. Prevent usingthe device in premises which contain:(a) dust or corrosive gas; (b) high humidity and high radiation; (c) shock and vibration. 3. The power has to be switched off when wiring or changing the temperature sensor.4. When installing the circuit board of the accessory, please make sure the power of the main unit is switched off and insertthe accessory into the correct slot on the main unit. 5. Make sure to use compensation wire which matches the thermocouple or platinum resistance when extending orconnecting the thermocouple or platinum resistance.6. Keep the wire as short as possible when wiring a sensor to the controller. Separate the power cable and load wire in orderto prevent interference and induced noise. 7. Make sure the power cables and signal device are installed correctly before switching on the power; otherwise seriousdamage may occur. 8. DO NOT touch the terminal or repair the device when the power is on; otherwise an electric shock may occur.9. Please wait for 1 minute after the power is switched off to allow the capacitor to discharge and DO NOT touch the internalwiring within this period. 10. DO NOT touch the internal terminal when SCD8000/8100 is either switched on or off in case you may damage the circuit. 11. Please place SCD8000/8100 with other heating objects (e.g. power supply) within proper distance while installingSCD8000/8100.2Power input DC 24V, isolated switching power supply Voltage range 90% ~ 110% rated voltagePower consumption Max. 10W + 3W × number of SCD2000 controllers connected in parallel (Max. 7) Thermocouple: K, J, T, E, N, R, S, B, L, U, TXK Input sensor Platinum resistance: Pt100, JPt100, Cu50Sampling cycle Thermocouple or platinum resistance: 1.0 second/all input Control method PID, PID programmable, manual, ON/OFFRelay output: SPST, Max. AC 250V load, 3A resistive load Voltage pulse output: DC 24V, Max. 40mA current outputCurrent output: DC 4 ~ 20mA output (resistive load < 500Ω); for OUT1 and OUT2 only Output accessories (optional)Analog voltage output: 0 ~ 10V (resistive load > 1,000Ω); for OUT1 and OUT2 onlyOutput functions Control output, alarm output or proportional output (proportional output is only applicable in themodel with linear voltage and current output for OUT1, OUT2) Alarm modes12 alarm modes availableCommunicationRS-485 digital communication; supports baud rate 2,400bps ~ 115,200bps Communication protocol Supports Modbus ASCII/RTUExtension port The extension port transmits 24V power supply and communication signals to extension module SCD2000.Vibration resistance 10 ~ 55Hz 10m/s 23 axes 10minsShock resistance Max. 300m/s 23 axes 6 directions, 3 times each Ambient temperature 0°C ~ +50°C Storage temperature -20°C ~ +65°C Operation altitude < 2,000mAmbient humidity 35% to 85% RH (non-condensing) Pollution degree23SCD8000/81001 I/O terminals2 Status LED 3Display and setup unit4 DIN rail clip5 Power input port6 RS-485 communication port 7Extension module fixing clip8 Extension port4 Panel Layout5InputThe standard SCD8000/8100 main unit is attached with 4 channels of inputs. You can purchase additional SCD-4T or SCD-4Rto expand the number of input channels. SCD8000/8100 supports maximum 8 channels of inputs which belong to group INA and group INB. Each group possesses 4 input channels. SCD8000/8100 series supports the following input sensors:Input Sensor TypeRegister ValueRangeFor SCD8100 / SCD-4RTemperature measurement resistance (Cu50)13 -50 ~ 150°C Platinum resistance (Pt100)12 -200 ~ 600°C Platinum resistance (JPt100) 11-20 ~ 400°C For SCD8000 / SCD-4TThermocouple TXK type 10-200 ~ 800°C Thermocouple U type 9 -200 ~ 500°C Thermocouple L type 8 -200 ~ 850°C Thermocouple B type 7 100 ~ 1,800°C Thermocouple S type 6 0 ~ 1,700°C Thermocouple R type 5 0 ~ 1,700°C Thermocouple N type 4 -200 ~ 1,300°C Thermocouple E type 3 0 ~ 600°C Thermocouple T type 2 -200 ~ 400°C Thermocouple J type 1 -100 ~ 1,200°C Thermocouple K type-200 ~ 1,300°CNote: The default setting in SCD8000 is “thermocouple K type”. The default setting in SCD8100 is “Pt100".Communication address: Input sensor types at H10A0 ~ H10A7; input upper limits at H1010 ~ H1017; input lower limits atH1018 ~ H101F.6OutputSCD8000/8100 supports maximum 16 channels of outputs, belonging to output groups OUT1, OUT2, SUB1 and SUB2, each group with 4 channels. See the explanations below for how input channels correspond to output groups.Without group INB (4 channels of input): Every channel corresponds to 2 groups of output and 2 groups of alarms. OUT1 and SUB1 are for control output, and OUT1 can be used for proportional output. OUT2 and SUB2 are fixed for alarm output. With group INB (8 channels of input): Every channel is paired with 2 groups of outputs. OUT1 and OUT2 are used for control output or proportional output of CH1 ~ CH8. SUB1 and SUB2 are used for control output or alarm output. See Table 1 for the relations between input and output.4 channels of input 8 channels of inputOutput GroupINA (CH1 ~ CH4)INA (CH1 ~ CH4)INB (CH5 ~ CH8) OUT1 Main control output or proportional output Main control output or proportionaloutputNo corresponding output OUT2 Alarm 1 output No corresponding output Main control output or proportionaloutputSUB1 Control output Control output or alarm output No corresponding output SUB2Alarm 2 outputNo corresponding output Control output or alarm outputTable 1Note: SUB1 and SUB2 do not support SCD-46 and SCD-45. Please install the optional output modules you purchase intothe correct slot.Communication Address of Output & How to Set up Parameters:See Table 2 for the communication addresses of output and Table 3 for the definition of the value in the address. INAINBCH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 OUT1, OUT2 H10A8 H10A9 H10AA H10AB H10AC H10AD H10AE H10AF SUB1, SUB2H10B0H10B1H10B2H10B3H10B4H10B5H10B6H10B7Table 2Value = 0Value = 1 Value = 2 Value = 3 OUT1, OUT2** Heating control Cooling control Proportional output Disable output SUB1, SUB2**Heating controlCooling controlAlarm output*Disable outputTable 3*When there are only 4 channels of inputs, SUB1 cannot be used for alarm output but heating/cooling control only.**When there are only 4 channels of inputs, OUT2 and SUB2 cannot be set up by the user but set up automatically as "alarmoutput” by the controller. Control Output:SCD8000/8100 offers PID control, ON/OFF control, manual control and programmable PID control. Control output methods are set at address H10B8 ~ H10BF (default = 0: PID), PID parameters at H1028 ~ H105F, ON/OFF parameters at H1058 ~ H106F, and manual control parameters at H1070 ~ H107F. Alarm Output:SCD8000/8100 offers 12 alarm modes. The alarm modes are set up at address H10C0 ~ H10C7, upper limits at H1080 ~ H1087 and lower limits at H1088 ~ H108F.7LED DisplayPWR: On B SCD8000/8100 is powered. RUN: On B Any of the channel is executing. COM: Flashing B Communication in progress ERR: Indicating errors (red)ERR LED is on indicates one of the following errors occur, and the output has to be disabled. 1. Memory EEPROM error.2. Any of the input points is not connected.3. Any of the input points exceeds the setup range.4. Any of the input temperatures has not been stabilized.8Synchronous Communication Protocol & Auto ID SetupThis function allows the auto setup of communication protocol in extension module SCD2000 following the communicationprotocol set in the SCD8000 main unit. The station IDs of SCD2000 decrease. See below for the steps. 1. Set the auto communication ID of SCD8000 as “1” (communication address: H10F8).2. Switch off SCD8000. Connect SCD8000 with extension module SCD2000 and switch on SCD8000 again.3. Default communication protocol: 9,600bps, 7 bits, Even, 1 stop bit, communication address = 01.4. This function will consume 3 ~ 5 seconds more when you switch on SCD8000.9RS-485 Communication1. SCD8000/8100 supports baud rates 2,400/4,800/9,600/19,200/38,400/57,600/115,200 bps and does not supportcommunication format 7, N, 1/8, E, 2/8, O, 2. Communication protocol = Modbus ASCII or RTU. 2. Function codes: H03 = read maximum 8 words in the register; H06 = write 1 word into the register.3. Address and contents: Every parameter has 2 communication addresses. One is numbered by the function of the parameter, and the other is by the order of channel (as shown in the table below).Content Explanation CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 Presenttemperature value/input error code Unit; 0.1See Table 5H1000(H1100)H1001(H1200)H1002(H1300)H1003(H1400)H1004(H1500)H1005(H1600)H1006(H1700)H1007(H1800)Set temperature value Unit: 0.1H1008(H1101)H1009(H1201)H100A(H1301)H100B(H1401)H100C(H1501)H100D(H1601)H100E(H1701)H100F(H1801)Max. temperature value Disabled when higherthan default valueH1010(H1102)H1011(H1202)H1012(H1302)H1013(H1402)H1014(H1502)H1015(H1602)H1016(H1702)H1017(H1802)Min. temperature value Disabled when lowerthan default valueH1018(H1103)H1019(H1203)H101A(H1303)H101B(H1403)H101C(H1503)H101D(H1603)H101E(H1703)H101F(H1803)Error temperature value -999 ~ +999Unit: 0.1°CH1020(H1104)H1021(H1204)H1022(H1304)H1023(H1404)H1024(H1504)H1025(H1604)H1026(H1704)H1027(H1804)Proportional band value (Pb) 0 ~ 9,999Unit: 0.1H1028(H1105)H1029(H1205)H102A(H1305)H102B(H1405)H102C(H1505)H102D(H1605)H102E(H1705)H102F(H1805)Ti value 0 ~ 9,999H1030(H1106)H1031(H1206)H1032(H1306)H1033(H1406)H1034(H1506)H1035(H1606)H1036(H1706)H1037(H1806)Td value 0 ~ 9,999H1038(H1107)H1039(H1207)H103A(H1307)H103B(H1407)H103C(H1507)H103D(H1607)H103E(H1707)H103F(H1807)Integration default 0.0 ~ 100.0%Unit: 0.1%H1040(H1108)H1041(H1208)H1042(H1308)H1043(H1408)H1044(H1508)H1045(H1608)H1046(H1708)H1010(H1808)Proportional control offset error value, when Ti = 0 0.0 ~ 100.0%Unit: 0.1%H1048(H1109)H1049(H1209)H104A(H1309)H104B(H1409)H104C(H1509)H104D(H1609)H104E(H1709)H104F(H1809)Proportional band coefficient of output 1 and output 2 0.01 ~ 99.99Unit: 0.01H1050(H110A)H1051(H120A)H1052(H130A)H1053(H140A)H1054(H150A)H1055(H160A)H1056(H170A)H1057(H180A)Dead band ofcontrol output 1 & output 2. -99.9 ~ 999.9H1058(H110B)H1059(H120B)H105A(H130B)H105B(H140B)H105C(H150B)H105D(H160B)H105E(H170B)H105F(H180B)Hysteresis for output 1 0 ~ 9,999Unit: 0.1%H1060(H110C)H1061(H120C)H1062(H130C)H1063(H140C)H1064(H150C)H1065(H160C)H1066(H170C)H1067(H180C)Hysteresis for output 2 0 ~ 9,999Unit: 0.1%H1068(H110D)H1069(H120D)H106A(H130D)H106B(H140D)H106C(H150D)H106D(H160D)H106E(H170D)H106F(H180D)Read/write output 1 value Unit: 0.1 %H1070(H110E)H1071(H120E)H1072(H130E)H1073(H140E)H1074(H150E)H1075(H160E)H1076(H170E)H1077(H180E)Read/write output 2 value Unit: 0.1 %H1078(H110F)H1079(H120F)H107A(H130F)H107B(H140F)H107C(H150F)H107D(H160F)H107E(H170F)H107F(H180F)Upper limit for alarm output Alarm enabledwhen temperatureexceeds upper limitH1080(H1110)H1081(1210)H1082(H1310)H1083(H1410)H1084(H1510)H1085(H1610)H1086(H1710)H1087(H1810)Lower limit for alarm output Alarm enabledwhen temperaturefalls below lowerlimitH1088(H1111)H1089(H1211)H108A(H1311)H108B(H1411)H108C(H1511)H108D(H1611)H108E(H1711)H108F(H1811)Tuning for upper limit of analog output Current (4 ~ 20mA)or voltage outputtuningH1090(H1112)H1091(H1212)H1092(H1312)H1093(H1412)H1094(H1512)H1095(H1612)H1096(H1712)H1097(H1812)Tuning for lower limit of analog output Current (4 ~ 20mA)or voltage outputtuningH1098(H1113)H1099(H1213)H109A(H1313)H109B(H1413)H109C(H1513)H109D(H1613)H109E(H1713)H109F(H1813)Input sensor type See “Input” section H10A0(H1114)H10A1(H1214)H10A2(H1314)H10A3(H1414)H10A4(H1514)H10A5(H1614)H10A6(H1714)H10A7(H1814)Output function for output 1 0: heating1: cooling2: proportionaloutputH10A8(H1115)H10A9(H1215)H10AA(H1315)H10AB(H1415)H10AC(H1515)H10AD(H1615)H10AE(H1715)H10AF(H1815)Output function for output 2 0: heating (default)1: cooling2: alarmH10B0(H1116)H10B1(H1216)H10B2(H1316)H10B3(H1416)H10B4(H1516)H10B5(H1616)H10B6(H1716)H10B7(H1816)Control method 0: PID1: ON-OFF2: manual3: PIDprogrammableH10B8(H1117)H10B9(H1217)H10BA(H1317)H10BB(H1417)H10BC(H1517)H10BD(H1617)H10BE(H1717)H10BF(H1817)Alarm 1 output mode See “Alarm Output”sectionH10C0(H1118)H10C1(H1218)H10C2(H1318)H10C3(H1418)H10C4(H1518)H10C5(H1618)H10C6(H1718)H10C7(H1818)Alarm 2 output mode See “Alarm Output”sectionH10C4(H1518)H10C5(H1618)H10C6(H1718)H10C7(H1818)Heating/cooling cycle for output 1 1 ~ 99 seconds0 = 0.5 secondH10C8(H1119)H10C9(H1219)H10CA(H1319)H10CB(H1419)H10CC(H1519)H10CD(H1619)H10CE(H1719)H10CF(H1819)Heating/cooling cycle for output 2 1 ~ 99 seconds0 = 0.5 secondH10D0(H111A)H10D1(H121A)H10D2(H131A)H10D3(H141A)H10D4(H151A)H10D5(H161A)H10D6(H171A)H10D7(H181A)Run/Stop the control 0: stop1: executing2: program stops3: program pausesH10D8(H111B)H10D9(H121B)H10DA(H131B)H10DB(H141B)H10DC(H151B)H10DD(H161B)H10DE(H171B)H10DF(H181B)Status of PID auto-tuning 0: stop1: executingH10E0(H111C)H10E1(H121C)H10E2(H131C)H10E3(H141C)H10E4(H151C)H10E5(H161C)H10E6(H171C)H10E7(H181C)Positive/negative proportional 0: positive1: negative (slope)H10E8(H111D)H10E9(H121D)H10EA(H131D)H10EB(H141D)H10EC(H151D)H10ED(H161D)H10EE(H171D)H10EF(H181D)Content Explanation CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8outputOther statuses Other statusesH10F0TemperatureunitH10F1Open specialfunction(H1234)H10F2Return todefault(H1357)H10F3ReservedH10F4ReservedH10F5ReservedH10F6ReservedH10F7ReservedCommunicationspecificationsSee Table 4H10F8Auto IDsetupH10F9ReservedH10FABaud rateH10FBASCII = 0RTU = 1H10FC8 bits=07 bits=1H10FD2 stop=01 stop=1H10FEParityH10FFAddress1 ~ 247Communication Parameter Setting:Content 0 1 2 3 4 5 6Baud rate 2,400bps 4,800bps 9,600bps 19,200bps 38,400bps 57,600bps 115,200bpsParity bit None (N) Even (E) Odd (O)Table 4Error Codes:The error codes can be read from address H1000 ~ H1007. When the input operation is in normal status, H1000 ~ H1007 arefor input values. When input error occurs (except for stable status and input exceeding the range), SCD8000/8100 will readerror codes in H8001 ~ H8002.H1000 ErrordescriptionH8001 EEPROM cannot be written in.H8002 Input sensor is not connected.H8003 Group INB is not connected.Table 5Analog output current tuning scale: 1μA/scaleAnalog output voltage tuning scale: 1mV/scaleReturning to Default Value: Write H1234 into address H10F1 and H1357 into address H10F2. Restart SCD8000/8100.Programmable Communication Parameter Setting:Content Explanation CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8Read remaining time of the step Unit: sec H111E H121E H131E H141E H151E H161EH171EH181ERead remaining time of the step Unit: min H111F H121F H131F H141F H151F H161F H171F H181FRead the NO. of the currentpattern0 ~ 7 H1120 H1220 H1320 H1420 H1520 H1620 H1720 H1820Read the NO. of the current step 0 ~ 7 H1121 H1221 H1321 H1421 H1521 H1621 H1721 H1821NO. of start pattern 0 ~ 7 H1122 H1222 H1322 H1422 H1522 H1622 H1722 H1822NO. of start step 0 ~ 7 H1123 H1223 H1323 H1423 H1523 H1623 H1723 H1823Programmable Parameter Setting:Content ExplanationPatternPattern1Pattern2Pattern3Pattern4Pattern5Pattern6Pattern7Max. number ofsteps in the pattern0 ~ 7 = N: The patternexecutes from step 0 toN.H2068 H2069 H206A H206B H206C H206D H206E H206FNumber of cycles ofpattern 0 ~ 7execution0 ~ 199: The patternhas been executed for 1~ 200 timesH2070 H2071 H2072 H2073 H2074 H2075 H2076 H2077NO. of current linkpattern0 ~ 8: 8 refers to end ofprogram; 0 ~ 7 refer tothe NO. of next patternH2078 H2079 H207A H207B H207C H207D H207E H207FAddress Default Content Explanation2000H ~ 203FH 0Target temperatures for pattern 0 ~ 7Pattern 0: 2000H ~ 2007HUnit: 0.1°C2080H ~ 20BFH 0Execution time for pattern 0 ~ 7Pattern 0: 2080H ~ 2087HTime: 0 ~ 900 (Unit: 1 min)4. Communication format: H03 = read bit data; H06 = write bit dataASCII Mode:Read Command Read Response Message Write Command Write Response MessageStart word ’:’ Start word ’:’ Start word ’:’ Start word ’:’Machine address 1 ‘0’ Machine address 1 ‘0’ Machine address 1 ‘0’ Machine address 1 ‘0’Machine address 0 ‘1’ Machine address 0 ‘1’ Machine address 0 ‘1’ Machine address 0 ‘1’Command 1 ‘0’ Command 1 ‘0’ Command 1 ‘0’ Command 1 ‘0’Command 0 ‘3’ Command 0 ‘3’ Command 0 ‘6’ Command 0 ‘6’‘1’ ‘0’ ‘1’ ‘1’‘0’Length of responsedata (byte) ‘4’ ‘0’ ‘0’‘0’ ‘0’ ‘0’ ‘0’Read start address ofdata/bit‘0’ ‘1’Data address‘1’Data address‘1’‘0’ ‘F’ ‘0’ ‘0’Read length of data/bit(word/bit) ‘0’Data content in H1000‘4’Write data content‘3’Write data content‘3’Read Command Read Response Message Write Command Write Response Message‘0’ ‘0’ ‘E’ ‘E’‘2’ ‘0’ ‘8’ ‘8’LRC1 check ‘E’ ‘0’ LRC1 check ‘F’ LRC1 check ‘F’LRC0 check ‘A’Data content in H1001‘0’ LRC0 check ‘D’ LRC0 check ‘D’End word 1 CR LRC1 check ‘0’ End word 1 CR End word 1 CREnd word 0 LF LRC0 check ‘3’ End word 0 LF End word 0 LFEndword1CREndwordLFLRC Check:Sum up the contents from “machine address” to “data content”, e.g. H01 + H03 + H10 + H00 + H00 + H02 = H16. Obtain2’scomplement H EA.RTU Mode:Read Command Read Response Message Write Command Write Response MessageMachine address H01 Machine address H01 Machineaddress H01 Machineaddress H01Command H03 Command H03 Command H06 Command H06H10 H10 H10Read start address ofdata H00Length of responsedata (byte)H04 Write data addressH01Write data addressH01H00 H01 H03 H03Read length of data(bit/word) H02Data content 1HF4Write data contentH20Write data contentH20CRC low byte HC0 H03 CRClowbyte HDD CRC low byte HDDCRC high byte HCBData content 2H20 CRC high byte HE2 CRC high byte HE2CRClowbyteHBBCRC high byte H15CRC (Cyclical Redundancy Check) is obtained by the following steps:unsigned int reg_crc = 0xffff;i = 0;while (length--){ reg_crc ^=RTUData[i];i ++;for (j = 0; j < 8; j++){ if (reg_crc & 0x01) reg_crc =(reg_crc >> 1) ^ 0xA001;else reg_crc = reg_crc >> 1;}}return(reg_crc);Software for Setting up Communication on PC: Download the free software on Dwyer’s website.10Connect maximum 7 SCD2000 controllers to SCD8000 by using DIN rail.。
东莞市康尔信电力系统有限公司CP203S144/ 180 (kW/kVA)50H z , 230V/400V, COS ¢0.8CP180162/ 203 (kW/kVA)备注:型号CP180适用于主用电源,为变动负载提供连续电力供应,每年运行时间不受限制。
有10%的过载运行能力。
型号CP203S 适用于每年运行时间不超过500小时备用应急电源,为变动负载提供连续电力供应,机组功率已调至最大,因而不允许过载运行。
伯琼斯(柴油发动机Perkins )四冲程水冷废气涡轮增压中冷,,,2000系列采用先进的发动机控制模块 ECM 电子燃油喷射,产品系列齐全包括7到2000KWe,散热器风扇整机配套的发电用发动机 Electropak,排放优化达到欧供体EC stage 2 标准和美国环保局EPA标准,燃油消耗低,噪音低Perkins康尔信/底特律(DDC)柴油发电机组技术参数型号数据更改,恕不另行通知利莱森玛(LEROYSOMER )发电机结构紧凑、噪声低、可靠性高2/3节距低电抗绕组绝缘等级H级专利技术的AREP附加绕组励磁系统突加负载时瞬态电压跌落少监测发动机、发电机运行状态提供机组报警及状态信息短路电流能力300%IN 10s 非线性负载电压波形畸变小启动电机能力强负载缓冲功能减少负载突变时对发动机的冲击机械超速能力高控制系统基于微处理器设计的智能控制器实时显示发动机、发电机运行参数实时时钟多重维护保养日程安排可编程设定的事件日志与电喷型发动机CAN 通讯充电电机监测、与电池电压监测蓄电池市电浮充功能发电机效率高抗电磁干扰能力强康尔信/伯琼斯(Perkins)柴油发电机组基本特征LCD 显示器康尔信柴油发电机组400系列紧凑型发动机采用小巧而紧凑的设计,1300系列配有"全权"发动机电子管理系统和液压驱动电子控制燃油喷嘴4000系列内置一个独立工作的燃油喷油器更能节省燃油的消耗,C2010/07V01康尔信柴油发电机组严格按标准进行设计、生产和测试,足 恶劣环境下可靠使用,机组符合以下标准:GB/T2820-2009,GB1105,YD/T502-2007,ISO8528,ISO3046满发动机性能参数交流同步发电机性能参数类型励磁系统定子转子绝缘等级防护等级随机附件及资料工业型消声器波纹管连接法兰排烟管弯头随机工具铅酸蓄电池及连线无刷励磁,4极旋转磁场AREP 附加绕组励磁系统2/3节距低电抗绕组单轴承,弹性驱动片直接联结H 级绝缘IP23防护等级冷却方式电压波形畸变率(THD )电话干扰因数(TIF )电话谐波因数(THF )超速能力发动机原厂文件发电机原厂文件机组操作及维护说明书机组测试报告、合格证控制系统电气原理图可选件发动机配电系统可选机型冷却系统发电机空气开关燃油系统控制系统其它附件水套预热器润滑油手摇泵润滑油自动补给装置重载空气滤清器自动切换柜(ATS)并联柜电容补偿柜50℃环境温度水箱远置式散热水箱热交换器防雨型机组静音型机组集装箱式机组移动式电站拖车式电站防冷凝加热器定子温度传感器轴承温度传感器永磁机(PMG)4极空气开关日用油箱油水分离器柴油自动补给装置低油位报警装置三遥控制屏全自动并机控制屏市电失压继电器接地故障继电器住宅型消声器冷却水塔数字式调压板免维护蓄电池镍镉蓄电池类型四冲程、往复式水冷进气方式涡轮增压,空空中冷或水空中冷喷油控制方式机械调速,电子调速,电子管理控制系统空气滤清器燃油滤清器机油滤清器冷却系统自带风扇水箱冷却,内置循环水泵排放标准达到欧供体EC stage2标准和美国EPA 标准缸体铸铁缸体,直列式启动系统自带风扇通风≤3%<50<2%2250 rpm充电电机28V 直流充电电机带进气阻力指示器的干式空气滤清器旋装式燃油滤清器旋装式全流滤清器24V 直流电机启动专业品牌 全球信赖设备说明满足无人值守自动化机组的基本配置满足无人值守及需要远程监控自动化机组满足多机组自动并机运行的自动化机组DSE 7220控制模块用于电调或非电调的柴油发动机和天燃气发动机的启动和停机控制控制器操作简单,菜单界面更具友好性,简洁清晰提供实时时钟,以提高事件和性能监测屏幕上可以全中文显示发电机组的各项参数信息可以监测市电,市电异常时,发电机组能自动启动可自动/手动启动发电机组,并控制市电/发电机组相互切换具有CAN 线通讯功能,能直接读取电喷发动机模块参数可通过面板按键设定常用参数可以显示监测发电机的过压/欠压,过流,超频/低频,超速/欠速,充电失败,急停,低油压,发动机温度高,启动失败,蓄电池电压过高/过低,停机失效,发电机短路保护,逆功率,发电机相位旋转错误,接地保护,传感器信号丢失报警等DSE 7320控制模块具有全中文LCD 显示参数可以监测市电可自动,手动启动发电机组并控制市电/发电机相互切换提供USB ,RS 232和RS 485接口以及专用DSENet® 扩展设备连接端口提供开放式ModBus 通讯协议,电脑监控完全实现三遥(遥信,遥测,遥控)功能操作简单,界面清晰提供实时时钟,以提高事件和性能监测以太网的通讯方式可降低监控成本预保养功能可在发动机发生大的故障之前检测到零部件的缺陷可以显示监测发电机的过压/欠压,过流,超频/低频,超速/欠速,充电失败,急停,低油压,发动机温度高,启动失败,蓄电池电压过高/过低,停机失效,发电机短路保护,逆功率,发电机相位旋转错误,接地保护,传感器信号丢失报警等DSE 7510控制模块用于电调和非电调的柴油和天燃气发电机组的并联和负载分配依靠内置的同步指示器和并联输出母排来实现自动同可直接连接常用的调速器(GOV )和自动电压调节器(AVR)最多支持16台发电机组和16路市电并联,一个系统内最多可支持20路电源供应提供更先进的发动机监控和保护功能可以监测发电机的过压/欠压,过流,超频/低频,超速/欠速,充电失败,急停,低油压,发电机相位旋转错误,接地保护,负相序停机保护和励磁损失具有CAN 线通讯功能,能直接读取电喷发动机模块参数具有RS 232/RS 485通讯接口,提供开放式ModBus 通讯协议电脑监控,完全实现三遥(遥信,遥测,遥控)功能专业品牌 全球信赖发电机组控制系统数据清单型号数据更改,恕不另行通知康尔信(香港)投资有限公司电 话:*************地 址:广东省东莞市万江区上甲大洲工业区 手 机:134****7780网 址:www Email :***************东莞市康尔信电力系统有限公司专业品牌 全球信赖C2010/07V01排气温度℃:()冷却液总容量:升()最大排气背压kPa :()冷却方式:最小进/排风面积:()2m 额定燃油耗:(g/kwh )调速方式:供油方式:排气流量:/h 3()m 排风量:/h 3()m 润滑油总容量:(升)噪音dB (A )LP 7M 发电机品牌:额定容量:KW /KVA ()励磁系统:励磁方式:AVR 型号:接线方式:防护等级:绝缘等级:短路电流能力:机组型号:CP180 电压等级电压(V)电流(A)功率(KW/KVA)380/220400/230415/240308292282162/203高:(H )mm 净重:kg 14201360机组尺寸和重量长:(L)mm 宽:(W )mm 2400790380/220电压(V)电流(A)功率(KW/KVA)400/230415/240273260250144/180机组型号:CP203S 电压等级480168480.65/0.52116.5207机械电喷94SHUNT 可选AREP或PMG 无刷励磁三相四线R250IP23H300%(3In ):10s法国利莱森玛(LEROY SOMER )162/203162/203144/180144/180176410180。
SC03-300-174Release 174December 2022, Version 1.0Revision HistoryTable of Contents1.Introduction (5)1.1.ControlEdge RTU Overview (5)1.2.Document Scope (5)1.3.Definitions (6)2.Specifications (6)2.1.ControlEdge 2020 Controllers (6)2.1.1.Performance (7)2.1.2.Datalog Support (8)munication Capabilities (8)2.1.4.Watchdog (13)2.2.ControlEdge 2020 I/O Modules (13)2.2.1.Analog Input Channel Parameters (13)2.2.2.Analog Output Channel Parameters (14)2.2.3.Digital Input Channel Parameters (15)2.2.4.Digital Output Channel Parameters (15)2.2.5.Pulse Input Channel Parameters (16)2.2.6.Scalability Parameters (16)2.2.7.End Plates (17)2.2.8.Expansion Cable (17)2.3.Foundation Fieldbus I/O (17)2.4.Wireless I/O (18)2.5.Electronic Flow Metering (19)2.6.Applications (20)2.7.Simulation (20)2.8.ControlEdge Builder (20)2.8.1.ControlEdge Builder Capabilities (20)2.8.2.Function Block Libraries (21)2.8.3.ControlEdge Builder Hardware Requirements (22)2.9.General (23)2.9.1.Power Requirements (23)2.9.2.Power Consumption (23)2.9.3.Physical and Environment (24)2.10.Standards and Approvals (25)2.10.1.Hazardous Locations Approvals (25)2.10.2.CE Compliance Standards (27)2.10.3.Marine Certification (28)2.10.4.Security Certification (28)2.10.5.Other Standards (28)3.Model Numbers (28)3.1.Hardware (28)3.1.1.ControlEdge 2020 Platform (29)3.1.2.Series C Foundation Fieldbus Module (29)3.2.Software Licenses (29)3.2.1.Controller Resident (29)3.2.2.Configuration Tool Resident (30)1. IntroductionThis document provides technical information for ControlEdge ™ RTU. Further product descriptions can be found in the Product Information Note. Detailed planning, installation and configuration information is available in the product user guides.1.1. ControlEdge RTU OverviewControlEdge RTU is a modular, powerful and scalable process controller capable of all remote automation and control applications. It is designed to communicate with any SCADA system but when combined with Experion ® PKS and its radically simplified SCADA configuration with superior operator experience, it solves the most challenging remote automation requirements.Figure 1 – Sample RTU System Architecture1.2. Document ScopeThis document provides specifications for the following components: ControlEdge 2020 Platform Controllers and I/O Modules Wireless I/OFoundation Fieldbus I/O EFM I/OControlEdge Builder1.3.Definitions• IOTA, Input Output Termination Assembly : An assembly that holds the IOM and the connections for field wiring. The IOTA contains only passive devices.• IOM, Input Output Module : A device that contains most of the electronics required to perform a specific I/O function. The IOM plugs onto the IOTA.•CPM, Control Processor Module : A device that contains most of the electronics required to perform the function of a process controller. A CPM plugs onto an IOTA designed for the CPM. The CPM may optionally include the functionality of an IOM.• EFM, Electronic Flow Meter: Used for highly accurate custody transfer metering.2.Specifications2.1.ControlEdge 2020 ControllersControlEdge RTU has an innovative modular hardware design with processor modules that plug onto IOTAs that contain only passive devices such as cable connectors and an expansion I/O connector allowing expansion I/O modules to connect without any further infrastructure.Non-Redundant ControllerFigure 2 – Non Redundant Controller Hardware SummaryRedundant ControllerFigure 3 –Redundant Controller Hardware Summary2.1.1. Performance2.1.2.Datalog Support2.1.munication CapabilitiesRTUs need to efficiently manage unreliable, low bandwidth networks. They need to communicate as a responder device to a remote SCADA system, often over a redundant link on two different mediums, but also as a requestor to local subsystems like gas chromatographs and smart drives. ControlEdge RTU covers all the scenarios by supporting SCADA protocols such as Modbus and DNP3.EthernetSerialDNP3 ProtocolIEC60870-5 ProtocolModbus ProtocolEnron Modbus ProtocolMQTT / Sparkplug ProtocolUser Defined ProtocolCommunication SecurityHART-IP ProtocolUsed by Honeywell’s Field Device Manager for instrument asset management of ControlEdge RTU connected HART devices.2.1.4.Watchdog2.2. ControlEdge 2020 I/O Modules2020 I/O Modules come in two forms: onboard I/O and expansion I/O.Both the onboard I/O module and mixed I/O module have the following mix of I/O channels. Analog Input (HART) 8Analog Output (HART) 2Digital Input 10Digital Output 6Pulse Input (High Speed) or Digital Input 2Details of each type of I/O are listed in tables below.2.2.1.Analog Input Channel Parameters2.2.2.Analog Output Channel Parameters2.2.3.Digital Input Channel Parameters2.2.4.Digital Output Channel Parameters2.2.5.Pulse Input Channel Parameters2.2.6.Scalability Parameters2.2.7.End PlatesControlEdge 2020 expansion I/O modules are connected to the controller through a ring redundancy network which is terminated at the end of a row with a right end plate and Ethernet cable. Additional rows can be added and start with a left end plate and end with a right end plate.2.2.8.Expansion CableTo add additional rows of ControlEdge 2020 expansion I/O modules, Ethernet cables are connected between the left and right end plates to complete a ring network. The table below provides specifications for this cable.2.3. Foundation Fieldbus I/OControlEdge RTU supports Foundation Fieldbus I/O through the Series C Fieldbus Interface Module (FIM4).Refer to the Honeywell Series C FIM4 specification sheet for further Fieldbus Interface module hardware specification. Honeywell Field Device Manager can be used to manage fieldbus devices connected to ControlEdge RTU.2.4. Wireless I/OControlEdge RTU supports connecting ISA100 wireless devices to the controller via Honeywell Field Device Access Point (FDAP). FDAP is an ISA100.11a access device. These wireless devices appear as I/O to the controller.Wireless HART support is added where HART information from smart instruments can be accessed wirelessly.ItemSpecificationWireless device typeISA100, WirelessHART Maximum number of FDAP per controller4Maximum number of wireless devices per controller 25 for WirelessHART only; 25 for ISA100 only; 12 for WirelessHART and 12 for ISA100 when mixed .Please refer Honeywell FDAP specification for FDAP hardware specification. Honeywell’s Field Device Manager shall be used to manage FDAP, Wireless devices connected to ControlEdge RTU.2.5. Electronic Flow MeteringIn the oil & gas industry, Electronic Flow Metering (EFM) records and stores custody transfer information by accurately measuring and recording the energy transferred from one location to another location. ControlEdge RTU is designed to work as electronic flow metering device for gas and liquid. ItemSpecification StandardsAPI MPMS 21.1(Gas)API MPMS 21.2(Liquid) AER Directive 17Maximum number of meter runs4 (Non redundant controller) 12 Redundant ControllerProtocol to extract data logsEnron Modbus Responder (Serial / Ethernet) DNP3 (Ethernet)Note: Both Gas and Liquid meter runs can be executed together at the same time.Access Point (FDAP)2.6. ApplicationsApplications are ready to deploy, purpose built, control schemes. Users configure applications by completing a configuration wizard to set site specific parameters and I/O assignments.2.7. SimulationImprove your project schedule by simulating the controller.2.8. ControlEdge BuilderControlEdge Builder is configuration tool to design, configure, program and maintain your RTU investment.2.8.1.ControlEdge Builder Capabilities2.8.2.Function Block LibrariesControlEdge Builder provides a range of function block libraries.2.8.3.ControlEdge Builder Hardware Requirements2.9. General2.9.1.Power RequirementsPower is supplied to the controller and I/O modules through the power input terminals on the controller IOTA and the left end plate, (when used). The relevant specifications at each power input terminals are detailed below.2.9.2.Power ConsumptionThe tables below are provided for the purpose of sizing power systems. Three different scenarios are provided with each having various controller options configured. Select the scenario most suited and interpolate values when required.These tables only include power consumption data of the listed modules and do not include power consumption of any connected instruments, (transmitters, valves etc.), even if that power is provided through the I/O module terminals. Allow for instrument power consumption separately in your power system sizing calculations along with other components to be powered by the system, (e.g., network radio).Other hardware2.9.3.Physical and EnvironmentDimensions and WeightOtherUnless specified separately, all ControlEdge RTU hardware meets the following common specifications.2.10. Standards and Approvals2.10.1.Hazardous Locations ApprovalsUL StandardsCSA StandardsATEX/UKCA StandardsIEC Standards2.10.2.CE Compliance Standards Low Voltage Directive (LVD)Electromagnetic Compatibility (EMC) Directive2.10.3.Marine Certification2.10.4.Security Certification2.10.5.Other Standards3. Model Numbers3.1. HardwareTo simplify the ordering process, ControlEdge RTU has a limited number of model numbers to provide complete RTUs. For example, for one complete non-redundant Controller with Onboard Mixed I/O Module, only 1 model number is required, SC-UCMX02.3.1.1.ControlEdge 2020 Platform3.1.2.Series C Foundation Fieldbus Module3.2. Software Licenses3.2.1.Controller Resident3.2.2.Configuration Tool ResidentControlEdge RTU Specification Sheet, SC03-300-174 31Version 1.0Honeywell Proprietary December 2022Experion ® and ControlEdge ™ are trademarks of Honeywell International Inc.All other products and brand names shown are trademarks of their respective owners.This document contains Honeywell proprietary information. It is published for the sole usage of Hon eywell Process Solutions’customers and prospective customers worldwide. Information contained herein is to be used solely for the purpose submitted, and no part of this document or its contents shall be reproduced, published, or disclosed to a third party without the express permission of Honeywell International Inc.While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customer.In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice.SC03-300-174December 2022© 2023 Honeywell International Inc.For more informationTo learn more about Honeywell’s products or solutionsvisit our website or contact yourHoneywell account manager.Honeywell Process Solutions2101 CityWest Blvd,Houston, TX 77042, USAHoneywell House, Arlington Business Park,Bracknell, Berkshire, England RG12 1EB UK1EB Shanghai City Centre, 100 Junyi RoadShanghai, China 20051。
CS8190Precision Air-CoreTach/Speedo Driver with Return to ZeroThe CS8190 is specifically designed for use with air−core meter movements. The IC provides all the functions necessary for an analog tachometer or speedometer. The CS8190 takes a speed sensor input and generates sine and cosine related output signals to differentially drive an air−core meter.Many enhancements have been added over industry standard tachometer drivers such as the CS289 or LM1819. The output utilizes differential drivers which eliminates the need for a zener referenceand offers more torque. The device withstands 60 V transients which decreases the protection circuitry required. The device is also more precise than existing devices allowing for fewer trims and for use in a speedometer.Features•Direct Sensor Input•High Output Torque•Low Pointer Flutter•High Input Impedance•Overvoltage Protection•Return to Zero•Internally Fused Leads in PDIP−16 and SO−20W Packages •These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS CompliantPDIP−16NF SUFFIXCASE 648161BIASV CCSINE−COS−SINE+COS+GNDGNDGNDGNDV REGFREQ INF/V OUTSQ OUTCP−CP+PIN CONNECTIONS ANDMARKING DIAGRAM1SO−20WDWF SUFFIXCASE 751DSIN+COS+GNDGNDGNDGNDGNDGNDGNDGNDV REGFREQ INF/V OUTSQ OUTCP−CP+SIN−COS−BIASV CC1PDIP−16SO−20WA= Assembly LocationWL= Wafer LotYY= YearWW= Work WeekG= Pb−Free PackageCS8190ENF16AWLYYWWGSee detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.ORDERING INFORMATIONBIAS CP+SQ OUTFREQ INCOS+SINE−F/V OUT CP−V REGGNDSINE+Figure 1. Block DiagramGNDGNDGNDCOS−V CCABSOLUTE MAXIMUM RATINGSRatingValue Unit Supply Voltage, V CC < 100 ms Pulse TransientContinuous6024V V Operating Temperature −40 to +105°C Storage Temperature −40 to +165°C Junction Temperature −40 to +150°C ESD (Human Body Model)4.0kV Lead Temperature Soldering: Wave Solder (through hole styles only) (Note 1)Reflow: (SMD styles only) (Note 2)260 peak 230 peak°C °CStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.1.10 seconds maximum.2.60 second maximum above 183°C.SUPPLY VOLTAGE SECTIONI CC Supply Current V CC = 16 V, −40°C, No Load−50125mA V CC Normal Operation Range−8.513.116V INPUT COMPARATOR SECTIONPositive Input Threshold− 1.0 2.0 3.0V Input Hysteresis−200500−mV Input Bias Current (Note 3)0 V ≤ V IN≤ 8.0 V−−10−80m A Input Frequency Range−0−20kHz Input Voltage Range in series with 1.0 k W−1.0−V CC V Output V SAT (SQ OUT)I CC = 10 mA−0.150.40V Output Leakage (SQ OUT)V CC = 7.0 V−−10m A Low V CC Disable Threshold−7.08.08.5V Logic 0 Input Voltage− 1.0−−V VOLTAGE REGULATOR SECTIONOutput Voltage− 6.257.007.50V Output Load Current−−−10mA Output Load Regulation0 to 10 mA−1050mV Output Line Regulation8.5 V ≤V CC≤16 V−20150mV Power Supply Rejection V CC = 13.1 V, 1.0 V P/P 1.0 kHz3446−dB CHARGE PUMP SECTIONInverting Input Voltage− 1.5 2.0 2.5V Input Bias Current−−40150nA V BIAS Input Voltage− 1.5 2.0 2.5V Non Invert. Input Voltage I IN = 1.0 mA−0.7 1.1V Linearity (Note 4)@ 0, 87.5, 175, 262.5, + 350 Hz−0.100.28+0.70% F/V OUT Gain@ 350 Hz, C CP = 0.0033 m F, R T = 243 k W7.01013mV/Hz Norton Gain, Positive I IN = 15 m A0.9 1.0 1.1I/I Norton Gain, Negative I IN = 15 m A0.9 1.0 1.1I/I FUNCTION GENERATOR SECTION: −405C 3 T A3 855C, V CC = 13.1 V unless otherwise notedReturn to Zero Threshold T A = 25°C 5.2 6.07.0V Differential Drive Voltage, (V COS+ −V COS−)8.5 V ≤V CC≤16 V, q = 0° 5.5 6.57.5V Differential Drive Voltage, (V SIN+−V SIN−)8.5 V ≤V CC≤16 V, q = 90° 5.5 6.57.5V Differential Drive Voltage, (V COS+ −V COS−)8.5 V ≤V CC≤16 V, q = 180°−7.5−6.5−5.5V Differential Drive Voltage, (V SIN+ −V SIN−)8.5 V ≤V CC≤16 V, q = 270°−7.5−6.5−5.5V Differential Drive Current8.5 V ≤V CC≤16 V−3342mA Zero Hertz Output Angle−−1.50 1.5deg3.Input is clamped by an internal 12 V Zener.4.Applies to % of full scale (270°).FUNCTION GENERATOR SECTION: −405C 3 T A3 855C, V CC = 13.1 V unless otherwise noted (continued)Function Generator Error (Note 5) Reference Figures 2, 3, 4, 5V CC = 13.1 Vq = 0°to 305°−2.00+2.0degFunction Generator Error13.1 V ≤ V CC≤ 16 V−2.50+2.5deg Function Generator Error13.1 V ≤ V CC≤ 11 V−1.00+1.0deg Function Generator Error13.1 V ≤ V CC≤ 9.0 V−3.00+3.0deg Function Generator Error25°C ≤ T A≤ 80°C−3.00+3.0deg Function Generator Error25°C ≤ T A≤ 105°C−5.50+5.5deg Function Generator Error−40°C ≤ T A≤ 25°C−3.00+3.0deg Function Generator Gain T A = 25°C, q vs F/V OUT607795°/V 5.Deviation from nominal per Table 1 after calibration at 0° and 270°.PIN FUNCTION DESCRIPTIONPACKAGE PIN #PIN SYMBOL FUNCTION PDIP−16SO−20W11CP+Positive input to charge pump.22SQ OUT Buffered square wave output signal.33FREQ IN Speed or RPM input signal.4, 5, 12, 134−7, 14−17GND Ground Connections.68COS+Positive cosine output signal.79COS−Negative cosine output signal.810V CC Ignition or battery supply voltage.911BIAS Test point or zero adjustment.1012SIN−Negative sine output signal.1113SIN+Positive sine output signal.1418V REG Voltage regulator output.1519F/V OUT Output voltage proportional to input signal frequency.1620CP−Negative input to charge pump.TYPICAL PERFORMANCE CHARACTERISTICSFigure 2. Function Generator Output Voltage vs.Degrees of DeflectionFigure 3. Charge Pump Output Voltage vs.Output Angle45901351802252703154590135180225270315−7−6−5−4−3−2−10123456701234567F /V O u t p u t (V )Frequency/Output Angle (°)O u t p u t V o l t a g e (V )Degrees of Deflection (°)D e v i a t i o n (°)Theoretical Angle (°))Q +ARCTANFigure 4. Output Angle in Polar FormFigure 5. Nominal Output Deviation4590135180270315225−1.50−1.25−1.00−0.75−0.50−0.250.000.250.500.751.001.251.50Figure 6. Nominal Angle vs. Ideal Angle (After Calibrating at 1805)Nominal Angle (Degrees)I d e a l A n g l e (D e g r e es )051020253035401545F ńV OUT +2.0V )2.0 FREQ C CP R T (V REG *0.7V)Table 1. Function Generator Output Nominal Angle vs. Ideal Angle (After Calibrating at 2705)Ideal q Degrees NominalqDegreesIdeal qDegreesNominalqDegreesIdeal qDegreesNominalqDegreesIdeal qDegreesNominalqDegreesIdeal qDegreesNominalqDegreesIdeal qDegreesNominalqDegrees001717.983433.047574.00160159.14245244.631 1.091818.963534.008079.16165164.00250249.142 2.191919.923635.008584.53170169.16255254.003 3.292020.863736.049090.00175174.33260259.164 4.382121.793837.119595.47180180.00265264.535 5.472222.713938.21100100.84185185.47270270.006 6.562323.614039.32105106.00190190.84275275.4777.642424.504140.45110110.86195196.00280280.8488.722525.374241.59115115.37200200.86285286.0099.782626.234342.73120119.56205205.37290290.86 1010.842727.074443.88125124.00210209.56295295.37 1111.902827.794545.00130129.32215214.00300299.21 1212.942928.735050.68135135.00220219.32305303.02 1313.973029.565556.00140140.68225225.001414.993130.396060.44145146.00230230.581516.003231.246564.63150150.44235236.001617.003332.127069.14155154.63240240.44Note: Temperature, voltage and nonlinearity not included.CIRCUIT DESCRIPTION and APPLICATION NOTESThe CS8190 is specifically designed for use with air−core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the meter coils.From the partial schematic of Figure 7, the input signal is applied to the FREQ IN lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.0 V and typical hysteresis of 0.5 V. The output of the comparator, SQ OUT, is applied to the charge pump input CP+ through an external capacitor C CP. When the input signal changes state, C CP is charged or discharged through R3 and R4. The charge accumulated on C CP is mirrored to C4 by the Norton Amplifier circuit comprising of Q1, Q2 and Q3. The charge pump output voltage, F/V OUT, ranges from 2.0 V to 6.3 V depending on the input signal frequency and the gain of the charge pump according to the formula:FńV OUT+2.0V)2.0FREQ C CP R T(V REG*0.7V) R T is a potentiometer used to adjust the gain of the F/V output stage and give the correct meter deflection. The F/V output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine amplifiers are derived from the on−chip amplifier and function generator circuitry. The various trip points for the circuit (i.e., 0°, 90°, 180°, 270°) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305° range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.The output angle, q, is equal to the F/V gain multiplied by the function generator gain:q+A FńV A FG,where:A FG+77°ńV(typ)The relationship between input frequency and output angle is:q+A FG 2.0FREQ C CP R T(V REG*0.7V)or,q+970FREQ C CP R TThe ripple voltage at the F/V converter’s output is determined by the ratio of C CP and C4 in the formula:D V+C CP(V REG*0.7V)C4Figure 7. Partial Schematic of Input and Charge PumpFigure 8. Timing Diagram of FREQ INand I CPV REGFREQ IN SQ OUTI CP+V CP+0V CCRipple voltage on the F/V output causes pointer or needle flutter especially at low input frequencies.The response time of the F/V is determined by the time constant formed by R T and C4. Increasing the value of C4will reduce the ripple on the F/V output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unacceptable for many applications.The CS8190 has an undervoltage detect circuit that disables the input comparator when V CC falls below 8.0 V(typical).With no input signal the F/V output voltage decreases and the needle moves towards zero. A second undervoltage detect circuit at 6.0 V(typical) causes the function generator togenerate a differential SIN drive voltage of zero volts and the differential COS drive voltage to go as high as possible. This combination of voltages (Figure 2) across the meter coil moves the needle to the 0° position. Connecting a large capacitor(> 2000 m F) to the V CC lead (C2 in Figure 9)increases the time between these undervoltage points since the capacitor discharges slowly and ensures that the needle moves towards 0° as opposed to 360°. The exact value of the capacitor depends on the response time of the system,the maximum meter deflection and the current consumption of the circuit. It should be selected by breadboarding the design in the lab.200 WFigure 9. Speedometer or Tachometer ApplicationNotes:1.C2 (> 2000 m F) is needed if return to zero function is required.2.The product of C CP and R T have a direct effect on the transfer function (f to V conversion) and therefore directly affecttemperature compensation.3.C CP Range; 20 pF to 0.2 m F.4.R T Range; 100 k W to 500 k W .5.The IC must be protected from transients above 60 V and reverse battery conditions.6.Additional filtering on the FREQ IN lead may be required.7.Gauge coil connections to the IC must be kept as short as possible (≤ 3.0 inch) for best pointer stability.Design ExampleMaximum meter Deflection = 270°Maximum Input Frequency = 350 Hz 1.Select R T and C CPq +970 FREQ C CP R T +270°Let C CP = 0.0033 m F, find R TR T +270°970 350Hz 0.0033m FR T +243k WRT should be a 250 k W potentiometer to trim out any inaccuracies due to IC tolerances or meter movement pointer placement.2.Select R3 and R4Resistor R3 sets the output current from the voltage regulator. The maximum output current from the voltage regulator is 10 mA. R3 must ensure that the current does not exceed this limit.Choose R3 = 3.3 k WThe maximum charge current for C CP is worst case estimated at:V REG *0.7V3.3k W+1.90mAC CP must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequencyis 2.85 ms. To ensure that C CP is charged, assume that the (R3 + R4) C CP time constant is less than 10% of the minimum input period.T +10%1350Hz+285m s Choose R4 = 1.0 k W .Discharge time: t DCHG = R4 × C CP = 3.3 k W × 0.0033 m F= 3.3 m sCharge time: t CHG = (R3 + R4)C CP = 4.3 k W . × 0.0033 m F= 14.2 m s3.Determine C4C4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement.C4+C CP(VREG *0.7V)D V MAXWith C4 = 0.47 m F, the F/V ripple voltage is 44 mV .The last component to be selected is the return to zero capacitor C2. This is selected by increasing the input signal frequency to its maximum so the pointer is at its maximum deflection, then removing the power from the circuit. C2should be large enough to ensure that the pointer always returns to the 0° position rather than 360° under all operating conditions.Figure 10 shows how the CS8190 and the CS8441 are used to produce a Speedometer and Odometer circuit.Stepper Motor 200 WFigure 10. Speedometer With Odometer or Tachometer ApplicationNotes:1.C2 = 10 m F with CS8441 application.2.The product of C CP and R T have a direct effect on the transfer function (f to V conversion) and therefore directly affecttemperature compensation.3.C CP Range; 20 pF to 0.2 m F.4.R T Range; 100 k W to 500 k W .5.The IC must be protected from transients above 60 V and reverse battery conditions.6.Additional filtering on the FREQ IN lead may be required.7.Gauge coil connections to the IC must be kept as short as possible (≤ 3.0 inch) for best pointer stability.In some cases a designer may wish to use the CS8190 only as a driver for an air−core meter having performed the F/V conversion elsewhere in the circuit.Figure 11 shows how to drive the CS8190 with a DC voltage ranging from 2.0 V to 6.0 V . This is accomplished by forcing a voltage on the F/V OUT lead. The alternative scheme shown in Figure 12 uses an external op amp as a buffer and operates over an input voltage range of 0 V to 4.0 V .Figure 11. Driving the CS8190 from an ExternalDC VoltageV INFigures 11 and 12 are not temperature compensated.Figure 12. Driving the CS8190 from an ExternalDC Voltage Using an Op Amp BufferV INPACKAGE THERMAL DATAParameter PDIP−16SO−20WUnit R q JC Typical 159°C/W R q JATypical5055°C/WORDERING INFORMATIONDevicePackage Shipping †CS8190ENF16G PDIP−16(Pb−Free)CS8190EDWF20G SO−20W (Pb−Free)CS8190EDWFR20GSO−20W (Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.PDIP −16CASE 648−08ISSUE VDATE 22 APR 2015SCALE 1:1XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = YearWW = Work WeekG= Pb −Free PackageGENERICMARKING DIAGRAM*161XXXXXXXXXXXX XXXXXXXXXXXX AWLYYWWG *This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.STYLE 1:PIN 1.CATHODE2.CATHODE3.CATHODE4.CATHODE5.CATHODE6.CATHODE7.CATHODE8.CATHODE9.ANODE 10.ANODE 11.ANODE 12.ANODE 13.ANODE 14.ANODE 15.ANODE 16.ANODE STYLE 2:PIN MON DRAINMON DRAINMON DRAINMON DRAINMON DRAINMON DRAINMON DRAINMON DRAIN9.GATE 10.SOURCE 11.GATE 12.SOURCE 13.GATE 14.SOURCE 15.GATE 16.SOURCEWITH LEADS CONSTRAINEDDIM MIN MAX INCHES A −−−−0.210A10.015−−−−b 0.0140.022C 0.0080.014D 0.7350.775D10.005−−−−e 0.100 BSC E 0.3000.325M−−−−10−−− 5.330.38−−−0.350.560.200.3618.6719.690.13−−−2.54 BSC 7.628.26−−−10MIN MAX MILLIMETERSNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: INCHES.3.DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS −3.4.DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.5.DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.6.DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.7.DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY .8.PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).E10.2400.280 6.107.11b2eB −−−−0.430−−−10.920.060 TYP 1.52 TYP A20.1150.195 2.92 4.95L 0.1150.150 2.92 3.81°°ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.SOIC −20 WB CASE 751D −05ISSUE HDATE 22 APR 2015SCALE 1:1DIM MIN MAX MILLIMETERS A 2.35 2.65A10.100.25b 0.350.49c 0.230.32D12.6512.95E 7.407.60e 1.27 BSC H 10.0510.55h 0.250.75L 0.500.90q0 7 NOTES:1.DIMENSIONS ARE IN MILLIMETERS.2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.3.DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.4.MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.5.DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.__XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = YearWW = Work WeekG= Pb −Free PackageGENERICMARKING DIAGRAM*20XDIMENSIONS: MILLIMETERS*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*RECOMMENDED*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “G ”, may or may not be present. Some products may not follow the Generic Marking.PUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative◊。
KSD1588
KSD1588
KSD1588
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™Bottomless™CoolFET™CROSSVOLT™
E2CMOS™
FACT™
FACT Quiet Series™FAST®
FASTr™
GTO™HiSeC™
ISOPLANAR™
MICROWIRE™
POP™
PowerTrench®
QFET™
QS™
Quiet Series™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
UHC™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative or In
Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.。