八年级数学菱形的判定3(新编201908)
- 格式:ppt
- 大小:309.50 KB
- 文档页数:14
菱形的判定班级: 姓名:一、学习目标:1.探索并掌握菱形的判定方法.2.利用菱形的判定方法进行合理的论证和计算.3.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯. 二、学习过程:1、知识准备:菱形的性质:2、自学检测(阅读教材P91-93)①如图,在□ABCD 中,对角线AC 、BD 相交于点O , 且AC ⊥BD ,猜想四边形ABCD 是什么特殊图形?分析:如图,要证平行四边形ABCD 是菱形,需证什么?为什么?说说证明“对角线互相垂直的平行四边形是菱形”的思路。
②你能说明“四边相等的四边形是菱形”的正确性吗?③你能用直尺和圆规作一个菱形?并说明作图的理由。
④菱形的判定方法:一组 平行四边形是菱形; 对角线 的四边形是菱形; 的四边形是菱形;3、合作探究:例1:判断下列说法是否正确,并说明理由. (1)对角线互相平分且邻边相等的四边形是菱形. (2)两组对边分别平行且一组邻边相等的四边形是菱形.(3)邻角相等的四边形是菱形. (4)有一组邻边相等的四边形是菱形.(5)两组对角分别相等且一组邻边相等的四边形是菱形. (6)对角线互相垂直的四边形是菱形. (7)对角线互相垂直平分的四边形是菱形.例2:已知:如图,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点EDF ∥AB 交AC 于点F ,请判断四边形AEDF例3:已知:如图,□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F 。
求证:四边形AFCE 是菱形。
4、巩固提高:如图,在Rt △AB C 中,∠ACB=90°,∠BAC=60°,DE•垂直平分BC ,垂足为D ,交AB 于点E ,又点F 在DE 的延长线上,且AF=CE .求证:四边形ACEF 为菱形。
5、小结与作业布置:菱形的判定方法有哪些? 作业布置:P94 A 组第5题。
第2课时菱形的判定教学目标【知识与技能】理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算.【过程与方法】通过探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.【情感态度】培养良好的思维意识以及合情推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.【教学重点】菱形的两个判定方法.【教学难点】判定方法的证明方法及运用.教学过程一、创设情境,导入新课1.复习提问(1)菱形的定义:一组邻边相等的平行四边形是菱形.(2)菱形的性质1:菱形的两组对边分别平行,四条边都相等;性质2:菱形的两组对角分别相等,邻角互补;性质3:菱形的两条对角线互相平分;菱形的两条对角线互相垂直,且每一条对角线平分一组对角.2.如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么?除根据定义判定外,还有其它的判定方法吗?【教学说明】通过回顾菱形的性质,进一步了解菱形的特殊性,为后面判定的探究提高思路.二、合作探究,探索新知1.【操作探究】多媒体演示画图过程:先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?2.学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形.得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形.学生进行几何论证,教师规范学生的证明过程.3.【归纳定理】菱形的判定定理1四边相等的四边形是菱形.【教学说明】先让学生画图,得到菱形,然后思考原因,提出猜想,然后进行推理论证,最后总结得出菱形的判定定理1.4.用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形.问:任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?学生猜想:对角线互相垂直的平行四边形是菱形.教师提问:这个命题的前提是什么?结论是什么?学生用几何语言表示命题如下:已知:在▱ABCD中,对角线AC⊥BD,求证:▱ABCD是菱形.【分析】我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO,由∠AOB=∠AOD=90°及AO=AO,得△AOB≌△AOD,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得▱ABCD是菱形.【归纳定理】通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理2):对角线互相垂直的平行四边形是菱形.强调(1)是一个平行四边形;(2)两条对角线互相垂直.对角线互相垂直且平分的四边形是菱形.【教学说明】先让学生实验操作,有一个具体的印象,然后进行猜想证明,最后进行总结,得出菱形的判定定理2.教师总结后要对定理2 的特征进行强调.三、示例讲解,掌握新知【例】如图,已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.证明:∵四边形ABCD是矩形,∴AE∥FC(平行四边形的对边平行),∴∠1=∠2.∵EF平分AC,∴AO=OC.又∵∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴EO=FO,∴四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形).又∵EF⊥AC,∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).【教学说明】这个题目应用了三角形全等和菱形的判定定理2来进行证明,教师要强调学生一定要先根据图形和条件确定具体的思路来进行证明.四、练习反馈,巩固提高1.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是AB=AD (写出一个即可).第1题图第2题图第3题图2.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=__1.4__,平行四边形CDEB为菱形.3.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.证明:∵在矩形ABCD中AD=BC,且E、F分别是AD、BC的中点,∴AE=DE=BF=CF又∵AD∥BC,∴四边形AECF、BEDF 是平行四边形.∴GF∥EH、EG∥FH.∴四边形EGFH是平行四边形.连结E、F则四边形ABFE为矩形,∴EG=GF∴四边形EGFH是菱形.五、师生互动,课堂小结菱形常用的判定方法归纳为(让学生讨论归纳后,并板书):课后作业完成同步练习册中本课时的练习.。
菱形的判定(5种题型)【知识梳理】一、菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.几何语言:∵AB=BC=CD=DA∴四边形ABCD是菱形;③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).几何语言:∵AC⊥BD,四边形ABCD是平行四边形∴平行四边形ABCD是菱形要点诠释:前一种方法是在四边形的基础上加上四条边相等.后两种方法都是在平行四边形的基础上外加一个条件来判定菱形。
二.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.【考点剖析】题型一:添加一个条件使四边形为菱形∥,例1.(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB CD =,想要判断四边形ABCD是菱形,则可以添加一个条件是_____________.AO CO【答案】AB AD =(答案不唯一)【分析】根据菱形的判定方法进行解答即可.【详解】解:∵AB CD ∥,∴OAB OCD ∠=∠,OBA ODC ∠=∠,∵AO CO =,∴△≌△AO B C O D , ∴AB CD =,∵AB CD ∥,∴四边形ABCD 为平行四边形,如果添加AB AD =,可以通过有一组邻边相等的平行四边形是菱形,判断四边形ABCD 为菱形; 故答案为:AB AD =.【点睛】本题主要考查了三角形全等的判定和性质,平行四边形的判定,平行线的性质,菱形的判定,解题的关键是熟练掌握菱形的判定方法.【变式】如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD =DC ,▱ABCD 为菱形;故答案为:AD =DC (答案不唯一).【点评】此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.题型二:证明四边形为菱形例2.如图,在△ABC中,AC=BC,点D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE 是菱形.【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【解答】证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE∥CF,DE=BC,DF∥CE,DF=AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;【点评】本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.例3.如图,四边形ABCD为平行四边形,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于E,F,且BE=BP,求证:(1)∠E=∠F;(2)四边形ABCD是菱形.【分析】(1)首先判定四边形BPFD是平行四边形,所以BP∥DF,利用平行线的性质可得∠F=∠BPE,又因为BE=BP,可得∠E=∠F;(2)利用平行线的性质以及菱形的判定方法进而得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BP∥DF,∵EF∥BD,∴四边形BPFD是平行四边形,∴BP∥DF,∴∠F=∠BPE,∵BE=BP,∴∠E=∠BPE,∴∠E=∠F;(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB∴∠ABD=∠ADB,又∵四边形ABCD为平行四边形,∴四边形ABCD是菱形.【点评】本题考查了平行四边形的性质和判定、菱形的判定等知识,得出四边形BPFD是平行四边形是解题关键.【变式】如图,已知平行四边形ABCD,点E在AC的延长线上,连接BE、DE,过点D作DF∥EB交CA的延长线于点F,连接FB(1)求证:△DAF≌△BCE;(2)如果四边形ABCD是菱形,求证:四边形BEDF是菱形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥CB,证出∠DAF=∠BCE,∠DFA=∠BEC,由AAS证明△DAF≌△BCE即可;(2)先证明四边形BEDF是平行四边形,再由菱形的性质得出AC⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA,∴∠DAF=∠BCE,∵DF∥EB,∴∠DFA=∠BEC,在△DAF和△BCE中,,∴△DAF≌△BCE(AAS);(2)证明:连接BD,如图所示:由(1)得:△DAF≌△BCE,∴DF=BE,又∵DF∥BE,∴四边形BEDF是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,即EF⊥BD,∴四边形BEDF是菱形.【点评】本题考查了菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.题型三:根据菱形的判定与性质求角度 例4.(2023春·福建福州·九年级统考期中)如图,在ABC 中,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,连接AE .(1)求证:AB AE =;(2)若A ABC CB =∠∠,证明:直线AE 与BC 互相垂直.【分析】(1)由ABC 绕点C 顺时针旋转60︒得到DEC ,可得60BCE ∠=︒,BC EC =,而30ACB ∠=︒,即得30ACE ACB ∠=︒=∠,可证()SAS ACB ACE △≌△,故AB AE =;(2)根据ABC 绕点C 顺时针旋转得到DEC ,AB AC =,可得AC DC DE AE ===,证明四边形ACDE 是菱形,得到DA CD ∥;又306090BCD ∠=︒+︒=︒,进而推导出AE BC ⊥.【详解】(1)证明:ABC 绕点C 顺时针旋转60︒得到DEC ,60BCE ∴∠=︒,BC EC =,30ACB ∠=︒,30ACE ACB ∴∠=︒=∠,AC AC =,()SAS ACB ACE ∴≌,AB AE =∴; (2)解:ABC 绕点C 顺时针旋转得到DEC ,AC DC ∴=,AB DE =,由(1)可知AB AE =,AE DE ∴=,若AB AC =,则AC AE =,AC DC DE AE ∴===,∴四边形ACDE 是菱形,AE CD ∴∥;30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,306090BCD ∴∠=︒+︒=︒,即CD BC ⊥,AE BC ∴⊥,即直线AE 与BC 互相垂直.【点睛】本题考查三角形的旋转问题,涉及菱形的判定及全等三角形的判定与性质,解题的关键是掌握旋转的性质,证明ACB ACE △≌△. 模拟预测)如图,在正方形网格中,ABC 的顶点在格点上,请仅用无刻度的直尺 (1)在图1中,作45CAE ∠=︒.(2)在图2中,作ABC 的角平分线CF .【分析】(1)如图,取格点E ,连接AE ,则CAE ∠即为所作;(2)如图,取格点F ,作射线CF ,则射线CF 即为所作;【详解】(1)解:如图,CAE ∠即为所作,由图可得:2AN CM ==,1CN EM ==,90ANC CME ∠=∠=︒,∴()SAS ANC CME ≌,∴CAN ECM ∠=∠,AC CE =,∵90CAN ACN ∠+∠=︒,∴90ECM ACN ∠∠=︒,∴90ACE ∠=︒,∵AC CE =,∴45CAE CEA ∠=∠=︒;(2)解:如图,射线CF 即为所作,由图可得:AC CG GF AF ===∴四边形ACGF 为菱形,∴CF 平分ACG ∠,即CF 是ABC 的角平分线【点睛】本题考查网格作图,全等三角形判定与性质,等腰直角三角形,菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.题型四:根据菱形的判定与性质求线段长 例5.(2023·山西长治·校联考二模)如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,E 为OD 的中点,连接AE ,CE .(1)实践与操作:利用尺规在线段OB 上作出点F ,使得四边形AFCE 为平行四边形,连接AF ,CF ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)应用与求解:若4,60AB BC ABC ==∠=︒,求EF 的长.【答案】(1)见解析(2)【分析】(1)利用圆规在OB 上作OF OE =,根据对角线互相平分的四边形是平行四边形可得四边形AFCE 为平行四边形;(2)先根据平行四边形的性质和已知条件证明EF OB =,再证ABC 是等边三角形,求出4AC =,再证四边形ABCD 是菱形,推出BO AC ⊥,最后根据勾股定理求出OB 即可.【详解】(1)解:如图所示:以点O 为圆心,OE 长为半径作弧,与线段OB 的交点即为点F ,连接AF ,CF .(2)解:由(1)知OF OE =,ABCD Y 中,E 为OD 的中点,∴1122OE OD OB ==, ∴12OF OE OB ==,∴EF OB =,4,60AB BC ABC ==∠=︒,∴ABC 是等边三角形,∴4AC =,ABCD Y 中,AB BC =,∴四边形ABCD 是菱形,∴BD AC ⊥,即BO AC ⊥, ∴122AO AC ==,∴OB ==∴EF =【点睛】本题考查尺规作图,平行四边形的判定与性质,菱形的判定与性质,等边三角形的判定与性质,勾股定理等,解题的关键是掌握菱形、平行四边形、等腰三角形的性质.【变式】如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点E ,点F 为四边形ABCD 外一点,DA 平分∠BDF ,∠ADF =∠BAD ,且AF ⊥AC .(1)求证:四边形ABDF 是菱形;(2)若AB =5,求AC 的长.【分析】(1)首先证明四边形ABDF 是平行四边形,再证明邻边相等即可证明.(2)在Rt △AFC 中,利用勾股定理求解即可.【解答】(1)证明:∵∠ADF =∠BAD ,∴AB ∥DF ,∵AF ⊥AC ,BD ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形;∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∴∠BAD =∠BDA ,∴BD =AB ,∴四边形ABDF 是菱形.(2)解:∵DA 平分∠BDF ,∴∠ADF =∠BDA ,∵BD垂直平分线段AC,∴DA=DC,∴∠ADB=∠BDC=∠ADF,∵DA=DF=DC,∴∠DAF=∠F,∠DAC=∠DCA,∴∠ADC=180°﹣2∠DAC,∠ADF=180°﹣2∠DAF,∵∠DAF+∠DAC=90°,∴∠ADF+∠ADC=360°﹣2(∠DAC+∠DAF)=180°,∴C,D,F三点共线,∴∠ADB=∠BDC=∠ADF=60°,∵FA=FD,∴△ADF是等边三角形,∴AF=DF=CD=5,∵∠FAC=90°,∴AC==5.【点评】本题考查了平行四边形的判定和性质、菱形的判定、角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程,属于中考常考题型.题型五:根据菱形的判定与性质求面积例6.已知,如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.【分析】(1)先证明四边形ABEF是平行四边形,再证明邻边相等即可证明.(2)作FG⊥BC于G,根据S菱形ABEF=•AE•BF=BE•FG,先求出FG即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=.【点评】本题考查平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是利用面积法求出高FG,记住菱形的三种判定方法,属于中考常考题型.【变式】如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使EF=BE,连接CF.(1)求证:四边形BCFE为菱形;(2)若CE=8,∠CFE=60°,求四边形BCFE的面积.【分析】(1)证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,BC=2DE,由已知条件得出EF =BC,证出四边形BCFE是平行四边形,再由EF=BE,即可得出结论;(2)作CM⊥DF于M,由菱形的性质得出EF=CF,证出△CEF是等边三角形,得出CF=CE=8,由三角函数求出CM,即可得出四边形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,BC=2DE,∴EF∥BC,∵BE=2DE,∴BC=BE,∵EF=BE,∴EF =BC ,∴四边形BCFE 是平行四边形,又∵EF =BE ,∴四边形BCFE 为菱形;(2)解:作CM ⊥DF 于M ,如图所示:由(1)得:四边形BCFE 为菱形,∴EF =CF ,∵∠CFE =60°,∴△CEF 是等边三角形,∴CF =CE =8,∴CM =CF •sin60°=8×=4,∴四边形BCFE 的面积=EF •CM =8×4=32.【点评】三角形中位线定理、等边三角形的判定与性质;熟练掌握菱形的判定与性质,证明△CEF 是等边三角形是解决问题(2)的突破口.【过关检测】一、单选题 1.(2023·陕西西安·校考二模)在下列条件中,能判定平行四边形ABCD 为菱形的是( )A .AB BC ⊥B .AC BD = C .AB BC = D .AB AC =【答案】C【分析】根据菱形的判定定理,即可进行解答.【详解】解:A 、若AB BC ⊥,则平行四边形ABCD 为矩形;不符合题意;B 、若AC BD =,则平行四边形ABCD 为正方形;不符合题意; C 、若AB BC =,则平行四边形ABCD 为菱形;符合题意;D 、若AB BC =,则平行四边形不是特殊的平行四边形;不符合题意;故选:C .【点睛】本题主要考查了菱形的判定,解题的关键是掌握有一组另邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形. A .点O 为ABCD Y 的对称中心C .::ABE BDF S S AE ED =△△【答案】B 【分析】由作图知,EF 是线段BD 的垂直平分线,利用平行四边形的性质可判断选项A ;根据菱形的判定定理可判断选项C ;根据菱形的性质得到BDF BDE S S =△△,可判断选项D ;BE 不一定平分ABD ∠,选项B 不正确.【详解】解:由作图知,EF 是线段BD 的垂直平分线,即点O 为ABCD Y 的对称中心,故选项A 正确,不符合题意;∵四边形ABCD 是平行四边形,∴DE BF ∥,∴DEF BFE ∠=∠,∵EF 是线段BD 的垂直平分线,∴BE ED =,BF FD =,BFE EFD ∠=∠,∴DEF EFD ∠=∠,∴DE DF =,∴DE DF BE BF ===,∴四边形BEDF 为菱形,故选项D 正确,不符合题意;∴BDF BDE S S =△△,∴:::ABE BDF ABE BDE S S S S AE ED ==△△△△,故选项C 正确,不符合题意;BE 不一定平分ABD ∠,故选项B 不正确,符合题意;故选:B .【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.(2023·陕西西安·校考一模)在平行四边形ABCD 中,添加下列条件,能判定平行四边形ABCD 是菱形的是( )A .AB AD =B .AC BD = C .90ABC ∠= D .AB CD =【答案】A【分析】根据一组邻边相等的平行四边形是菱形即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,又AB AD =, ∴平行四边形ABCD 是菱形,故选:A .【点睛】本题考查菱形的判定,熟记菱形的判定是解题的关键. 4.(2023·河北衡水·校联考模拟预测)春节期间,某广场布置了一个菱形花坛,两条对角线长分别为2310m ⨯和2410m ⨯,其面积用科学记数法表示为( )A .42610m ⨯B .421.210m ⨯C .521.210m ⨯D .22610m ⨯【答案】A 【分析】利用菱形的面积等于对角线乘积的一半进行计算,或者利用菱形对角线垂直的性质进行面积求解,最后化为科学记数法的形式即可.【详解】菱形的对角线相互垂直()2222ABD CBD ABCD BD AO OC BD AO BD CO BD AC S S S ⨯+⨯⨯⨯=+=+==四边形∴菱形的面积=对角线成绩的一半=224131********⨯⨯⨯⨯=⨯2m 【点睛】本题考查用对角线计算菱形的面积及科学记数法,也可以利用对角线垂直的性质进行面积的计算,注意所有对角线垂直的四边形面积均等于对角线乘积的一半.正确的使用公式和理解科学记数法的写法是解题的关键. 5.(2023·陕西西安·西安市铁一中学校考模拟预测)在下列条件中,能够判定ABCD Y 为菱形的是( )A .AB AC =B .AC BD ⊥ C .90A ∠=︒ D .AC BD = 【答案】B【分析】由菱形的判定和矩形的判定分别对各个选项进行判断即可.【详解】解:A 、由AB AC =,不能判定ABCD Y 为菱形,故选项不符合题意;B 、由AC BD ⊥,能判定ABCD Y 为菱形,故选项符合题意;C 、由90A ∠=︒,不能判定ABCD Y 为菱形,故选项不符合题意;D 、由AC BD =,能判定ABCD Y 为矩形,不能判定ABCD Y 为菱形,故选项不符合题意;故选:B .【点睛】本题考查了菱形的判定,熟练掌握菱形的判定定理是解题的关键.二、填空题【答案】2【分析】由菱形的性质可得OA OD 、的长,则可求得AD 的长,再由三角形中位线定理即可求得结果.【详解】解:在菱形ABCD 中,114322OA AC OD OB BD =====、,AC BD ⊥,由勾股定理得:5AD ,∵H是AB的中点,∴OH是ABD△的中位线,∴1522 OH AD==,故答案为:5 2.【点睛】本题考查了菱形的性质,勾股定理,三角形中位线定理,熟悉这些性质与定理是解题的关键.7.(2023·宁夏石嘴山·统考一模)如图,是小明作线段AB的垂直平分线的作法及作图痕迹,则四边形ADBC一定是______________.【答案】菱形【分析】根据作图方法可知AC BC AD BD===,再根据四条边相等的四边形是菱形即可得到答案.【详解】解:由作图方法可知,AC BC AD BD===,∴四边形ABCD是菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,线段垂直平分线的尺规作图,熟知菱形的判定条件是解题的关键.8.(2023·广东广州·广州市育才中学校考一模)菱形的两个内角的度数比是1:3,一边上的高长是4,则菱形的面积是__________.【答案】【分析】根据菱形相邻的两个角度之比求出对应的角度,利用等腰直角三角形的性质求出菱形的边长,然后用菱形面积公式计算即可.【详解】如左图所示,∵菱形对角相等,互补,且两个内角的度数比是1:3,118045,1804513513A C B D ∴∠=∠=⨯︒=︒∠=∠=︒−︒=︒+,如图1所示,过点D 作BC 边上的高交BC 于点H ,则4DH =,90DHC ∠=︒,45C ∠=︒,∴△CDH 是等腰直角三角形,4CH DH ∴==,CD ∴=∵菱形四条边都相等,BC CD ∴==4ABCD S BC DH =⋅==菱如图2,当过点A 作CD 边上的高交CD 于点H ,同理可证△ADH 为等腰直角三角形,可求得CD AD ==4ABCD S CD AH =⋅==菱故答案为: 【点睛】本题考查了菱形的性质,等腰直角三角形的性质,解题的关键在于求出菱形的边长. 9.(2023春·四川成都·九年级成都嘉祥外国语学校校考阶段练习)如图,在ABCD Y 中,尺规作图:以点A 为圆心,AB 的长为半径画弧交AD 于点F ,分别以点B ,F 为圆心,以大于BF 的长为半径画弧交于点P ,作射线AP 交BC 与点E ,若12BF =,10AB =,则AE AB +的值为________.【答案】26【分析】证明四边形ABEF 是菱形,利用勾股定理求出OA 即可解决问题.【详解】解:由题意可知:AB AF =,AE BF ⊥,OB OF ∴=,BAE EAF ∠=∠,四边形ABCD 是平行四边形,AD BC ∴∥,EAF AEB ∴∠=∠,BAE AEB ∴∠=∠,AB BE AF \==,AF BE ∥,∴四边形ABEF 是平行四边形,AB AF =,∴四边形ABEF 是菱形,OA OE ∴=,162OB OF BF ===,在Rt AOB △中,8OA ,216AE OA ∴==,26AE AB ∴+=.故答案为:26.【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,解题的关键是判定四边形ABEF 是菱形.【答案】8【分析】如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,则BE FE =,OB OF =,证明OAF OEB △≌△,得到AF BE =,进而证明四边形ABEF 是菱形,则13902OB BF AE OA AOB ====︒,,∠ ,由勾股定理得4OA ==,则28AE OA ==.【详解】解:如图所示,连接EF ,设AE BF 、交于O ,由作图方法可知,AE 是线段BF 的垂直平分线,∴BE FE =,OB OF =,∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAF OEB OFA OBE ==∠∠,∠∠,∴()AAS OAF OEB △≌△,∴AF BE =,∴AF AB EF BE ===,∴四边形ABEF 是菱形,∴13902OB BF AE OA AOB ====︒,,∠ ,在Rt ABO △中,由勾股定理得4OA ==,∴28AE OA ==,故答案为:8.【点睛】本题主要考查了菱形的性质与判定,平行四边形的性质,勾股定理,线段垂直平分线的性质和尺规作图,证明四边形ABEF 是菱形是解题的关键. 11.(2023春·四川成都·九年级专题练习)如图,在ABC 中,AB AC =,分别以C 、B 为圆心,取AB 的长为半径作弧,两弧交于点D .连接BD 、AD .若130ABD ∠=︒,则CAD ∠=__________.【答案】25︒/25度【分析】由题意和作法可知:AB AC BD CD ===,可得四边形ABDC 是菱形,再根据菱形及等腰三角形的性质,即可求解.【详解】解:如图:连接CD ,由题意和作法可知:AB AC BD CD ===,∴四边形ABDC 是菱形,)()11180180130252BAD ABD ∠︒−∠=︒−︒=︒,25CAD BAD ∴∠=∠=︒,故答案为:25︒.【点睛】本题考查了菱形的判定与性质,等腰三角形的性质,证得四边形ABDC 是菱形是解决本题的关键.12.(2023·甘肃陇南·校考一模)如图,在平行四边形ABCD 中,2AB BC ==,60BAD ∠=︒,点M 为CD 的中点,连接AM BE AM ⊥,于点E ,则BE 的长为 ___________.【答案】【分析】连接BD BM ,,由题意可得△BCD 是等边三角形,BM CD ⊥,利用勾股定理分别求出BM AM 、,再由等积法求BE 的长即可.【详解】解:连接BD BM ,,∵四边形ABCD 是平行四边形,2AB BC ==,∴四边形ABCD 是菱形,∴2AB BC CD DA ====,CD AB ∥∵60BAD ∠=︒,∴60C ∠=︒,∴BCD △是等边三角形,∵M 是CD 的中点,∴BM CD ⊥, ∴112CM DM CD ===,AB BM ⊥,∵21BC CM ==,,∴BM =在Rt ABM 中,AM ===∵BE AM ⊥,∴AB BM BE AM ⋅==,故答案为:.【点睛】本题考查平行四边形的性质,菱形的判定及性质,等边三角形的判定与性质,熟练掌握菱形的判定及性质,等边三角形的性质,勾股定理,等积法是解题的关键. 13.(2023·湖北襄阳·校考一模)如图,▱ABCD 中,AB AD =,点E 是AB 上一点,连接CE 、DE ,且BC CE =,若40BCE ∠=︒,则ADE ∠=______.【答案】15︒/15度【分析】首先证明四边形ABCD 是菱形,然后根据等腰三角形的性质可得()118040702CEB B ∠=∠=︒−︒=︒,利用三角形内角和定理即可解决问题.【详解】解:在▱ABCD 中,AB AD =, ∴四边形ABCD 是菱形,AB AD BC CD ∴===,//AB CD ,BC CE =,CD CE ∴=,CED CDE ∴∠=∠,40BCE ∠=︒,()118040702CEB B ∴∠=∠=︒−︒=︒,70ADC B ∴∠=∠=︒,70ECD BEC ∠=∠=︒,()118070552CDE CED ∴∠=∠=︒−︒=︒,705515ADE ∴∠=︒−︒=︒.故答案为:15︒.【点睛】本题考查了平行四边形的性质,菱形的判定与性质,等腰三角形的性质,解决本题的关键是掌握菱形的判定与性质.三、解答题 14.(2023·陕西榆林·统考二模)如图,在ABC 中,BAC ∠的平分线AD 交BC 于点D .请利用尺规分别在AB 、AC 上求作点E 、F ,使得四边形AEDF 是菱形.(保留作图痕迹,不写作法)【答案】见解析【分析】作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求.【详解】解:如图所示,作AD 的垂直平分线交,AC AB 于点,E F ,则点,E F 即为所求理由如下,∵EF 是AD 的垂直平分线,∴,==EA ED FA FD ,∴EAD EDA ∠=∠,∵BAC ∠的平分线AD 交BC 于点D ,∴∠∠E A D F A D =,∴EDA FAD ∠=∠,∴AF DE ∥,同理可得AE DF ∥,∴四边形AEDF 是平行四边形,∵EA ED =,∴四边形AEDF 是菱形.【点睛】本题考查了作垂直平分线,角平分线的定义,菱形的判定,熟练掌握基本作图是解题的关键. (1)求证:ABC ADC ≅.(2)若EO CO =,试判断四边形【答案】(1)见解析(2)四边形BCDE 是菱形,理由见解析【分析】(1)根据SSS 定理推出即可;(2)先判断AC 为BD 的垂直平分线得到AC BD OB OD ⊥=,,再由EO CO =,可判断四边形BCDE 为平行四边形,然后利用AC BD ⊥可判断四边形BCDE 是菱形.【详解】(1)在ABC 与ADC △中,AB AD BC DCAC AC =⎧⎪=⎨⎪=⎩,∴()ΑSSS BC ADC ≅.(2)四边形BCDE 是菱形,理由如下:∵AB AD CB CD ==,,∴AC 垂直平分BD ,即AC BD ⊥且BO DO =.∵EO CO =,∴四边形BCDE 是平行四边形.∵AC BD ⊥,∴四边形BCDE 是菱形.【点睛】本题考查了全等三角形的判定,线段的垂直平分线的判定和性质及菱形的判定,解题的关键是了解菱形的判定方法,难度不大. 九年级专题练习)如图,在ABC 中,上的中点,将ABC 绕着点 【答案】(1)见解析(2)【分析】(1)根据旋转的性质可得,AC BD AD BC ==,从而得到AC BD AD BC ===,即可求证;(2)过点A 作AE BC ⊥于点E ,先证明ABC 是等边三角形,可得112BE BC ==,2AB BC ==,再由勾股定理可得AE【详解】(1)证明:∵将ABC 绕着点O 旋转180︒得ABD △,∴,AC BD AD BC ==,∵AC BC =,∴AC BD AD BC ===,∴四边形AECD 是菱形;(2)解:如图,过点A 作AE BC ⊥于点E ,∵60,2B BC AC ∠=︒==,∴ABC 是等边三角形, ∴112BE BC ==,2AB BC ==,∴AE∴菱形AECD 的面积为AE BC ⨯=【点睛】等边三角形的判定和性质,勾股定理,熟练掌握菱形的判定和性质,等边三角形的判定和性质,勾股定理是解题的关键. 17.(2023·黑龙江哈尔滨·统考一模)如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和点O 均在小正方形的顶点上.(1)在方格纸中画出DEF ,使DEF 和ABC 关于点O 对称(点A 、B 、C 的关于点O 的对称点分别为点D 、E 、F );(2)在方格纸中画出以线段EF 为一边的菱形EFMN ,且菱形EFMN 的面积为3,连接CN .请直接写出线段CN 的长.【答案】(1)见解析(2)图见解析;CN =【分析】(1)作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接即可得出DEF ;(2)找出格点M 、N ,连接MF 、MN 、NE ,即可得出菱形EFMN ,求出线段CN 的长即可.【详解】(1)解:如图,作出点A 、B 、C 关于点O 的对称点D 、E 、F ,顺次连接,则DEF 即为所求.(2)解:如图,找出格点M 、N ,连接MF 、MN 、NE 、CN ,则菱形EFMN 即为所求作的菱形;根据格点特点可知,EF MF MN EN ===,∴四边形EFMN 为菱形,1334211132EFMN S =⨯−⨯⨯⨯−−=菱形,CN【点睛】本题主要考查了作中心对称图形,菱形的判断,勾股定理,解题的关键是数形结合,熟练掌握方格纸的特点.【答案】见解析【分析】先利用ABD BDC ∠=∠,证明AB DC ,进而证明四边形ABCD 为平行四边形,再有勾股定理逆定理证明AOB 为直角三角形,得到AC BD ⊥,则问题可证.【详解】证明:∵ABD BDC ∠=∠,∴AB DC ,∵AB CD =∴四边形ABCD 为平行四边形,∵AB CD =2OA =,1OB =,∴22222221OA OB AB +=+==,∴AOB 为直角三角形,即AC BD ⊥,∴四边形ABCD 是菱形.【点睛】本题考查了菱形的判定和勾股定理逆定理,解答关键是熟练掌握菱形的判定方法. (1)求证:四边形AECF 是菱形;(2)若1BE =,4EC =,求EF 【答案】(1)见解析(2)EF 的长为【分析】(1)由D 是AC 的中点,可得AD CD =,由DF DE =,可证四边形AECF 是平行四边形,由DE AC ⊥,可证平行四边形AECF 是菱形;(2)由题意知4AE CE ==,在Rt ABE △中,由勾股定理,得AB =,计算求AB 的值,在Rt ABC△中,由勾股定理,得AC =AC 的值,根据12AECF S EF AC AB EC =⋅=⋅菱形,计算求解即可.【详解】(1)证明:∵D 是AC 的中点,∴AD CD =,∵DF DE =,∴四边形AECF 是平行四边形,又∵DE AC ⊥,∴平行四边形AECF 是菱形;(2)解:∵1BE =,4EC =,四边形AECF 是菱形,∴4AE CE ==,∴在Rt ABE △中,由勾股定理,得AB =∴在Rt ABC △中,由勾股定理,得AC = ∵12AECF S EF AC AB EC =⋅=⋅菱形,∴EF =∴EF 的长为【点睛】本题考查了菱形的判定与性质,勾股定理.解题的关键在于对知识的熟练掌握与灵活运用. 20.(2023春·辽宁本溪·九年级统考开学考试)如图,ABCD Y 的对角线AC ,BD 相交于点O ,点O 作AC 的垂线,与AD ,BC 分别相文于点E ,F ,连接EC ,AF .(1)求证:四边形AECF 是菱形;(2)若4=EC ED ,DOE 的面积是2,求ABCD Y 的面积.【答案】(1)见解析(2)40【分析】(1)由平行四边形的性质得到OA OC =,AD BC ∥,进一步证明()AAS AOE COF △≌△,则AE CF =,即可证明四边形AECF 是平行四边形,由EF AC ⊥即可得到结论;(2)由菱形的性质得到AE CE =,进一步得到4AE EC ED ==,则48==AOE DOE S S △△,即可得到10=+=AOD AOE DOE S S S △△△,由平行四边形的性质即可得到ABCD Y 的面积.【详解】(1)证明:∵四边形ABCD 为平行四边形,∴OA OC =,AD BC ∥,∴DAC ACF ∠=∠,AEF EFC ∠=∠,∴()AAS AOE COF △≌△,∴AE CF =,∵AE CF ∥,∴四边形AECF 是平行四边形,∵EF AC ⊥,∴四边形AECF 是菱形;(2)解:∵四边形AECF 是菱形,∴AE CE =,∵4=EC ED ,∴4AE EC ED ==,∴48==AOE DOE S S △△,∴10=+=AOD AOE DOE S S S △△△,∵四边形ABCD 是平行四边形,∴AC 与BD 互相平分,∴AOD COD BOC AOB S S S S ===△△△△, ∴4=ABCD AOD S S △, ∴40=ABCDS 答:ABCD Y 的面积为40.【点睛】此题考查了平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等,熟练掌握相关判定和性质是关键. 21.(2023·陕西宝鸡·统考二模)如图,在四边形ABCD 中,AB CD =,过A 作AE BD ⊥交BD 于点E ,过C 作CF BD ⊥交BD 于F ,且AE CF =.请你在不添加辅助线的情况下,添一个条件______,使得四边形ABCD 是菱形,并说明理由.【答案】答案不唯一,见解析【分析】添加条件AB AD =,根据HL 证明Rt Rt ABE CDF ≌△△,从而得到ABE CDF ∠=∠,再根据平等线的判断得到AB CD =,从而得到结论.【详解】解:AB AD =.理由:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,在Rt ABE △和Rt CDF △中,AB CD AE CF =⎧⎨=⎩,∴()Rt Rt HL ABE CDF ≌△△,∴ABE CDF ∠=∠,∴AB CD ∥,∵AB CD =,∴四边形ABCD 是平行四边形.∵AB AD =,∴四边形ABCD 是菱形.(注:答案不唯一)【点睛】本题考查了菱形的判定,熟练掌握全等三角形的性质与判定,平行线的性质与判定和菱形的判定是解题的关键. 的交点.若将BED 沿直线 (1)求证:四边形BEDF 是菱形;(2)若::1:3:22AE DE AB =【答案】(1)证明见解析(2)【分析】(1)由平行四边形的性质可得DE BF ∥,则EDB FBD ∠=∠,由折叠的性质可得DE DF =,EDB FDB ∠=∠,则FBD FDB ∠=∠,BF DF DE ==,进而结论得证;(2)设AE a =,则3DE a =,AB =,3BE a =,4AD a =,由()()222293a a a +==,即222AE AB BE +=,可得ABE 是直角三角形,且90BAE ∠=︒,则四边形ABCD 是矩形,由平行四边形ABCD的面积为可得AD AB ⨯=即4a ⨯=解得22a =,根据2BEDF BD EF S DE AB ⋅=⋅=菱形 ,计算求解即可得EF BD ⋅的值.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DE BF ∥,∴EDB FBD ∠=∠,。