【2008中考数学试题及答案】梅州[1]
- 格式:doc
- 大小:1.06 MB
- 文档页数:6
2008年梅州市初中毕业生学业考试数 学 试 卷说 明:本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.5.本试卷不用装订,考完后统一交县招生办(中招办)封存.参考公式:二次函数的对称轴是直线=,顶点坐标是c bx ax y ++=2x ab 2-(,).ab 2-a b ac 442-一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的.1. 下列各组数中,互为相反数的是( )A .2和B .-2和-C . -2和|-2|D .和21212212.如图1的几何体的俯视图是( )3.下列事件中,必然事件是( )A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学4.如图2所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB ( )A . 是正方形B . 是长方形C . 是菱形D .以上答案都不对5.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行图2图1A .B .C .D .图3图5驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )二、填空题:每小题3分,共24分.6.计算:=_______.)1()21(0--7. 如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米. 8. 如图4, 点 P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度.9. 如图5,AB 是⊙O 的直径,∠COB =70°,则∠A =_____度.10. 函数的自变量的取值范围是_____.11-=x y x 11. 某校九年级二班50名学生的年龄情况如下表所示:年龄14岁15岁16岁17岁人 数720167 则该班学生年龄的中位数为________;从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率等于________.12. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;mx y =xk y =m k =____;它们的另一个交点坐标是______.13.观察下列等式:①32-12=4×2;②42-22=4×3;③52-32=4×4;④( )2-( )2=()×( );……则第4个等式为_______. 第个等式为_____.(是正整数)n n 三、解答下列各题:本题有10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.·图4图7如图6,已知:ABC △(1) AC 的长等于_______.(2)若将向右平移2个单位得到,则点的对应点的坐标是ABC △A B C '''△A A '______;(3) 若将绕点按顺时针方向旋转后得到A 1B 1C 1,则A 点对应点A 1ABC △C 90∆的坐标是_________.15.本题满分7分. 右图是我国运动员在1996年、2000年、2004年三届奥运会上获得奖牌数的统计图.请你根据统计图提供的信息,回答下列问题:(1) 在1996年、2000年、2004年这三届奥运会上,我国运动员获得奖牌总数最多的一届奥运会是________年.(2) 在1996年、2000年、2004年这三届奥运会上,我国运动员共获奖牌___________枚.(3)根据以上统计,预测我国运动员在2008年奥运会上能获得的奖牌总数大约为_________枚.16.本题满分7分.解分式方程:.21221-=+--x x x 17.本题满分7分.如图7所示,在长和宽分别是、的矩形纸片的四个a b 角都剪去一个边长为的正方形.x (1)用,,表示纸片剩余部分的面积;a b x (2)当=6,=4,且剪去部分的面积等于剩余部分的ab 面积时,求正方形的边长.图818.本题满分8分.如图8,四边形是平行四边形.O 是对角线的中点,过点的直线ABCD AC O 分别交AB 、DC 于点、,与CB 、AD 的延长线分别交于点G 、H .EF E F (1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.19.本题满分8分.如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点.(1)求直线L 所对应的函数的表达式;(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.20.本题满分8分.已知关于的一元二次方程2--2=0. ……①x x m x (1)若=-1是方程①的一个根,求的值和方程①的另一根;x m (2)对于任意实数,判断方程①的根的情况,并说明理由.m21.本题满分8分.如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F .(1)求证: ADE ∽BEF ;∆∆(2) 设正方形的边长为4, AE =,BF =.当取什么值时, 有最大值?并求出x y x y 这个最大值.22.本题满分10分.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为,装运药品的车辆数为.求与的函数关系式;x y y x (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.23.本题满分11分.如图11所示,在梯形ABCD 中,已知AB ∥CD ,AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为轴,x 过D 且垂直于AB 的直线为轴建立平面直角坐标系.y (1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)物资种类食品药品生活用品每辆汽车运载量(吨)654每吨所需运费(元/吨)1201601002008年梅州市初中毕业生学业考试数学参考答案与评分意见一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的.1.C ; 2.A ; 3.C ; 4.C ; 5.B .二、填空题:每小题3分,共24分.6.2. 7.60. 8.60. 9.35. 10.x>1. 11.15岁(1分); (2分). 5212.m=2(1分);k=2(1分);(1,2)(1分).13.62-42=4×5(1分);(n+2)2-n 2=4×(n+1) (2分).三、解答下列各题:本题有10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.如图6,已知:ABC △(1) AC 的长等于_______.(2)若将向右平移2个单位得到ABC △,则点的对应点的坐标是______;A B C '''△A A '(3) 若将绕点按顺时针方向旋转ABC △C 后得到A 1B 1C 1,则A 点对应点A 1的坐标是90 ∆_________.解:(1). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分10(2)(1,2). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5分(3)(3,0).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分15.本题满分7分.右图是我国运动员在1996年、2000年、2004年三届奥运会上获得奖牌数的统计图.请你根据统计图提供的信息,回答下列问题:(1) 在1996年、2000年、2004年这三届奥运会上,我国运动员获得奖牌总数最多的一届奥运会是________年.(2) 在1996年、2000年、2004年这三届奥运会上,我国运动员共获奖牌___________枚.(3)根据以上统计,预测我国运动员在2008年奥运会上能获得的奖牌总数大图8约为_________枚.解:(1)2004年;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分(2)172; ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(3)72. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分(注意:预测数字在64~83的都得3分,84~93得2分,94~103得1分,大于104或小于64的得0分)16.本题满分7分.解分式方程:.21221-=+--x x x 解:方程两边同乘以-2,得1-+2(-2)=1, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分x x x 即1-+2-4=1,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分x x 解得=4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分x 经检验, =4是原方程的根.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分x 17.本题满分7分.如图7所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方a b x 形.(3)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙用,,表示纸片剩余部分的面积;a b x (4)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.a b 解:(1) -42;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分a b x (2)依题意有: -42=42,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分a b x x 将=6,=4,代入上式,得2=3, ∙∙∙∙∙∙∙∙∙∙∙∙6分a b x 解得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分)(3,321舍去-==x x 即正方形的边长为.318.本题满分8分.如图8,四边形是平行四边形.O 是对角线的中点,过点的直线分ABCD AC O EF 别交AB 、DC 于点、,与CB 、AD 的延长线分别交于点G 、H .E F (1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.解:(1) AEH 与DFH .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分∆∆(或AEH 与BEG , 或BEG 与CFG ,或DFH 与∆∆∆∆∆CFG )∆(2)OE =OF .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分证明:四边形是平行四边形,∵ABCD ∥CD , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分AB ∴AO CO =,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分EAO FCO ∠=∠∴ ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 AOE COF ∠=∠∵ △△,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分 ∴AOE ≌COF .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分OE OF =∴图7(注意:此题有多种选法,选另外一对的,按此标准评分)19.本题满分8分.如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点.(1)求直线L 所对应的函数的表达式;(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.解:(1)设所求为=+. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分y k x b 将A (-3,0),B (0,4)的坐标代入,得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分⎩⎨⎧==+-.4,03b b k 解得=4, =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分b k 34所求为=+4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分y34x (2)设切点为P ,连OP ,则OP ⊥AB ,OP =R .5分R t AOB 中,OA =3,OB =4,得AB =5,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分∆因为,得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分,5214321R ⨯⨯=⨯⨯R =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分512(本题可用相似三角形求解)20.本题满分8分.已知关于的一元二次方程2--2=0………①.x x m x (3)若=-1是这个方程的一个根,求的值和方程①的另一根;x m (4)对于任意的实数,判断方程①的根的情况,并说明理由.m 解:(1) =-1是方程①的一个根,所以1+-2=0, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分x m 解得=1. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分m 方程为2--2=0, 解得, 1=-1, 2=2.x x x x 所以方程的另一根为=2.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分x (2) =2+8,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分ac b 42-m 因为对于任意实数,2≥0,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分m m 所以2+8>0,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分m 所以对于任意的实数,方程①有两个不相等的实数根. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分m21.本题满分8分.如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC于点F .(1)求证: ADE ∽BEF ;∆∆(2)设正方形的边长为4, AE =,BF =.当取什么值x y x时, 有最大值?并求出这个最大值.y 证明: (1)因为ABCD 是正方形,所以∠DAE =∠FBE =,90所以∠ADE +∠DEA =,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分90 又EF ⊥DE ,所以∠AED +∠FEB =,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分90 所以∠ADE =∠FEB ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分所以ADE ∽BEF .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分∆∆(2)解:由(1) ADE ∽BEF ,AD =4,BE =4-,得∆∆x ,得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分44x x y -===,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分y ]4)2([41)4(4122+--=+-x x x 1)2(412+--x 所以当=2时, 有最大值,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分x y 的最大值为1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分y 22.本题满分10分.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为,装运药品的车辆数为.求与的函数关系式;x y y x (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解:(1)根据题意,装运食品的车辆数为,装运药品的车辆数为,x y那么装运生活用品的车辆数为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分(20)x y -- 则有,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分654(20)100x y x y ++--=整理得, .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分202y x =-(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为,202x x x -,, 由题意,得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分5202 4.x x ⎧⎨-⎩≥,≥物资种类食品药品生活用品每辆汽车运载量(吨)654每吨所需运费(元/吨)120160100解这个不等式组,得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4.5分85≤≤x 因为为整数,所以的值为 5,6,7,8.所以安排方案有4种:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分x x 方案一:装运食品5辆、药品10辆,生活用品5辆;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5.5分 方案二:装运食品6辆、药品8辆,生活用品6辆;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 方案三:装运食品7辆、药品6辆,生活用品7辆;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6.5分 方案四:装运食品8辆、药品4辆,生活用品8辆. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分(3)设总运费为(元),W 则=6×120+5(20-2)×160+4×100=16000-480. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分W x x x x 因为=-480<0,所以的值随的增大而减小.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8.5分k W x 要使总运费最少,需最小,则=8.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分W x 故选方案4. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9.5分最小=16000-480×8=12160元. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分W 最少总运费为12160元23.本题满分11分.如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.x (1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使PDB 为等腰三角形的点P 有几个?∆(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∠CDB =∠CBD =∠DBA ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙0.5分 ∴ ∠DAB =∠CBA , ∠DAB =2∠DBA , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分∴∠DAB +∠DBA =90, ∠DAB =60, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1.5分∴∠DBA =30,AB =4, DC =AD =2, ∙∙∙∙∙∙∙∙∙∙∙∙∙2分 ∴R t AOD ,OA =1,OD =,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2.5分∆3A (-1,0),D (0, ),C (2, ). ∙4分∴33(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0),故可设所求为 = (+1)( -3) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分y a x x 将点D (0, )的坐标代入上式得, =.3a 33-所求抛物线的解析式为 = ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分y ).3)(1(33-+-x x 其对称轴L 为直线=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分x (3) PDB 为等腰三角形,有以下三种情况:∆①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P1DB为等腰三角形;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3,∆∆P2DB,P3DB为等腰三角形;③与②同理,L上也有两个点P4、P5,使得BD=BP4,BD=BP5.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分∆由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.。
2、整式的加减要点一:列代数式表示数量关系 一、选择题1.(2008·镇江中考)用代数式表示―a 的3倍与b 的差的平方‖,正确的是( )A.2(3)a b -B.23()a b -C.23a b - D.2(3)a b -【解析】选A.B 项表示a 与b 差的平方的3倍,C 项表示a 的3倍与b 的平方的差,D 项表示a 与b 的3倍差的平方2.(2009·山西中考)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2mD .2n答案:选A3.(2010·常德中考)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在―十一五规划‖中提出―到2010年全年GDP 过千亿元‖的目标.如果按此增长速度,那么我市今年的GDP 为( )A.1050×(1+13.2%)2B.1050×(1-13.2%)2C.1050×(13.2%)2D.1050×(1+13.2%)【解析】选A 。
根据题中的各量之间的相等关系可以得出我市今年的GDP 为1050×(1+13.2%)2 。
4.(2009·眉山中考)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( ) A .1019a b +B .1019a b -C .1017a b -D .1021a b -【解析】选B.观察式子得第几个式子a 的指数就是几,第奇数个式子―+‖,第偶数个式子―-‖,ba 的指数是a 的指数的2倍少1,因此第10个式子是1019a b -.m nnn (2)(1)二、填空题5.(2010·嘉兴中考)用代数式表示―a 、b 两数的平方和‖,结果为_______。
2008年梅州市第一次质检数学试题(2008.3)数学(文科)本试卷分选择题和非选择题两部分,共4页,满分50分。
考试时间120分钟。
参考公式:柱体体积:V Sh =,其中S 为柱体底面面积,h 为柱体的高。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填在答题卡上,用2B 铅笔将答题卡试卷类型填涂在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把题卡上对应题目的答案标号图黑;如需改动,用橡皮擦干净后,再选图其他答案标号,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题制定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
第I 卷 选择题(共50分)一 选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合要求的。
) 1.设集合{1,2,3,4,5},{1,2},{2,3,4}U A B ===,则=⋃)(B A C UA}2{B{5}C{1,2,3,4}D{1,3,4}2.已知复数112z i =+,则z 等于A1233i -+B 1233i --C 1255i -D1255i +3.已知命题:1p x <;命题2:20q x x +-<不等式成立,则命题p 是命题q 成立的 A 充要条件 B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件4.已知ABC ∆中,角A 、B 所对的边分别是a 和b ,若cos cos a B b A =,则ABC ∆一定是A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形 5.已知直线a b 、和平面M N 、,则下列命题正确的是A //,////a b a M b M若则 B//,a b a M b M ⊥⊥若则C,,a b a M b N M N ⊥⊂⊂⊥若则 D //,//,////a b a M b N M N 若则6.函数2x y =与2xy -=-的图像A 关于直线y x =轴对称B 关于x 轴对称C 关于y 轴对称 D 关于原点对称7. 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是A.1716B.1516C.78D.08. 某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按下列方式分成六组:第一组,成绩大于等于13秒但小于14秒;第二组,成绩大于等于14秒但小于15秒;第三组,成绩大于等于15秒但小于16秒;第四组,成绩大于等于16秒但小于17秒;第五组,成绩大于等于17秒但小于18秒;第六组,成绩大于等于18秒但小于等于19秒。
2008年广东省梅州市初中毕业生学业考试物理试题说明:全卷共6页,26小题,满分100分,考试时间80分钟。
主意事项:1.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在答题卡密封线左边的空格内;并在答题卡处,按要求将自己的姓名、准考证号写、涂在答题卡指定位置上,并用2B铅笔将试卷类型填涂在答题卡。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
5.本试卷不用装订,考完后同一交县招生办(中招办)封存。
一、单项选择题(每小题3分,共27分。
下列各题所列的四个选项中,只有一个是正确的.在答题卡上把正确选项的字母用2B铅笔涂黑)1.下列能源在利用时对环境污染最厉害的是()A.太阳能B.风能C.煤D.电能2.使用下列光学器材,其目的是使物体成倒立缩小实像的是()A.放大镜B.照相机C.幻灯机D.投影仪3.在探索微观世界的历程中,发现了电子,进而认识到原子是由()A.氢原和电子组成的B.质子和中子组成的C.原子核和核外电子组成的D.原子核和中子组成的4.小华戴着眼镜喝热开水时,镜片会逐渐模糊起来.这是因为水蒸气发生了()A.汽化B.液化C.升华D.凝华5.下列关于光现象的说法正确的是()A.光发生漫反射时,仍遵守光的反射定律B.光从空气射人水中.传播速度不变C.月食是因为光的反射而形成的D.平面镜可以成实像6.如图1所示是一种水位自动报警器的原理图,水位到达A时该报警器自动报警.此时()A.红灯亮B.绿灯亮C.红、绿灯同时亮D.红、绿灯都不亮7.如图2所示杠杆处于平衡状态,若使弹簧测力计的示数变为原来的1/2,要保持扛杆仍然平衡,可以()A.减少一个钩码B.减少二个钩码C.减少三个钩码D.把钩码向左移一个小格8.教室里投影仪的光源是强光灯泡,发光时温度很高,必须用风扇给予降温。
梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页, 23 小题,满分 120 分。
考试用时 90 分钟。
注意事项: 1.答题前,考生务必在答题卡上用黑色笔迹的钢笔或署名笔填写准考据号、姓名、试室号、座位号,再用 2B 铅笔把试室号、座位号的对应数字涂黑。
2.选择题每题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需变动,用橡皮擦擦洁净后,再从头选涂其余答案,答案不可以答在试卷上。
3.非选择题一定用黑色笔迹钢笔或署名笔作答,答案一定写在答题卡各题目指定地区内相应位置上;如需变动,先划掉本来的答案,而后再写上新的答案;禁止使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生一定保持答题卡的整齐。
考试结束后,将试卷和答题卡一并交回。
5.本试卷不用装订 ,考完后一致交县招生办 ( 中招办 )封存。
参照公式: 抛物线 yax 2bxc 的对称轴是直线 x =b, 极点坐标是(b , 4ac b 2 ) .2a2a 4a一、选择题:每题 3 分,共 15 分.每题给出四个答案,此中只有一个是正确的.1. 2 的相反数是A.2B. 1C.1 12D.22.图 1 所示几何体的正视图是图 1ABCD温度 T3.图 2 是我市某一天内的气温变化图,依据图2,26 (℃ )24 以下说法中错误 的是22..20A .这天中最高气温是 24℃1816 B .这天中最高气温与最低气温的差为16℃14 12 10 C .这天中 2 时至 14 时之间的气温在渐渐高升 86D .这天中只有 14 时至 24 时之间的气温在渐渐降低424.函数 yx 1的自变量 x 的取值范围是O 2 4 6 8 10 12 14 16 18 20 22 24 时间 t图 2(时 )A . x1 B . x 1 C . x 1 D . x 15.以下图形中,是轴对称图形而不是中心对称图形的是A .圆B .正方形C .矩形D .正三角形二、填空题:每题3 分,共 24 分.6.如图 3, 在△ ABC 中 , BC =6 cm , E 、F 分别是 AB 、AC 的中点 , 则 EF =_______cm7. 已知反比率函数 yk(k 0) 的图象经过点 (1, 1) , 则 k ___________.x8. 分解因式: a 21=____________.图 39. 甲、乙、丙、丁四支足球队在世界杯预选赛中的进球数分别为:9、 9、11、 7, 则这组数据的 : ①众数为 _____________; ②中位数为 ____________; ③均匀数为 __________.10. 为增援玉树灾区 , 我市党员捐钱近 600 万元 , 600 万用科学记数法表示为 __________.11. 若 x 1, x 2 是一元二次方程 x 22x 1 0 的两个根,则 x 1+x 2 的值等于 __________.12. 已知一个圆锥的母线长为2 cm , 它的侧面睁开图恰巧是一个半圆, 则这个圆锥的侧面积等于_______ cm 2 .(用含 的式子表示 )13. 平面内可是同一点的n 条直线两两订交 ,它们的交点个数记作 a n ,而且规定 a 1 0 .那么 :① a 2 _____;② a 3 a 2 _______;③ a nan 1______.( n ≥ 2, 用含 n 的代数式表示 )三、解答以下各题:此题有10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.此题满分 7 分.如图 4,Rt △ ABC 中 , ∠ C =90° , ∠A =60° , AC =2. 按以下步骤作图 : ①以 A为圆心 ,以小于 AC 长为半径画弧 ,分别交 AC 、AB 于点 E 、D; ②分别以 D 、E 为圆心 ,以大于12DE 长为半径画弧 ,两弧订交于点 P; ③连接 AP 交 BC 于点 F .那么 :( 1)AB 的长等于 __________;(直接填写答案)( 2)∠ CAF =_________° . (直接填写答案)图 415.此题满分 7 分.计算: | 2| (1) 1( 3.14) 08 cos45 .216. 此题满分 7 分.1 2解方程:x2 x x2 2x 1 .17. 此题满分7 分.在平面直角坐标系中, 点M的坐标为(a,1 2a) .(1)当 a 1时,点M在座标系的第___________象限;(直接填写答案)(2)将点 M 向左平移 2 个单位 ,再向上平移 1 个单位后获得点N,当点 N 在第三象限时 ,求a的取值范围 .18.此题满分8 分.(1)如图 5, PA,PB分别与圆O相切于点A,B. 求证 : PA=PB.(2)如图 6, 过圆O外一点P的两条直线分别与圆O订交于点A、B和C、D. 则当 ___________时 , PB=PD.( 不增添字母符号和协助线,不需证明,只要填上切合题意的一个条件)图 5 图 619.此题满分 8 分.如图 7, 东梅中学要在教课楼后边的空地上用40 米长的竹篱笆围出一个矩形地块作生物园, 矩形的一边用教课楼的外墙 ,其余三边用篱笆笆 . 设矩形的宽为x,面积为y.(1)求 y 与x的函数关系式,并求自变量x的取值范围;(2) 生物园的面积可否达到210 平方米 ?说明原因 .20.此题满分8 分.某校九年级有200 名学生参加了全国初中数学结合比赛的初赛,为了认识本次初赛的成绩状况,从中抽取了50 名学生 , 将他们的初赛成绩(得分为整数,满分为100 分)分红五组:第一组 49.5~59.5;第二组 59.5~ 69.5;第三组 69.5~ 79.5;第四组79.5~ 89.5;第五组89.5~ 100.5.统计后获得图8 所示的频数分布直方图(部分). 察看图形的信息,回答以下问题:( 1)第四组的频数为_________________. (直接填写答案)( 2)若将得分转变为等级,规定:得分低于59.5 分评为“ D”, 59.5~ 69.5 分评为“ C”, 69.5~ 89.5 分评为“ B”, 89.5~ 100.5 分评为“ A” .那么这 200 名参加初赛的学生中,参赛成绩评为“D”的学生约有 ________个 . (直接填写答案)(3)若将抽拿出来的 50 名学生中成绩落在第四、第五组的学生构成一个培训小组,再从这个培训小组中随机精选 2 名学生参加决赛 .用列表法或画树状图法求:精选的 2 名学生的初赛成绩恰巧都在90 分以上的概率 .21.此题满分 8 分.东艺中学初三(1) 班学生到雁鸣湖春游, 有一项活动是划船 . 游船有两种 , 甲种船每条船最多只好坐 4 个人 , 乙种船每条船最多只好坐 6 个人 . 已知初三 (1) 班学生的人数是 5 的倍数 , 若仅租甲种船,则许多于12 条;若仅租乙种船, 则不多于9 条 .(1)求初三 (1) 班学生的人数 ;(2)假如甲种船的租金是每条船 10 元 , 乙种船的租金是每条船 12 元 . 应如何租船 , 才能使每条船都坐满 ,且租金最少 ?说明原因 .22.此题满分10 分.如图 9,△ABC中,点P是边AC上的一个动点,过P作直线 MN∥ BC,设 MN交∠BCA的均分线于点 E,交∠BCA的外角均分线于点 F.(1 )求证:PE=PF;(2)当点P在边AC上运动时,四边形BCFE可能是菱形吗?说明原因;(3 )若在AC边上存在点P, 使四边形AECF是正方形 , 且AP 3.求此时∠ A 的大小 .BC 223.此题满分11 分.如图 10,直角梯形OABC中, OC∥ AB, C(0,3), B(4,1),以 BC为直径的圆交x轴于 E,D两点( D点在 E点右方).(1)求点E, D的坐标 ;(2)求过B, C, D三点的抛物线的函数关系式;(3) 过B, C, D三点的抛物线上能否存在点Q,使△ BDQ是以 BD为直角边的直角三角形?若不存在,说明原因;若存在,求出点Q的坐标 .图 10梅州市 2010 年初中毕业生学业考试数学试卷参照答案与评分建议3 15.1A2A3D4B5D.3 246 3.7 -1.8 (a-1)(a+1).9 9(1 ); 9(1 );9(1 ). 106 106 .112.12 2 . 13 1(1 ); 2(1 )n 1 1.10 81147(1)4. 3(2)30. 7157原式 =2-2+1+ 824 2=1+2=3. 7 167:1 22.2 x( x 1) ( x 1)x 1 0,得12, 得x x 12x x 1,解得 x 1.经查验 x1是原方程的根 . 原方程的解是x 1.4 6 7()177(1) . 2(2) ,N( a -2,2-2 a ). 4N,a 20,2 2a0.1< a <2.7 188(1): OA, OB.PA,PBO,OA PA, OB PB.2OA=OB, OP=OP. 4R t△OAP≌R t△OBP.PA=PB.6(2) ∠OPA= ∠ OPC.(PA=PC ,AB=CD , OPB,PD ,ABCD ) 8 198: (1) , 40 2x . 1y x(40 2x) 2x2 40x. 340 2x 0, 0 x 20. 4(2), 令y 210.得2x2 40 x 210.x2 20 x 105 0. 6b2 4ac 202 4 105 0.该方程无实数根 .210. 8 ( ,)208(1)2. 2(2)64. . 5(3):(1),4,902,A1,A2,902,B1,B2.:A1 A2 B1 B2A1A2, A1B1, A1B2, A1A2 B1 B2A1, A2 A1, B1 A1, B2A2, B1 A2, B2B , A B , B1 2 1 2B2, A2 B2, B1:7(),2,12,2 90 2 ,2 1.8p.12 6218(1) :m ,m12,448 m 54. 3m9.6m5, m =50.(1)50.4(2) xy,,4x 6 y 50,即 2x 3 y 25.5因为 x, y 都是正整数 , 因此 ( x, y)的可能取值为(2,7), (5,5), (8,3),(11,1) .6:w 10 x 12 y 2x 100.7因为 2 0, 因此 w 随 x 的增大而增大 , 7.5因此当 x 2时 , 租金 w 最少 .2 , 7,,. 8(2):xy,,4x 6 y 50,即 2x 3 y 25.5: w 10 x 12 y 2x 100.62.5, 2 ,,.x=2 ,y=7,2 ,7,,.822101: EC ∠BCA, ∠BCE= ∠PCE.MN ∥ BC ∠PEC= ∠BCE.∠PEC= ∠PCE,PE=PC .2PC=PF. PE=PF.32BCFE .4BCFEBF ⊥ EC 1FC ⊥ EC .5F,BF ⊥EC ,BCFE.63AECF P AC, EF ⊥ACEF ∥BCAC ⊥BC .△ ABCACB.8AP 3 , R t △ ABC , tan A BCBC 3 . BC2AC2AP3A= 30° .1023111B (4,1),A (4,0),OD = x , DA =4- x .1DBCx,∠CDB =90°, ODC +BDA=90 ° .OCD +ODC =90° ,OCD =BDA. .R t △ OCD ∽R t △ADB .OC AD.3ODAB3 4 x , x 24x 3 0.x 1 x 1 1, x 2 3.E (1,0),D (3,0).4(2)C (0,3),D (3,0), B (4,1).c 3y ax 2 bx c(a0), 9a3b c 0616a 4b c 1 .a1, b5,c3 .22B C Dy1 25x 37,,x22.3BDQ=90 ° (1)BDC=90 ° CCQQ3 ;8DBQ=90 ° BDCBQBQQ .D 3 0C (0,3)DC yx 3 .8.5BQ DC ,BQ y x m .(4,1),=5.(2)B mDCBQBQ yx 5 .9yx5x 11 x2 5 x6y 3y2 2.x 4.y1.B (4,1),Q(-1,6).(0,3),(-1,6)11。
2008年梅州市初中毕业班中考数学模拟考试试题本试卷共4页,23小题,满分120分。
考试用时90分钟。
参考公式:弧长计算公式:180Rn l π=一、选择题:每小题3分,共15分,每小题给出四个答案,其中只有一个正确的。
(2008年模拟)1、北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数法表示为A 、81037.1⨯ B 、91037.1⨯ C 、8107.13⨯ D 、610137⨯ (2008年模拟)2、小马虎在下面的计算中只做对了一道题,他做对的题目是A 、222)(b a b a -=-B 、523a a a =+ C 、6234)2(a a =- D 、a a -=--)1(1 (2008年模拟)3、下列图形中,不是三棱柱的表面展开图的是(2008年模拟)4、下列命题中,错误的是 A 、矩形的对角线互相平分且相等B 、对角线互相垂直的四边形是菱形C 、等腰梯形的两条对角线相等D 、等腰三角形底边上的中点到两腰的距离相等(2008年模拟)5、如图1关于X 的函数y=kx+b(k ≠0)图像,则不等式kx+b ≤0的解集为A 、-1<x <2B 、x ≤2C 、0≤x ≤2D 、 x ≥2 二、填空题:每小题3分,共24分(2008年模拟)6、 -2的相反数是___________.(2008年模拟)7、如图2,.__________50,//=∠+∠=∠︒B A ,C CD AE 则 (2008年模拟)8、某商场举行“庆五一,送惊喜”抽奖活动,10000个奖券中设有中奖奖券200个,小红第一个参与抽奖且抽取一张奖券,她中奖的概率为___________(2008年模拟)9、如图3,图像反映的过程是:小李从家跑步到体育馆,在那里锻炼了一阵后又走到书店去买书,然后散步走回家,其中t 表示时间(分),s 表示小李离家的距离(千米),那么小李在体育馆锻炼和在书店买书共用去的时间是_________分.(2008年模拟)10、如图4,一宽为1CM 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为______________cm.(2008年模拟)11、如图5,平面直角坐标系中,AB 是过点(0,1)且垂 直于y 轴的平面镜,则点P (3,2)在平面镜AB 中的像的 坐标为________________.(2008年模拟)12、已知某二次函数的图像与X 轴的两个交战点的横坐标分别是方程0222=--x x 的两根,则该二次函数图像的对象轴为__________(2008年模拟)13、如图6,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上标记 数字1,2,3,4,5,6,7,……根据你发现的规律, 数字“2008”在射线__________上.三、解答下列各题:本题有10小题,共81分,解答应写出文字说明、推理过程或演算步骤。
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根一、选择题(本大题5小题,每小题3分,共15分)1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米C .410082.4⨯米D .5104082.0⨯米3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是__________;8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.A M NBC OB DC A 图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
往年广东省梅州市中考数学试题及答案一、选择题:本大题共5小题,每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1. 四个数-1,0,12,2中为无理数的是 A .-1B .0C .12D .2【答案】D .2. 从上面看如左图所示的几何体,得到的图形是A .B .C .D . 【答案】B .3. 数据2,4,3,4,5,3,4的众数是A .5B .4C .3D .2 【答案】B .4. 不等式组2020x x +>⎧⎨-≥⎩的解集是A .2x ≥B .2x >-C .2x ≤D .22x -<≤【答案】A .5. 一个多边形的内角和小于它的外角和,则这个多边形的边数是A .3B .4C .5D .6 【答案】A .二、填空题:本大题共8小题,每小题3分,共24分. 6.-3的相反数是 . 【答案】3.7.若42α∠=︒,则α∠的余角的度数是 . 【答案】48°.8.分解因式:22m m -= . 【答案】(2)m m -.9.化简:23a b ab ÷= .【答案】3a . 10.“节约光荣,浪费可耻”,据统计我国每年浪费粮食约8000000吨,这个数据用科学记数法可表示为 吨. 【答案】6810⨯.11.如图,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切于点D ,则∠BAC 的度数是 .【答案】105°.12. 分式方程211xx =+的解是x = . 【答案】1. 13.如图,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2013个等腰直角三角形的斜边长是 .【答案】()20132.三、解答下列各题:本大题共10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.计算:()10120138|32|2cos452-⎛⎫⨯---+︒⎪⎝⎭.解:原式=12223222⨯--+=.15.本题满分7分.解方程组251x yx y+=⎧⎨-=⎩.【解】251x yx y+=⎧⎨-=⎩①②,①+②,得36x=,即2x=,将2x=代入②,得1y=.所以原方程组的解为21xy=⎧⎨=⎩.16.本题满分7分.如图,在平面直角坐标系中,A(-2,2),B(-3,-2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内.(不包括边界.....)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【解】(1)∵点C与点A关于原点O对称,且A(-2,2),∴点C的坐标为(2,-2).(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2).(3)四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点有15个,如图其中横、纵坐标之和恰好为零的有3个,所以所取的点横、纵坐标之和恰好为零的概率是51153 .17.本题满分7分18.“安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计,图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题: (1)九年级(1)班共有 名学生;(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是 ;(3)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有 名.【解】(1)九年级(1)班中“很好”所占的比例为30%,“很好”的人数为18,所以九年级(1)班共有18÷30%=60(人).(2)九年级(1)中“较好”的人数为30,所以“较好”所占的比例为30÷60=50%,所以“较差”的所占比例为1-30%-15%-50%=5%.所以对安全知识的了解情况为“较差”部分所对应的圆心角的度数是360°×5%=18(人). (3)全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有(5%+15%)×1500=300(人).18.本题满分8分.已知,一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点A (a ,2). (1)求a 的值及反比例函数的表达式; (2)判断点B (22,22)是否在该反比例函数的图象上,请说明理由. 【解】(1)∵一次函数y=x+1的图象经过点A (a ,2),∴2=a +1,解得a =1.又反比例函数(0)ky k x=≠的图象经过点A (a ,2),∴12k =,∴k =2. ∴a 的值为1,反比例函数的表达式为xy 2=.(2)∵22222=⨯,∴点B (22,22)是在该反比例函数的图象上.19.本题满分8分.如图,在矩形ABCD 中,AB =2DA ,以点A 为圆心,AB 为半径的圆弧交DC 于点E ,交AD 的延长线于点F ,设DA =2. (1)求线段EC 的长;(2)求图中阴影部分的面积.【解】(1)∵在矩形ABCD 中,AB =2DA ,∴AE =2AD ,且∠ADE =90°.又DA =2,∴AE =AB =4,∴DE =3221622=-=-AD AE ,∴EC =DC -DE =324-.(2)ADE AEFS S S ∆=-阴影扇形=2604182232336023ππ︒⨯⨯-⨯⨯=-︒20.本题满分8分.为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A ,B 两种树木,需要购买这两种树苗1000棵.A ,B 两种树苗的相关信息如下表: 项目 品种单价(元/棵) 成活率 植树费(元/棵)A 20 90% 5 B3095%5(1)写出y (元)与x (棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元? (3)若绿化村道的总费用不超过31000元,则最多可购买B 种树苗多少棵? 【解】解:(1)设购买A 种树苗x 棵,则购买B 种树苗(1000-x )棵,绿化村道的总费用为y =(20+5)x +(30+5)(1000-x )=25x +35000-35x =35000-5x .(2)90%x +95%(1000-x )=925.解得x =500(棵),则购买B 种树苗500棵. (20+5) ×500×90%+(30+5) ×500×95%=27875(元).(3)(20+5)x +(30+5)(1000-x )≥31000,解得x ≤400.则1000-x ≥1000-400=600.所以最多可购买B 种树苗600棵.21.本题满分8分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交于点D ,交AB 于点E ,且CF =AE .(1)求证:四边形BECF 是菱形;(2)若四边形BECF 为正方形,求∠A 的度数. 【解】(1)∵BC 的垂直平分线EF 交于点D ,∴BF =FC ,BE =EC .又∵∠ACB =90°,∴EF //AC . ∴BE :AB=DB :BC,∵D 为BC 中点,∴DB :BC=1:2,∴BE :AB=1:2,∴E 为AB 中点,即BE=AE,∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,∴四边形BECF 是菱形.(2)如图,∵四边形BECF 为正方形,∴∠BEC =90°.又AE =CE ,∴∠A =45°.22.本题满分10分.(为方便答题,可在答题卡上画出你认为必要的图形)如图,已知抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)写出以A ,B ,C 为顶点的三角形面积;(2)过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点(点M 在点N 的左侧),以MN 为一边,抛物线上的任一点P 为另一顶点作平行四边形,当平行四边形的面积为8时,求出点P 的坐标;(3)过点D (m ,0)(其中m >1)且与x 轴垂直的直线2l 上有一点Q (点Q 在第一象限....),使得以Q ,D ,B 为顶点的三角形和以B ,C ,O 为顶点的三角形相似,求线段QD 的长(用含m 的代数式表示).【解】(1)∵抛物线222y x =-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .∴2220x -=,C (0,-2)∴1x =±.∴A (-1,0),B (1,0).∴AB =2.∴12222ABC S ∆=⨯⨯=. (2)∵过点E (0,6)且与x 轴平行的直线1l 与抛物线相交于M 、N 两点,∴2226x -=,解得2x =±,∴MN =4.又平行四边形的面积为8时,∴点P 到MN 的距离为2,即P 点的纵坐标为4,∴2224x -=,解得3x =∴点P 的坐标为(3-3).(3)设Q (m ,b ),则可分两种情况: ①当OB OC BD DQ =时,121m b =-,解得22b m =-(1m >). ②当OB OC DQ BD =时,121b m =-,解得1122b m =-(1m >).23.本题满分11分.(为方便答题,可在答题卡上画出你认为必要的图形) 用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出...............),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN,在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在.求出它的最小值;若不存在,请说明理由.【解】(1)过点A作AG⊥BC,垂足为G.当点P运动到∠CFB的角平分线上时,∠PFC=∠BFP=30°,∴PC=12PF.又∵∠CBF=30°,∴BP=PF.∵BC=3,∴BP=2.在Rt△BAC中,∵∠ABC=45°,∴AG=BG=12BC=32.∴GP=12.∴在Rt△AGP中,AP=22911044AG GP+=+=.(2)如图,过点A作AG⊥BC,垂足为G.在Rt△APG中,AP=CF=3,AG=32,则PG2293 34AP AG-=-=,所以∠PAG=30°,所以∠PAB=15°.当点P位于点P′处时,∠BAP =75°.探究二:过点D 分别作DH ⊥AB 于点H ,DI ⊥AC 于点I.在Rt △ABC 中,∵点D 是BC 中点,AB =AC ,∴HD =DI .∴四边形HDIA 是正方形.∵∠HDI =∠MDN ,∴∠HDM =∠IDN . 在△HDM 与△IDN 中,HDM IDN HD DIDHM DIN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△HDM ≌△IDN (ASA ). ∴DM =DN ,HM =IN .设MA =x ,则HM 324x , ∴AN 332244x -322x ∴MN 22AN AM +22332242x x ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭22939232822x x x x -++-+=29452228x x -+==当x=,MN34 =.所以最小周长为AM+AN+MN有最小值=2AH+34=AB+3434.。
梅州市高中阶段学校招生考试数学试卷一、填空题(每小题 3分,共30分) 1、 计算:(a — b ) — ( a+b ) = 2、 计算:(a 2b ) 2+ a 4 = 。
3、 函数y 奸右中,自变量x 的取值范围是 。
4、 北京与巴黎两地的时差是一 7小时(带正号的数表示同一时间比北京早的时间数) 如果现在北京时间是 7 : 00,那么巴黎的时间是 5、 求值:sin 230° +cos 230° = 。
6、 根据图1中的抛物线,当x 时,y 随x 的增大而增大, 当x 时,y 随x 的增大而减小,当 x 时,y 有最大值。
7、 如图2,将一副直角三角板叠在一起,使直角顶点重合于点 O,则 / AOB+ / DOC= 0 8、 已知一个三角形的三边长分别是 6 cm, 8 cm, 10 cm,则这个 三角形的外接圆面积等于 cm 2。
9、 如图3,扇子的圆心角为a,余下扇形的圆心角为为了使扇子 的外形美观,通常情况下a 与6的比按黄金比例设计,若取黄金比为 则a =度。
10、如图4是我市城乡居民储蓄存款余额的统计图, 请你根据该图写出两条正确的信息: ① 、选择题(每小题 3分,共15分)11、已知O O 的半径为5 cm,③O 的半径为3 cm, 两圆的圆心距为 7 cm,则它们的位置关系是 ................. A 、相交 B 、外切 C 、相离 D 、内切 212、 万程 x — 5x — 1=0 ........................................................................................ A 、有两个相等实根B、有两个不等实根C 、没有实根D 、无法确定 13、 一组对边平行,并且对角线互相垂相等的四边形是 ............. A C 、 14、设 A 、 菱形或矩形 矩形或等腰梯形 a 是实数,则|a| 可以是负数 必是正数 D 一a 的值 .. BDOO图2图1C0.6, 卤3239.6155.1419.460.461978 年 1990^ 2000 年 2003 年图4300 200150 100 50 0城乡居民储蓄存款余额(亿元、正方形或等腰梯形、菱形或直角梯形 、不可能是负数D 、可以是正数也可以是负数 15、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州 华城一一河源一一惠州一一东莞一一广州, 那么要为这次列车制作的火车票有 A 、6 种 B 、12 种 C 、21 种 D 、42 种三、解答下列各题(每小题 6分,共24分)16、计算:(2)2 G/2) 1 78 (1 J3)017、在“创优”活动中,我市某校开展收集废电池的活动,该校初二(1)班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:(单位:个):48, 51, 53, 47, 49, 50, 52。
2008年某某市初中毕业升学考试数学试题一、用心填一填:本大题共12小题,每小题2分,共24分1、如果向东走3米记作+3米,那么向西走5米记作米。
103、温家宝总理在十一届全国人大一次会议上的政府工作报告指出,今年中央财政用于教育投入将达到1562亿元,用科学记数法表示为亿元。
4、已知△ABC 中,BC =10CM ,D 、E 分别为AB 、AC 中点,则DE =CM 。
5数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 。
6如图,∠ACD =1550,∠B =350,则∠A =度。
7、函数x 2+的自变量x 的取值X 围是。
8、某物业公司对本小区七户居民2007年全年用电量进行统计,每户每月平均用电量(单位:度)分别是:56、58、60、56、56、68、74。
这七户居民每户每月平均用电量的众数是度 9、一元二次方程2x 2x 1=0--的根为。
10、两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为11、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为。
12、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是。
二、仔细选一选:本大题共8小题,每小题3分,共24分13、在下列实数中,无理数是( )A 5 22、0.1 B、 C、-4 D、 714、左图是由四个相同的小立方体组成的立体图形,它的左视图是( )15、已知下列命题:①若A >0,B >0,则AB >0; ②平行四边形的对角线互相垂直平分;③若∣x ∣=2,则x =2; ④圆的切线经过垂直于切点的直径,其中真命题是( ) A 、①④B 、①③C 、②④D 、①②16、已知圆锥的侧面积为8πCM 2, 侧面展开图的圆心角为450,则该圆锥的母线长为( ) A 、64CMB 、8CMC、 D17、2008年5月12日,某某汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )A B C D第14题图18、如图,在Rt △ABC 中,∠C =900,∠A =300,E 为AB 上一点且AE :EB =4:1 ,EF ⊥AC 于F ,连结FB ,则t AN ∠CFB 的值等于( )3235353A 、 、、 、BCD19、在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
跨学科的中考数学试题九年义务教育初中数学教学要求学生“解决实际问题主要是能够解决带有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题”。
近年来,各地的中考题充分体现了这个教学要求,在试题中涉及了物理、化学、地理、生物、体育、英语等学科的知识,要求学生的综合应用能力越来越突出。
下面举例说明。
一、跨物理科题型(一)选择题1、(2005青岛)已知力F 所做的功W 是15焦,则表示力F 与物体在力的方向上通过的距离s 的函数关系的图象大致为图中的( )D2、(2006江苏泰州)在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )C3、(2006河北省)在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图3所示,则该气体的质量m 为( )D A.1.4kg B.5kgC.6.4kg D.7kg4、(2007浙江温州)小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A A.18千克 B.22千克 C.28千克 D.30千克5、(2007山东青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).CA .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 33(kg/m )ρ3(m )1、(2005常武)一辆汽车要将一批10㎝厚的木板运往某建筑工地,进入工地到目的地前,遇有一段软地.聪明的司机协助搬运工将部分木板卸下铺在软地上,汽车顺利通过了.请你写出其中的道理: .如果卸下部分木板后汽车对地面的压力为3000N ,若设铺在软地上木板的面积为S ㎡,汽车对地面产生的压强为P (N/㎡),那么P 与S 的函数关系式是 . 解:道理:压强原理 ;关系式:P =S3000。
D.
)
图2
C,
图3
图5
90后得到
图7
图
8
18.本题满分8分.
如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线
EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,
请选出其中一对加以证明.
19.本题满分8分.
如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),
O 是坐标系原点.
(1)求直线L 所对应的函数的表达式;
(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.
20.本题满分8分.
已知关于x 的一元二次方程x 2-m x -2=0. ……①
(1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根;
(2) 对于任意实数m ,判断方程①的根的情况,并说明理由.
90是
图7 图8
90,
90, ····
90, ····
··········。
中考数学专题训练及答案——解答题1. (2008永州市) (8分)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆? 2、 (2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.3、(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x φ并把解集在已画好的数轴上表示出来。
4、(2008山西太原)解不等式组:()2532213x x x x+≤+⎧⎪⎨-⎪⎩p 5、(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套? 6、(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x7.(2008浙江金华))解不等式:5x- 3 < 1- 3x8、(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.9、(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目 票价(元/场)男 篮 1000足 球 800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?10、(2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.11. (2008江苏镇江)解不等式组921102x x ->⎧⎪⎨-⎪⎩≥,.12. (2008湖北仙桃等) 解不等式组⎪⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.13、(2008安徽芜湖)解不等式组36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①② 14、(2008年宁波市)解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,15.(2008徐州)解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断x =不等式组.54-5-4-3-2-1321017.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.20、(2008山东济南)解不等式组⎩⎨⎧<+>+63042x x ,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店 200 170 乙店160150(1)设分配给甲店A 型产品件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;0x -2>3121215-≥++x x(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A ,B 两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。
一、选择题1.(2008年贵阳市)对任意实数,点一定不在..()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B.2. (2008年双柏县)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点A B.点BC.点C D.点D【答案】B3. ( 2008年杭州市)在直角坐标系中, 点在第一象限内, 且与轴正半轴的夹角为, 则的值是( )A. B. C.8 D.2【答案】B5.(2008襄樊市)下列说法正确的是()A.的平方根是B.将点向右平移5个单位长度到点C.是无理数D.点关于轴的对称点是【答案】D6.(2008年宁德).如图,点A的坐标是(1,1),若点B在x轴上,且△ABO是等腰三角形,则点B的坐标不可能...是().A.(2,0)B.(,0)C.(,0)D.(1,0)【答案】B7.(2008年大连市)如图,下列各点在阴影区域内的是 ( )A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)【答案】A8.(2008年山东省青岛市)如图,把图①中的△ABC经过一定的变换得到图②中的△A′B′C′,如果图①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P′的坐标为()A.(a-2,b-3) B.(a-3,b-2)C.(a+3,b+2) D.(a+2,b+3)【答案】C.9.(2008年山东省济南市)已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(-2,1)B.(2,1)C.(2,-1)D.(-2,-1)【答案】B.10. (2008年山西省太原市)在平面直角坐标系中,点的坐标为,则点在( B )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B.11.(2008年湖北省宜昌市)如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则点B1的坐标是()A.(4,1)B.(0,1)C.(-1,1)D.(1,0)【答案】A12.(2008山东烟台)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转后,B点的坐标为()A. B. C. D.【答案】D13. (2008年扬州市)在平面直角坐标系中,点P(-1,2)的位置在A、第一象限B、第二象限C、第三象限D、第四象限【答案】B14. (2008年扬州市)在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´【答案】B15. (2008年宁波市)在平面直角坐标系中,点关于原点对称的点是()A.B.C.D.【答案】D16.(2008肇庆市)在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】C17.(2008山东滨州)在平面直角坐标系中,若点在第四象限,则m的取值范围为()A、-3<m<1B、m>1C、m<-3D、m>-3【答案】A18.(2008年巴中市)点在第二象限,则的取值范围是()A.B. C.D.【答案】C19. (2008年金华市)2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31oB.东经103.5oC.金华的西北方向上D.北纬31o,东经103.5o【答案】D20. (2008年金华市)三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4【答案】D21.(2008湖南长沙)若点P(,)是第二象限的点,则必须满足()A、<4B、>4C、<0D、0<<4【答案】C22. (2008·东营市)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3 B.m>3 C.m<-1 D.m>-1【答案】A23. (2008年丽水)如图,在已建立直角坐标系的4×4正方形方格纸中,△是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点、、为顶点的三角形与△相似(全等除外),则格点的坐标是.【答案】(1,4)、(3,4).24. (2008四川绵阳)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为().【答案】B25.(2008山东莱芜)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为A.-1<m<3B.m>3C.m<-1D.m>-1【答案】A二、填空题1.(2008年甘肃省白银市)点P(-2,3)关于x轴的对称点的坐标是________.【答案】(-2,-3)2.(2008黄冈市)若点P(2,k-1)在第一象限,则k的取值范围是_______.【答案】k>13.(2008恩施自治州)将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是 .【答案】4.(2008年遵义市)如图,如果与关于轴对称,那么点的对应点的坐标为.【答案】(-1,3)5.(2008陕西)如图,菱形的边长为2,,则点的坐标为.【答案】6.(2008年泰安市)如图,将边长为1的正三角形沿轴正方向连续翻转2008次,点依次落在点的位置,则点的横坐标为.【答案】20087.(2008年沈阳市)在平面直角坐标系中,点的坐标为,点的坐标为,点到直线的距离为,且是直角三角形,则满足条件的点有个.【答案】88.(2008 青海)已知点,将它先向左平移4个单位,再向上平移3个单位后得到点,则点的坐标是.【答案】9. (2008年山西省)在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90 o,得△A’B’O,则点A的对应点A’的坐标为 .【答案】(2,3)10.(2008湖南邵阳)2008年奥运火炬于6月3日至5日在我省传递(传递路线为:岳阳—汩罗—长沙—湘潭—韶山).如图,学生小华在地图上设定汩罗市位置点的坐标为,长沙市位置点的坐标为,请帮助小华确定韶山市位置点的坐标为.【答案】11.(2008常州市)点A(-2,1)关于y轴对称的点的坐标为___________,关于原点对称的点的坐标为________.【答案】答案:(2,1),(2,-1)12.(2008年潍坊市)如图,在平面直角坐标系中,的顶点的坐标为,若将绕点逆时针旋转后,点到达点,则点的坐标是.【答案】13.(2008乌鲁木齐)将点向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.【答案】14.(2008年湖北省鞥仙桃市潜江市江汉油田)中,点的坐标为(0,1),点的坐标为(4,3),如果要使与全等,那么点的坐标是 .【答案】15.(2008年新疆建设兵团)如图,在平面直角坐标系中,线段是由线段平移得到的,已知两点的坐标分别为,,若的坐标为,则的坐标为.【答案】(2,2)16. (2008年永州) 右图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C点的坐标为.【答案】(3,1)17. (2008年益阳)是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为 .【答案】(2,4)18. (2008年达州市)已知点关于轴的对称点是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点的坐标是.【答案】(-1,1)19.(2008年贵州省安顺市)在平面直角坐标系中,点关于轴对称的点的坐标是。
2008年梅州市初中毕业生学业考试化学试卷说明:本试卷共6页,25小题.满分100分。
考试用时80分钟。
注意事项:1、答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B铅笔把试室号、座位号的对应数字涂黑。
2、选择题每小题选出答案后,用2B铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦干净后,再重新选涂其他答案,答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
5、本试卷不用装订,考完后统一交县招生办(中招办)封存。
可能用到的相对原子质量:H—l C—12 O一16 Na一23 Cl一35.5一、选择题(本题包括15小题,每小题2分,共30分。
每小题只有一个....选项符合题意)1、日常生产生活中接触到的下列变化,其中属于化学变化的是A、石油分馏B、用活性炭净化水C、灯泡通电发光D、牛奶变酸2、下列物质属于有机合成材料的是A、陶瓷B、钛合金C、聚乙烯塑料D、棉麻织物3、毕业联欢会上,化学老师出了一条谜语:说是宝,真是宝,动物植物离不了;看不见。
摸不着.越往高处越稀少——打一物质名称。
这条谜语的谜底是A、氮气B、氧气C、稀有气体D、二氧化碳4、王安石的《梅花》诗:“墙角数枝梅,凌寒独自开,遥知不是雪,为有暗香来”。
不但描绘了一个如画的意境,也说明了A、分子可以再分B、分子之间有间隔C、分子很小D、分子在不断地运动A、39.6%B、78.2%C、80.1%D、92.4%6、云吞面是我国南方的一种小吃,俗称“碱水面”,因其在制作过程中加入了“碱水”(呈碱性的物质)而略带涩味。
为减少涩味,在吃云吞面时,最好蘸点下列哪种物质A、食醋B、花生油C、食盐D、白酒7、下列图示实验操作中,正确的是8、右图是元素周期表中的一种元素,下列有关该元素的信息正确的是A、相对原子质量为9B、原子序数为19C、该元素的原子核外有9个电子D、该元素的原子在化学反应中易失去电子9、北京2008年奥运会火炬“祥云”使用的燃料是丙烷(C3H8),其燃烧的化学方程式为:C3H8+A、5C、110.将X、A、Y>C、铜11石(AC12ABC、大量使用农药化肥.提高粮食产量D、实施梅州城区十万群山森林围城工程13、在水的净化处理中,高铁酸钠(Na2FeO4)是一种新型高效的水处理剂。
一、选择题目1.(福州)下列命题中,假命题...是【】A.对顶角相等 B.三角形两边和小于第三边C.菱形的四条边都相等 D.多边形的内角和等于360°2.(福州)如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为【】A.45° B.55° C.60° D.75°3.(珠海)边长为3cm的菱形的周长是【】A.6cm B.9cm C.12cm D.15cm4.(玉林、防城港)下列命题是假命题的是【】A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形5.(毕节)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于【】A.3.5 B.4 C.7 D.146.(黔东南)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是【】A.AB∥DC,AD=BC B.AB∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD7. (黔东南)如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠,使点C 与点A 重合,则折痕EF 的长为【 】A .6B .12C .D .8. 遵义)如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为【 】A. B . CD .9. (河北)如图,将长为2,宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠【 】A 、2B 、3C 、4D 、5 10. (河南)如图,ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是【 】(A)8 (B) 9 (C)10 (D )1111. (十堰)如图,在平行四边形ABCD 中,AB=4,BC=6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是【 】3253A .7B .10C .11D .12 12. (襄阳)如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE=DC ,∠C=80°,则∠A 等于【 】A .80°B .90°C .100°D .110°13. (襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=AB,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是【 】A .①②B .②③C .①③D .①④14. (孝感)如图,在ABCD 中,对角线AC 、BD 相交成的锐角为,若,则ABCD 的面积是【 】A .B .C .D .15. 孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为13αAC a,BD b == 1absin 2αabsin αabcos α1abcos 2α中心,把△CDB 旋转90°,则旋转后点D 的对应点D′的坐标是【 】A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)16. (南京)如图,在矩形中,点A 的坐标是(-2,1),点C 的纵坐标是4,则B 、C 两点的坐标为【 】A.(,)、(,) B.(,)、(,)C.(,)、(,)D.(,) 、(,)17. (赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC 的直角顶点放在矩形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 与三角板斜边相交于点F ,如果∠1=40°,那么∠AFE=【 】A. 50°B. 40°C. 20°D. 10°18. (呼和浩特)已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F (不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为【 】 A .△CDE 与△ABF 的周长都等于10cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10cmAOBC 23323-423312-4472723-4472712-4C.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定19.(潍坊)如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是( )20.(上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.21.(天津)如图,ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于【】(A)3:2 (B)3:1 (C)1:1 (D)1:222.(新疆、兵团)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是【】A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=B D.AB∥DC,AD=BC23. (新疆、兵团)如图,四边形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=3,BC=5,则EF 的值是【 】A. B . C .D .24.(舟山)如图,在一张矩形纸片ABCD 中,AD =4cm ,点E,F 分别是CD 和AB 的中点.现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH .若HG 的延长线恰好经过点D ,则CD 的长为【 】(A)2cm (B) cm (C)4cm (D) cm25. (重庆B )如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为【 】A 、30°B 、60°C 、90°D 、120°26. (重庆B )如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为【 】1521517217A 、 B、 C 、 D 、二、填空题目1. (福州)如图,在ABCD中,DE 平分∠ADC,AD=6,BE=2,则ABCD 的周长是 ▲ .2. (玉林、防城港)如图,在直角梯形ABCD 中,AD ∥BC ,∠C=90°,∠A=120°,AD=2,BD 平分∠ABC ,则梯形ABCD 的周长是 ▲ .3. (毕节)将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 ▲ 度.4. (河南)如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为,则图中阴影部分的面积为 ▲ .5. (河南)如图,矩形ABCD 中,AD=5,AB=7. 点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D256π-2562π-2566π-2568π-/CC的对应点D'落在∠ABC 的角平分线上时,DE 的长为▲.6. (黄冈)如图,在一张长为8cm、宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余两个顶点在矩形的边上),则剪下的等腰三角形的面积是 ▲ cm 2.7. (十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE=DF .给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB=AC ;从中选择一个条件使四边形BECF 是菱形,你认为这个条件是 ▲ (只填写序号).8. (武汉)如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为 ▲ .9. (襄阳)在ABCD 中,BC 边上的高为4,AB=5,AC=,则ABCD 的周长等于 ▲ . 10. (孝感)如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE 、BE ,若△ABE是等边三角形,则= ▲ .11.(扬州)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的__________º.12. (赤峰)一只蚂蚁在图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为 ▲ .13. (赤峰)如图,E 是矩形ABCD 中BC 边的中点,将△ABE 沿AE 折叠到△AEF ,F 在矩形ABCD 内部,延长AF 交DC 于G 点,若∠AEB=550, 则∠DAF 的度数为 ▲ .14. (宁夏)菱形ABCD 中,若对角线长AC=8cm ,BD=6cm ,则边长AB= ▲ cm .15. (宁夏)如下图,在四边形ABCD 中,AD ∥BC ,AB=CD=2,BC=5,∠BAD 的平分线交BC 于点E ,且AE ∥CD ,则四边形ABCD 的面积为 ▲ .16. (滨州)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4.反比例函数的图象经过顶点C ,则k 的值为 ▲ .DCE ABE S S ∆∆=∠1ky (x 0)x =<17. (上海)如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设,,那么=_________(结果用、表示).18. (上海)如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD 交于点F ,D′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为______________(用含t 的代数式表示).19. (天津)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上.(1)计算的值等于 ▲ ;(2)请在如图所示的网格中,用无刻度...的直尺,画出一个以AB 为一边的矩形,使矩形的面积等于,并简要说明画图方法(不要求证明) ▲.AB a =BC b =DE ab 22AB BC +22AB BC +20. (金华)如图,矩形ABCD 中,AB=8,点E 是AD 上的一点,有AE=4,BE 的垂直平分线交BC 的延长线于点F ,连结EF 交CD 于点G ,若G 是CD 的中点,则BC 的长是 ▲ .21. (重庆A )如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD的周长为▲ .22. (重庆A )如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点.点E 在CD 上,且DE=2CE ,连接BE.过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为 ▲ .23. (重庆B )如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,C F ⊥EG 于点H ,交AD 于点F ,连接CE 、BH. 若BH =8,则FG = ▲ .62三、解答题1. (梅州)(本题满分8分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?2. (梅州)(本题满分11分)如图,已知抛物线与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C.(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD+MC 的值最小,并求出点M 的坐标;(3)设点C 关于抛物线对称的对称点为B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.3. (珠海)(本题满分9分)如图,在正方形ABCD 中,点E 在边AD 上,点F 在边BC的延长线上,连233y x x 384=--结EF 与边CD 相交于点G ,连结BE 与对角线AC 相交于点H ,AE=CF ,BE=EG. (1)求证:EF//AC ; (2)求∠BEF 大小;(3)求证:.4. (珠海)(本题满分9分)如图,矩形OABC 的顶点A (2,0)、C (0,).将矩形OABC 绕点O 逆时针旋转30°,得矩形OEFG ,线段GE 、FO 相交于点H ,平行于y 轴的直线MN 分别交线段GF 、GH 、GO 和x 轴于点M 、P、N 、D ,连结MH.(1)若抛物线经过G 、O 、E 三点,则它的解析式为: ▲ ; (2)如果四边形OHMN 为平行四边形,求点D 的坐标;(3)在(1)(2)的条件下,直线MN 抛物线l 交于点R ,动点Q 在抛物线l 上且在R 、E 两点之间(不含点R 、E )运动,设ΔPQH 的面积为s ,当时,确定点Q 的横坐标的取值范围.5. (玉林、防城港)(10分)如图,在正方形ABCD 中,点M 是BC 边上的任一点,连接AM 并将线段AM 绕M 顺时针旋转90°得到线段MN ,在CD 边上取点P 使CP=BM ,连接NP ,BP . (1)求证:四边形BMNP 是平行四边形;AH 1GF 1tan15=+232l :y ax bx c =++33<s <62(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.6.(遵义)(10分)如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.7.(河北)(本小题满分11分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.9.(河南)(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为点A、B.(1)连接AC,若∠APO=300,试证明△ACP是等腰三角形;(2)填空:①当DP= ▲ cm 时,四边形AOBD 是菱形;②当DP= ▲ cm 时,四边形AOBP 是正方形.10. (河南)(10分)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE. 填空:①∠AEB的度数为 ▲ ;②线段AD和BE 之间的数量关系是 ▲ . (2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=900, 点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE. 请判断∠AEB 的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD 中,. 若点P 满足PD=1,且∠BPD=900,请直接写出点A 到BP 的距离.11. (黄冈)如图,已知双曲线与两直线、(且)分别相交于A 、B 、C 、D 四点.(1)当C (-1,1)时,A 、B 、D 三点的坐标分别是A ( ▲ , ▲ )、B ( ▲ , ▲ )、D ( ▲ , ▲ ).(2)证明:以A 、D 、B 、C 为顶点的四边形是平行四边形; (3)当k 为何值时,ADBC 是矩形?1y x =-1y x 4=-y kx =-k 0>1k 4≠12. (十堰)(8分)如图,点B (3,3)在双曲线(x >0)上,点D 在双曲线(x <0)上,点A 和点C 分别在x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值; (2)求点A 的坐标.13. (南京)(8分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F .(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBEF 是菱形?为什么?14. (扬州)(本题10分)如图,已知中,,先把绕点B 顺时针旋转至k y x =4y x =-Rt ABC ∆ABC 90∠=ABC ∆90后,再把沿射线AB 平移至,ED 、FG 相交于点H.(1)判断线段DE 、FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形.15. (扬州)(本题12分)已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.(1)如图1,已知折痕与边BC 交于点O ,连接AP ,OP ,OA. ①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长; (2)若图1中的点P 恰巧是CD 边的中点,求∠OAB 的度数;(3)如图2,在(1)条件下,擦去折痕AO 、线段OP ,连结BP. 动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN=PM ,连结MN 交PB 于点F ,作ME ⊥BP 于点E. 试问当点M ,N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求线段EF 的长度.16. (呼和浩特)(7分)如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E 处,AE 与DC 的交点为O, 连接DE . (1)求证:∆ADE ≌∆CED ; (2)求证: DE ∥AC.DBE ∆ABC ∆FEG∆17. (宁夏)(6分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在B'处,A B' ‘和CD 相交于点O . 求证:OA=OC .17. (滨州)(本小题满分10分)如图,已知正方形ABCD ,把边DC 绕D 点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.18. (滨州)(本小题满分12分)如图,矩形ABCD 中,AB=20,BC=10,点P 为AB 边上一动点,DP 交AC 于点Q.(1)求证:△APQ ∽△CDQ ;(2)P 点从A 点出发沿AB 边以每秒1个单位的速度向B 点移动,移动时间为t 秒. ①当t 为何值时,DP ⊥AC ? ②设,写出y 与t 之间的函数解析式,并探究P 点运动到第几秒到第几秒之间时,y取得最小值.19. (潍坊)(本小题满分1 2分)如图1,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE、APQDCQSSy=+BF ,交点为G . (1)求证:AE ⊥BF ;(2)将△BCF 沿BF 对折,得到△BPF (如图2),延长FP 交BA 的延长线于点Q ,求sin ∠BQP 的值; (3)将△ABE 绕点A 逆时针方向旋转,使边AB 正好落在AE 上,得到△AHM (如图3),若AM 和BF 相交于点N ,当正方形ABCD 的面积为4时,求四边形GHMN 的面积.20. (上海)(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,A D//BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD . (1)求证:四边形ACED 是平行四边形; (2)连接AE ,交BD 于点G,求证:.21.(上海)(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =,点P 是边BC 上的动点,以CP 为半径的⊙C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G . (1)当⊙C 经过点A 时,求CP 的长; (2)连接AP ,当AP//CG 时,求弦EF 的长; (3)当△AGE 是等腰三角形时,求⊙C 的半径长.DG DFGB DB4522. (成都)(本小题满分10分)如图,矩形ABCD 中,AD=2AB ,E 是AD 边上一点,(为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG.(1)试判断四边形BFEG 的形状,并说明理由; (2)当(为常数),时,求FG 的长;(3)记四边形BFEG 的面积为,矩形ABCD 的面积为,当时,求的值.(直接写出结果,不必写出解答过程)23.(天津)(本小题10分)在平面直角坐标系中,O 为原点,点A (-2,0),点B (0,2),点E ,点F 分别为OA ,OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE’D’F’,记旋转角为α. (1)如图①,当α=90°,求AE',BF' 的长;(2)如图②,当α=135°,求证AE'=BF',且AE'⊥BF';(3)若直线AE'与直线BF'相交于点P ,求点P 的纵坐标的最大值(直接写出结果即可).1DE AD n =nAB a =a n 3=1S 2S 12S 17S 30=n24. (新疆、兵团)(10分)如图,已知△ABC ,按如下步骤作图:①分别以A ,C为圆心,大于AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ; ③过C 作CF ∥AB 交PQ 于点F ,连接AF . (1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.25. (舟山)已知:如图,在ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF . (1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.26. (舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四12边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A≠∠C ,∠A =70°,∠B =80°.求∠C ,∠D 的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形"ABCD 中,∠DAB =60°,∠ABC=90°,AB =5,AD =4.求对角线AC 的长.27. (重庆A )已知:如图①,在矩形ABCD 中,AB=5,AD=,AE ⊥BD,垂足是E.点F 是点E 关于AB 的对称点,连接AF 、BF. (1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.320αα28. (重庆B )如图1,在□ABCD 中,AH ⊥DC ,垂足为H ,AB =,AD =7,AH. 现有两个动点E 、F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动. 在点E 、F 运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E 、F 两点同时停止运动. 设运转时间为t 秒. (1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度. 在旋转过程中,点E 与点C 重合,F 的对应点为F′,G 的对应点为G′. 设直线F′G′与射线DC 、射线AC 分别相交于M 、N 两点.试问:是否存在点M 、N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出线段CM 的长度;若不存在,请说明理由.(0360)αα︒<<︒祝你考试成功!祝你考试成功!。
图 3图52008年梅州市初中毕业生学业考试数 学 试 卷参考公式:二次函数c bx ax y ++=2的对称轴是直线x =ab2-,顶点坐标是 (a b 2-,ab ac 442-).一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的.1. 下列各组数中,互为相反数的是( ) A .2和21 B .-2和-21 C . -2和|-2| D .2和212.如图1的几何体的俯视图是( )3.下列事件中,必然事件是( )A.任意掷一枚均匀的硬币,正面朝上B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学4.如图2所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB ( ) A . 是正方形 B . 是长方形C . 是菱形D .以上答案都不对5.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )二、填空题:每小题3分,共24分. 6.计算:)1()21(0--=_______.7. 如图3,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.8. 如图4, 点 P 到∠AOB 两边的距离相等,若∠POB =30°, 则 ∠AOB =_____度.9. 如图5,AB 是⊙O 的直径,∠COB =70°,则∠A =_____度.10. 函数11-=x y 的自变量x 的取值范围是_____.则该班学生年龄的中位数为________;从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率等于________.12. 已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______. 13.观察下列等式:① 32-12=4×2; ② 42-22=4×3; ③ 52-32=4×4; ④ ( )2-( )2=( )×( ); ……则第4个等式为_______. 第n 个等式为_____.(n 是正整数) 三、解答下列各题:本题有10小题,共81分. 解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. 如图6,已知ABC △:(1) AC 的长等于_______.(2)若将ABC △向右平移2个单位得到A BC '''△,则A点的对应点A '的坐标是______;(3) 若将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1,则A 点对应点A 1的坐标是_________.图2图1 A . B . C . D . ·图4图7图8 15.本题满分7分. 右图是我国运动员在1996年、2000年、2004年三届奥运会上获得奖牌数的统计图. 请你根据统计图提供的信息,回答下列问题: (1) 在1996年、2000年、2004年这三届奥运会上,我国运动员获得奖牌总数最多的一届奥运会是________年. (2) 在1996年、2000年、2004年这三届奥运会上,我国运动员共获奖牌___________枚. (3)根据以上统计,预测我国运动员在2008年奥运会上能获得的奖牌总数大约为_________枚. 16.本题满分7分. 解分式方程:21221-=+--x x x .17.本题满分7分. 如图7所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1) 用a ,b ,x 表示纸片剩余部分的面积; (2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.18.本题满分8分.如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .(1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.19.本题满分8分. 如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点. (1)求直线L 所对应的函数的表达式; (2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.20.本题满分8分. 已知关于x 的一元二次方程x 2-m x -2=0. ……① (1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根; (2) 对于任意实数m ,判断方程①的根的情况,并说明理由.21.本题满分8分.如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F .(1)求证: ∆ADE ∽∆BEF ;(2) 设正方形的边长为4, AE =x ,BF =y .当x 取什么值时, y 有最大值?并求出这个最大值.22.本题满分10分.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.23.本题满分11分.如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系. (1)求∠DAB 的度数及A 、D 、C 三点的坐标; (2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使 PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)图82008年梅州市初中毕业生学业考试数学参考答案与评分意见一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1.C ; 2.A ; 3.C ; 4.C ; 5.B . 二、填空题:每小题3分,共24分.6.2. 7.60. 8.60. 9.35. 10.x>1. 11.15岁(1分);52(2分). 12.m=2(1分);k=2(1分);(1,2)(1分). 13.62-42=4×5(1分);(n+2)2-n 2=4×(n+1) (2分).三、解答下列各题:本题有10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. 如图6,已知ABC △:(1) AC 的长等于_______.(2)若将ABC △向右平移2个单位得到A B C '''△,则A 点的对应点A '的坐标是______;(3) 若将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1,则A 点对应点A 1的坐标是_________.解:(1)10. ············································· 3分(2)(1,2). ············································································································· 5分(3)(3,0). ················································································································ 7分15.本题满分7分.右图是我国运动员在1996年、2000年、2004年三届奥运会上获得奖牌数的统计图.请你根据统计图提供的信息,回答下列问题: (1) 在1996年、2000年、2004年这三届奥运会上,我国运动员获得奖牌总数最多的一届奥运会是________年.(2) 在1996年、2000年、2004年这三届奥运会上,我国运动员共获奖牌___________枚.(3)根据以上统计,预测我国运动员在2008年奥运会上能获得的奖牌总数大约为_________枚.解:(1)2004年; ······················· 2分 (2)172; ··············································································································· 4分 (3)72. ··············································································································· 7分 (注意:预测数字在64~83的都得3分,84~93得2分,94~103得1分,大于104或小于64的得0分)16.本题满分7分.解分式方程:21221-=+--x x x . 解:方程两边同乘以x -2,得1-x +2(x -2)=1, ····················································· 2分即1-x +2x -4=1, ·································································································· 4分解得x =4. ············································································································· 6分经检验, x =4是原方程的根. ··········································································· 7分17.本题满分7分.如图7所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(3) ······································································································································ 用a ,b ,x 表示纸片剩余部分的面积;(4) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解:(1) a b -4x 2; ·············································· 2分(2)依题意有: a b -4x 2=4x 2, ·················· 4分 将a =6,b =4,代入上式,得x 2=3, ··········· 6分解得)(3,321舍去-==x x . ····················· 7分 即正方形的边长为3.18.本题满分8分.如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .(1)写出图中不全等的两个相似三角形(不要求证明);(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.解:(1) ∆AEH 与∆DFH . ······································· 2分 (或∆AEH 与∆BEG , 或∆BEG 与∆CFG ,或∆DFH 与∆CFG )(2)OE =OF . ······························································ 3分 证明:∵四边形ABCD 是平行四边形, AB ∴∥CD ,AO CO = ······································· 4分 EAO FCO ∠=∠∴, ············································ 5分AOE COF ∠=∠∵, ············································ 6分 ∴△AOE ≌△COF ,··········································· 7分OE OF =∴. ························································ 8分(注意:此题有多种选法,选另外一对的,按此标准评分) 19.本题满分8分.如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),O 是坐标系原点. (1)求直线L 所对应的函数的表达式;(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.解:(1)设所求为y =k x +b . ················································································· 1分 将A (-3,0),B (0,4)的坐标代入,得⎩⎨⎧==+-.4,03b b k ·················································2分 图7解得b =4, k =34. ·········································· 3分 所求为y =34x +4. ············································ 4分 (2)设切点为P ,连OP ,则OP ⊥AB ,OP =R .5分R t ∆AOB 中,OA =3,OB =4,得AB =5, ······································································· 6分 因为, ,5214321R ⨯⨯=⨯⨯得 ··················································································· 7分 R =512. ··························································································································· 8分 (本题可用相似三角形求解)20.本题满分8分.已知关于x 的一元二次方程x 2-m x -2=0………①. (3) 若x =-1是这个方程的一个根,求m 的值和方程①的另一根; (4) 对于任意的实数m ,判断方程①的根的情况,并说明理由. 解:(1) x =-1是方程①的一个根,所以1+m -2=0, ·············································· 1分解得m =1. ············································································································ 2分方程为x 2-x -2=0, 解得, x 1=-1, x 2=2.所以方程的另一根为x =2. ······················································································ 4分(2) ac b 42-=m 2+8, ························································································ 5分因为对于任意实数m ,m 2≥0, ············································································· 6分 所以m 2+8>0, ·········································································································· 7分所以对于任意的实数m ,方程①有两个不相等的实数根. ·································· 8分 21.本题满分8分. 如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F . (1)求证: ∆ADE ∽∆BEF ;(2)设正方形的边长为4, AE =x ,BF =y .当x 取什么值时, y 有最大值?并求出这个最大值.证明: (1)因为ABCD 是正方形,所以∠DAE =∠FBE =90,所以∠ADE +∠DEA =90, ······························· 1分又EF ⊥DE ,所以∠AED +∠FEB =90, ········································································· 2分 所以∠ADE =∠FEB , ······································································································· 3分 所以∆ADE ∽∆BEF . ···································································································· 4分 (2)解:由(1) ∆ADE ∽∆BEF ,AD =4,BE =4-x ,得44x x y -=,得 ··············································································································· 5分 y =]4)2([41)4(4122+--=+-x x x =1)2(412+--x , ··········································· 6分所以当x =2时, y 有最大值, ···················································································· 7分 y 的最大值为1. ··········································································································· 8分22.本题满分10分.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费. 解:(1)根据题意,装运食品的车辆数为x ,装运药品的车辆数为y , 那么装运生活用品的车辆数为(20)x y --. ······························································ 1分 则有654(20)100x y x y ++--=, ··········································································· 2分整理得, 202y x =-. ····························································································· 3分(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为202x x x -,,, 由题意,得5202 4.x x ⎧⎨-⎩≥,≥ ····························································································· 4分 解这个不等式组,得85≤≤x ··················································································· 4.5分 因为x 为整数,所以x 的值为 5,6,7,8.所以安排方案有4种: ························· 5分 方案一:装运食品5辆、药品10辆,生活用品5辆; ············································ 5.5分方案二:装运食品6辆、药品8辆,生活用品6辆; ················································· 6分 方案三:装运食品7辆、药品6辆,生活用品7辆; ·············································· 6.5分方案四:装运食品8辆、药品4辆,生活用品8辆. ··············································· 7分(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x . ······························· 8分因为k =-480<0,所以W 的值随x 的增大而减小. ············································ 8.5分要使总运费最少,需W 最小,则x =8. ······························································· 9分 故选方案4. ······································································································ 9.5分 W 最小=16000-480×8=12160元. ······································································· 10分 最少总运费为12160元 23.本题满分11分.如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)。