历年全国数学建模试题及解法归纳(2015)
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局 0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 最佳交通线路查询多目标规划、图论08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析09A制动器试验台的控制方法分析物理模型,计算机仿真09B 眼科病房的合理安排综合评价,决策与预测10A储油罐的变位识别与罐容标定微积分理论,数值计算10B2010上海世博会影响力的评价综合评价,统计分析11A城市表层重金属污染分析综合评价,统计分析11B交巡警服务平台的设置与调度图论,动态规划12A葡萄酒的评价综合评价,统计分析12B太阳能小屋的设计多目标规划13A车道被占用对城市道路通行能力的影响交通流理论,排队论13B碎纸片的拼接复原算法14A嫦娥三号软着陆轨道设计与控制策略微分方程,最优化问题14B创意平板折叠桌微积分,几何赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,需要使用计算机软件。
太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。
本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。
直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。
但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。
我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。
众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。
我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。
影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。
问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。
根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。
再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。
我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。
对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。
关键字:太阳影子轨迹Matlab 曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。
2012-2015数学建模国赛题目2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题太阳能小屋的设计在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。
不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。
因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。
附件1-7提供了相关信息。
请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh 计算)及投资的回收年限。
2015年数学建模竞赛题目(原创实用版)目录1.2015 年数学建模竞赛概述2.竞赛题目分类及解析3.竞赛题目解答思路及方法4.竞赛对学生的意义和影响正文【2015 年数学建模竞赛概述】2015 年数学建模竞赛,即全国大学生数学建模竞赛,是我国面向全国大学生的一项重要的学科竞赛活动。
该竞赛旨在激发大学生学习数学的积极性,提高他们的创新意识和运用数学知识解决实际问题的综合能力,推动大学数学教学体系、教学内容和方法的改革。
【竞赛题目分类及解析】2015 年数学建模竞赛共有 A、B、C 三个题目,分别涉及不同的领域。
A 题:飞行器设计优化题目要求:根据给定的飞行器参数,建立数学模型,并求解最优设计方案。
解析:此题属于优化问题,需要运用线性规划、非线性规划等相关知识。
B 题:水质监测与评价题目要求:分析给定的水质监测数据,建立评价模型,对水质进行评价。
解析:此题涉及数据处理、统计分析、模糊评价等知识。
C 题:智能家居系统题目要求:设计一个智能家居系统,满足给定的功能需求。
解析:此题需要了解图论、动态规划等知识,以解决网络拓扑结构、任务调度等问题。
【竞赛题目解答思路及方法】1.对题目进行仔细阅读,理解题意,明确题目要求。
2.分析题目涉及的领域和知识点,确定解题思路。
3.利用相关数学方法和工具,建立数学模型。
4.求解模型,得到结果。
5.对结果进行分析和检验,撰写论文。
【竞赛对学生的意义和影响】参加数学建模竞赛,对学生具有重要的意义和影响。
首先,它可以激发学生学习数学的兴趣,提高他们的数学素养。
其次,通过解决实际问题,学生可以锻炼自己的创新能力和团队协作能力。
最后,竞赛成绩优秀的学生,还有机会获得奖学金、保研等优惠政策。
总之,2015 年数学建模竞赛题目涉及多个领域,对参赛学生的知识储备和解题能力提出了较高的要求。
2015年初中毕业生数学考试卷考生须知:1. 全卷共4页,有3大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸对应位置上,并认真核准条形码姓名、准考证号.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑.5. 本次考试不能使用计算器.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,. 卷 Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.2015-的相反数是 A 2015 B 20151 C 20151- D 2015-2.下列运算正确的是 A .6a -5a=1 B .(a 2)3=a 5C .a 6÷a 3=a 2D .a 2·a 3=a 53.钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为A . 464×104B .46.4×106C .4.64×106D .0.464×10745. 如果分式12-x 与33+x 的值相等,则x 的值是A .9B .7C .5D .36.一个正多边形的每个内角都为140°,那么这个正多边形的边数为 A. 11 B.10 C.9 D.8 7.若x >y ,则下列式子中错误的是 A .x ﹣3>y ﹣3B .>C .x +3>y +3D .﹣3x >﹣3y8.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为 A.12 B.20 C. 16 D. 20或16 9. 矩形具有而菱形不具有的性质是A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等10.如图,D 为△ABC 内部一点,E 、F 两点分别在AB 、BC 上,且四边形DEBF 为矩形,直线CD 交AB 于G 点.若CF =6,BF =9,AG =8,则△ADC 的面积为 A .16 B .24C .36D .54正面A C B D卷 Ⅱ二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:x xy 42-= ▲ .12.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1 只杯子,恰好是一等品的概率是 ▲ .13.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.14则关于这若干户家庭的月用水量,中位数是 ▲ 吨,月平均用水 ▲ 吨. 15.定义:我们把二次函数2y ax=+ 友好函数 16.如图,A 是反比例函数ky x=做CD ⊥x 轴,垂足为点D ,延长与点B 的纵坐标之比为 ▲ ;(2三、解答题(本题有8小题,第17~ 第20、21题每题8分,第22、2317.计算: 2︒45sin --+-28(318.先化简后求值:ab b b a a 22422-+-,其中1000=a ,15=b19.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点, 且OD ∥BC ,OD 与AC 交于点E . (1)若∠B =70°,求∠CAB 的度数; (2)若AC =8,OE =3,求AB 的长.20.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的一种球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如下:By)(元)16001400600解答下列问题: (1)求a 与b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数.21.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同.看图解答下列问题: (1)求每种付酬方案y 关于x 的函数表达式; (2)当选择方案一所得报酬高于选择方案二所 得报酬时,求x 的取值范围.22.2015年4月19日,义乌市国际马拉松在梅湖体育场胜利召开.体育场主席台侧面如图,若顶棚顶端D 与看台底端A 连线和地面垂直,测得看台AC 的长为13.5米, 30=∠BAC , 45=∠ACD . (1)求看台高BC 的长(2)求顶棚顶端D 到地面的距离AD 的长.(取7.13=)23.在△ABC 中,∠ACB =45°,点D 为射线BC 上一动点(与点B 、C 不重合),连接AD ,以AD 为一边在AD 右侧作正方形ADEF .(1)如果AB =AC ,如图1,且点D 在线段BC 上运动,判断∠BAD ▲ ∠CAF (填“=”或“≠”),并证明:CF ⊥BD ;(2)如果AB ≠AC ,且点D 在线段BC 的延长线上运动,请在图②中画出相应的示意图, 此时(1)中的结论是否成立?请说明理由;(温馨提示:作图时,先使用2B 铅笔,再 使用0.5毫米及以上的黑色签字笔涂黑).(3)设正方形ADEF 的边DE 所在直线与直线CF 相交于点P ,若AC =42,CD =2,求线段CP 的长.AE FA24.如图,四边形OABC 是平行四边形,点)0,2(-A ,点)32,0(B ,动点P 从点O 出发以每秒3个单位长度的速度沿射线OB 方向匀速运动,同时动点Q 从点B 出发以每秒2个单位长度的速度沿射线BA 方向匀速运动,连结CP ,CQ ,设运动时间为t 秒. (1)求点C 的坐标和OCB ∠的度数;(2)请用含t 的代数式表示动点P 和动点Q 的坐标; (3)①当BCQ BCP ∠=∠时,求t 的值;②当30≤∠-∠BCP BCQ 时, 求t 的取值范围(只要写出直接答案).参考答案及评分标准一、选择题DDCAA CDBBB 二、填空题 11.)2)(2(+-y y x 12.8513.20 14.4.5;4.6 (一个对二分,二个对三分) 15.略 (二个对才能得三分 ) 16.(1) 1:3 (一分) (2) 9(二分) 三、解答题17.原式=1222222-+-⨯…(每个一分)4分=21- …………6分18.原式=b a b b a a ---22422………………2分=ba b a --2422=b a +2………………4分代入得,原式=2015………………6分 19.(1)20=∠CAB ………(看答案)3分 (2)10=AB ……………………6分 20.(1)30=a ……………………3分24=b ……………………6分(2)300人……………………8分 21.(1)方案一:x y 40=………………2分 方案二60020+=x y ……………………4分(2)6002040+>x x ……………6分 ∴30>x ……………………8分 22.(1)75.6=BC ……………………5分 (2)过点D 作AC DE ⊥于E∵ 45=∠ACD , 30=∠BAC∴ 45=∠CDE , 60=∠EAD 设x AE = ∴x DE CE 3==∴5.137.23==+=x x x AC ∴5=x ∴AD =10米 ……………10分B23.(1)CF ⊥BD ……………1分证明:∵∠ACB =45°,AB =AC ∴∠ABC =∠ACB =45°,∴∠BAC =90° ∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90° ∵∠BAD =∠BAC -∠DAC ,∠CAF =∠DAF -∠DAC∴∠BAD =∠CAF ,∴△BAD ≌△CAF ∴∠ACF =∠ABD =45°,∴∠ACF +∠ACB =90° ∴CF ⊥BD ……………3分 (2)如图所示,(1)中的结论仍然成立 证明:过A 作AG ⊥AC 交BC 于G∵∠ACB =45°,∴∠AGC =45°∴∠GAC =90°,AG =AC ∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90° ∵∠GAD =∠GAC +∠DAC ,∠CAF =∠DAF +∠DAC∴∠GAD =∠CAF ,∴△GAD ≌△CAFGB∴∠ACF =∠AGD =45°,∴∠ACF +∠ACB =90° ∴CF ⊥BD ……………6分 (3)作AH ⊥BD 于H ∵∠ACB =45°,∴△AHC 是等腰直角三角形 ∴AH =HC =22AC =22×42=4∵AH ⊥BD ,CF ⊥BD ,∠ADE =90° ∴△ADH ∽△DPC ,∴CPCD=DHAH……………8分 当点D 在线段BC 上时DH =HC -CD =4-2=2 ∴CP2=24,∴CP =1……………9分 当点D 在线段BC 的延长线上时 DH =HC +CD =4+2=6 ∴CP2=64,∴CP =3……………10分 24.(1))32,2(C , 60=∠OCB ……………………2分(2))3,0(t P ,)332,(t t Q --……………………6分(3)①当点P 在线段OB 上时: 过点Q 作OB QD ⊥于D ∴PQD ∆∽PCB ∆ ∴BPDPBC DQ =∴tt t 33232322--=∴15-=t ……………………8分当点P 在线段OB 的延长线上时: 过点Q 作OB QD ⊥于D ,作P 关于BC 的对称点'P ∵BCQ BCP ∠=∠ ∴点'P 在CQ 上 ∴QD P '∆∽CB P '∆∴''BP DP BC DQ = ∴323322-=t t ∴15+=t ……………………9分②697174+≤≤t 或6735+≥t …12分。
2015年全国大学生数学建模竞赛B题“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。
为了缓解大城市打车难的问题,打车软件应运而生。
本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。
针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。
并采用Matlab 软件画出各个城市对应的供求关系图。
针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。
所以公司只在司机收入方面部分缓解了打车难这个问题。
针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。
面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。
本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。
赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》与《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程与参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果就是违反竞赛章程与参赛规则的,如果引用别人的成果或其她公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处与参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程与参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程与参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊与其她媒体进行正式或非正式发表等)。
我们参赛选择的题号(从A/B/C/D中选择一项填写):我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名) :1、2、3、指导教师或指导教师组负责人(打印并签名):日期: 年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。
以上内容请仔细核对,特别就是参赛队号,如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):送全国评奖统一编号(由赛区组委会填写):全国评阅统一编号(由全国组委会填写):此编号专用页仅供赛区与全国评阅使用,参赛队打印后装订到纸质论文的第二页上。
注意电子版论文中不得出现此页,即电子版论文的第一页为标题与摘要页。
基于matlab与太阳方位角的经纬度计算方法摘要根据影子的变化挖掘出测量地点的信息就是一项有挑战性的数学工作,这一工作可能会应用到安全领域的工作之中,本文利用影子的数据挖掘出太阳高度方位信息进而求解出所测量地点的经度纬度实现了成功定位。
历年全国数学建模试题及解法归纳
赛题解法
93A非线性交调的频率设计拟合、规划
93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划
94B锁具装箱问题图论、组合数学
95A飞行管理问题非线性规划、线性规划
95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化
96B节水洗衣机非线性规划
97A零件的参数设计非线性规划
97B截断切割的最优排列随机模拟、图论
98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化
99A自动化车床管理随机优化、计算机模拟
99B钻井布局0-1规划、图论
00A DNA序列分类模式识别、Fisher判别、人工
神经网络
00B钢管订购和运输组合优化、运输问题
01A血管三维重建曲线拟合、曲面重建
赛题解法
01B 公交车调度问题多目标规划
02A车灯线光源的优化非线性规划
02B彩票问题单目标决策
03A SARS的传播微分方程、差分方程
03B 露天矿生产的车辆安排整数规划、运输问题
04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化
05A长江水质的评价和预测预测评价、数据处理
05B DVD在线租赁随机规划、整数规划
06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析
07A 人口问题微分方程、数据处理、优化07B 最佳交通线路查询多目标规划、图论
08A 照相机问题非线性方程组、优化
08B 大学学费问题数据收集和处理、统计分
析、回归分析
09A制动器试验台的控制方法分析物理模型,计算机仿真09B 眼科病房的合理安排综合评价,决策与预测
10A储油罐的变位识别与罐容标定微积分理论,数值计算10B 2010上海世博会影响力的评价综合评价,统计分析
11A城市表层重金属污染分析综合评价,统计分析
11B交巡警服务平台的设置与调度图论,动态规划
12A葡萄酒的评价综合评价,统计分析
12B太阳能小屋的设计多目标规划
13A车道被占用对城市道路通行能力的影响交通流理论,排队论13B碎纸片的拼接复原算法
14A嫦娥三号软着陆轨道设计与控制策略微分方程,最优化问题14B创意平板折叠桌微积分,几何
赛题发展的特点:
1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,需要使用计算机软件。
问题的数据读取需要计算机技术,如00A(大数据),01A,13B(图象数据,图象处理的方法获得),04A,07B(数据库数据,数据库方法,统计软件包)。
计算机模拟和以算法形式给出最终结果。
2. 赛题的开放性增大解法的多样性,一道赛题可用多种解法。
开放性还表现在对模型假设和对数据处理上。
10B
3. 试题向大规模数据处理方向发展
4. 求解算法和各类现代算法的融合13B 14B。