冲刺【人教版】初一数学下册期末测试题含答案精品
- 格式:doc
- 大小:169.45 KB
- 文档页数:4
2020-2021学年人教新版七年级下册数学期末冲刺试题一.选择题(共11小题,满分33分,每小题3分)1.下列实数:15,,,﹣3π,0.10101中,无理数有()个.A.1B.2C.3D.42.下列各式计算正确的是()A.=﹣1B.C.D.3.下列调查中,适合用普查方式的是()A.了解某班学生“50米跑”B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.调查长江流域的水污染情况4.下列说法正确的是()①a的倒数是;②相反数等于本身的数为0;③+=;④若|a|=|b|,则a=±bA.①②B.②③C.③④D.②④5.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补6.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<7.如图,将△ABC沿CB向左平移3cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12cm,那么△ADG与△GBF周长之和为()A.12cm B.15cm C.18cm D.24cm8.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称9.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AB∥CE,且∠ADC=∠B;④AB∥CE且∠BCD=∠BAD;其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限11.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打出来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)12.如果点P在x轴下方,到x轴的距离是5,到y轴的距离是2,那么点P的坐标为.13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当m≠0时,点P(m2,﹣m)在第四象限内.其中真命题有(填序号).14.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为.15.已知方程组的解为,写出一个满足条件的方程组.三.解答题(共9小题,满分75分)16.计算:﹣22+﹣﹣|﹣2|.17.解一元一次不等式组:.18.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°,则∠ACB的度数为;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;(4)当∠ACE<90°且点E在直线AC的上方时,这两块三角尺是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由.19.三角形ABC在平面直角坐标系中的位置如图所示,点O为坐标原点,A(﹣1,4),B (﹣4,﹣1),C(1,1).将三角形ABC向右平移3个单位长度,再向下平移2个单位长度得到三角形A1B1C1.(1)画出平移后的三角形;(2)直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);(3)请直接写出三角形的面积为.20.按要求解下列方程组和不等式组:(1)(代入法)(2)(加减法)(3)解不等式:﹣1≤21.为迎接“十九大”,某校组织了“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取了份作品,并补全作品份数条形统计图;(2)“作品成绩为80分”对应的圆心角的度数是;(3)已知该校收到参赛作品共900份,请估计该校学生比赛成绩的平均分是多少?22.问题提出(1)如图1,在△ABC中,CD⊥AB,∠A=a,AC=b,AB=c.则S△ABC =.问题探究(2)如图2,在△ABC中,AB=5,AC=3,D为BC上一点,且满足∠BAD=30°,∠CAD=45°.设AD=a,△ABC的面积为S,求S与a之间的关系式.问题解决(3)如图3,矩形ABCD是一片试验田的平面示意图,农科人员将试验田分成四部分用于不同作物的种植,各部分的示意图分别为△ABE,△CEF,△ADF,△AEF.在试验田划分好之后,为了能够给△AEF部分的试验田进行充分灌溉,农科人员需要从点F处修建一条输水管FG,且满足点G在AE上,FG∥AD.已知点E、F分别在边BC和边CD 上,∠EAF=45°,AD=120m,AB=80m,输水管FG的修建费用为200元/米,请你根据以上数据求修建输水管FG的最低费用.23.2021年第十四届全运会将在美丽的古城西安举行开幕式与闭幕式,为建设生态西安,打造最美全运会,某一路段绿化需国槐和白皮松共320棵,其中国槐比白皮松多80棵.(1)求国槐和白皮松各需多少棵?(2)现计划租用甲、乙两种货车共8辆,一次性将这批国槐和白皮松全部运往该路段.已知每辆甲种货车最多可装国槐40棵和白皮松10棵,每辆乙种货车最多可装国槐和白皮松各20棵.如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.请问应选择哪种方案可使运费最少?最少运费是多少元?24.如图,在△ABC中,AB=AC,∠BAC=90°,BC=14,过点A作AD⊥BC于点D,E 为腰AC上一动点,连接DE,以DE为斜边向左上方作等腰直角△DEF,连接AF.(1)如图1,当点F落在线段AD上时,求证:AF=EF;(2)如图2,当点F落在线段AD左侧时,(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在点E的运动过程中,若AF=,求线段CE的长.参考答案与试题解析一.选择题(共11小题,满分33分,每小题3分)1.解:15 是整数,属于有理数;是分数,属于有理数;0.10101是有限小数,属于有理数;无理数有,﹣3π,共2个,故选:B.2.解:A、原式=﹣1,故本选项计算正确;B、原式=2,故本选项计算错误;C、原式=2,故本选项计算错误;D、原式=±3,故本选项计算错误;故选:A.3.解:A、工作量小,没有破坏性,适合普查.B、D、范围广,工作量大,不宜采用普查,只能采用抽样调查;C、调查具有破坏性,适宜抽样调查;故选:A.4.解:①若a≠0时,a的倒数是,故①不符合题意;②相反数等于本身的数为0,故②符合题意;③+=不一定成立,例如:a=b=1时,故③不符合题意;④若|a|=|b|,则a=b或a=﹣b,故④符合题意.故选:D.5.解:如图知∠A和∠B的关系是相等或互补.故选:D.6.解:A、若m=3,n=﹣2,则2m>3n,故不符合题意.B、若m>n,则2+m>2+n,故符合题意.C、若m>n,则2﹣m<2﹣n,故不符合题意.D、若m>n,则>,故不符合题意.故选:B.7.解:∵将△ABC向左平移3cm得到△DEF,∴AD=EB,∴△ADG与△CEG的周长之和=AD+DG+GF+AG+BG+BF=EF+AB+DF=BC+AB+AC=12(cm),故选:A.8.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.9.解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.10.解:点P(﹣3,2)在第二象限,故选:B.11.解:设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为:.故选:C.二.填空题(共4小题,满分12分,每小题3分)12.解:因为点P在x轴下方,到x轴的距离是5,所以点P的纵坐标是﹣5;因为点P到y轴的距离是2,所以点P的横坐标是2或﹣2,所以点P的坐标为(2,﹣5)或(﹣2,﹣5).故答案为:(2,﹣5)或(﹣2,﹣5).13.解:①对顶角相等,本小题说法是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,本小题说法是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,本小题说法是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,本小题说法是假命题;故答案为:①.14.解:仰卧起坐个数不少于50个的有52、50、53、61、72、58共6个,所以,频率==0.6.故答案为:0.6.15.解:∵方程组的解为,由两个二元一次方程组成,∴方程组为:(不唯一),故答案为:(不唯一).三.解答题(共9小题,满分75分)16.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.17.解:,由①得:x<,由②得:x≤﹣1,则不等式组的解集为x≤﹣1.18.解:(1)∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;(2)∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°;(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE 即∠ACB+∠DCE=180°;(4)30°;理由:∵∠ACD=∠ECB=90°,∴∠ACE=∠DCB=30°,∴∠D=∠DCB=30°,∴CB∥AD.19.解:(1)如图所示,△A1B1C1即为所求.(2)A1(2,2),B1(﹣1,﹣3),C1(4,﹣1),(3)△ABC的面积==,故答案为:(2)2;2;﹣1;﹣3;4;﹣1;(3).20.解:(1)①×2+②得:11x=33,解得:x=3,把x=3代入②得:9﹣2y=3,解得:y=3,所以原方程组的解为;(2)①+②×5得:44y=660,解得:y=15,把y=15代入①得:5x﹣15=110,解得:x=25,所以原方程组的解为.(3)去分母得,2(2x﹣1)﹣6≤3(5x+1),去括号得,4x﹣2﹣6≤15x+3,移项得,4x﹣15x≤3+2+6,合并同类项得,﹣11x≤11,把x的系数化为1得,x≥﹣1.21.解:(1)24÷20%=120份,120﹣8﹣24﹣36﹣12=40份,补全条形统计图如图所示: 故答案为:120;(2)360°×=120°,故答案为:120°;(3)≈82分,答:该校学生比赛成绩的平均分是82分.22.解:(1)在Rt △ACD 中,CD =A C •sin α=bsin α,∴S △ABC =AB •CD =cb •sin α,(2)如图2,过点B 作BE ⊥AD ,交AD 的延长线于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 中,BE =AB •sin ∠BAD =5×sin30°=,在Rt △ACF 中,CF =AC •sin ∠CAD =3×sin45°=,∵S △ABC =S △ABD +S △ACD =AD •BE +AD •CF =AD •(BE +CF ),∴S =a (+)=a ;(3)如图2,延长FG 与AB 交于点Q ,根据题意可知:S △AEF =S △AGF +S △EGF =GF •AQ +GF •BQ =GF •(AQ +BQ )=GF •AB =40FG , 即FG =,故当△AEF 的面积最小时,FG 最小,进而达到修建费用最低;由(1)可知S △AEF =AE •AF •sin ∠EAF =AE •AF ,∴当AE •AF 最小时,S △AEF 最小;如图3,过点A 作AF 的垂线,与CB 延长线交于点H ,作△AEH 的外接圆,记圆心为O ,连接OA、OH、OE,过点O作OP⊥CH,根据作图可知∠HAB=∠FAD,∠ABH=∠D=90°,∴△AHB∽△AFD,∴===,即AH=AF,∵∠FAD+∠BAE=90°﹣∠EAF=45°,∠HAB=∠FAD,∴∠HAB+∠BAE=∠HAE=45°,∴S△AHE=AH•AE•sin45°=×AF•AE•=AE•AF,∴当△AHE的面积最小时,即满足AE•AF最小;设⊙O的半径为r,∠HOE=2∠HAE=90°,则OP=r,HE=r,∴S△AHE=HE•AB=×r•80=40r,∵AO+OP≥AB,∴r+r≥80,∴r≥80(2﹣),∴S△AHE最小=40×80(2﹣)=6400(﹣1),∴(AE•AF)最小===19200(2﹣),∴FG最小=S△AHE最小=××19200(2﹣)=240(﹣1),故修建输水管FG的最小费用为200×240(﹣1)=48000(﹣1)元.23.解:(1)设白皮松需要x棵,则国槐需要(x+80)棵,依题意得:x+80+x=320,解得:x=120,∴x+80=200(棵).答:国槐需要200棵,白皮松需要120棵.(2)设租用m辆甲种货车,则租用(8﹣m)辆乙种货车,依题意得:,解得:2≤m≤4.∵m为整数,∴m可以取2,3,4,∴共有3种租车方案,方案1:租用2辆甲种货车,6辆乙种货车,运费为400×2+360×6=2960(元);方案2:租用3辆甲种货车,5辆乙种货车,运费为400×3+360×5=3000(元);方案3:租用4辆甲种货车,4辆乙种货车,运费为400×4+360×4=3040(元).∵2960<3000<3040,∴选择方案:租用2辆甲种货车,6辆乙种货车可使运费最少,最少运费是2960元.24.(1)证明:∵AB=AC,∠BAC=90°,AD⊥BC,∴∠CAD=45°,∵△EFD是等腰直角三角形,∴∠EFD=∠AFE=90°,∴∠AEF=180°﹣∠CAD﹣∠AFE=45°,∴∠EAF=∠AEF,∴AF=EF;(2)解:当点F落在线段AD左侧时,(1)中结论AF=EF仍然成立,理由如下:如图2,取AC的中点G,连接DG,FG,在Rt△ADC中,∴DG=CG=AG,∴∠GDC=∠C=45°,∴∠DGC=90°,∴△DGC是等腰直角三角形,∵△DFE是等腰直角三角形,∴=,∵∠FDG=∠FDE+∠EDG=45°+∠EDG,∠EDC=∠GDC+∠EDG=45°+∠EDG,∴∠FDG=∠EDC,∴△FDG∽△EDC,∴∠FGD=∠ECD=45°,∴∠FGA=45°,在△FGA和△FGD中,,∴△FGA≌△FGD(SAS),∴AF=DF,∵DF=EF,∴AF=EF;(3)在Rt△ABC中,BC=14,D是BC中点,∴AD=7,取AC的中点G,连接DG,FG,设直线FG与AD相交于点P,由(2)可知∠FGD=45°=∠GDC,∴FG∥DC,∴GP⊥AD且AP=DP=PG=AD=,在Rt△APF中,AP=,AF=,∴PF===,①如图2,当点F落在线段AD左侧时,FG=4,∵△FDG∽△EDC,∴=,∴EC=4;②如图3,当点F落在线段AD的右侧时,∴FG=PG﹣PF=DP﹣PF=3.5﹣0.5=3,同理得△FDG∽△EDC,∴=,∴EC=3.综上,EC的长是4或3.。
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 下列哪个图形是正方形?A.B.C.D.3. 下列哪个数是分数?A. 3.14B. 2/3C. 5D. 7.894. 下列哪个图形是三角形?A.B.C.D.5. 下列哪个数是偶数?A. 3B. 4C. 5D. 7二、判断题(每题1分,共5分)1. 2的平方是4。
()2. 正方形的对角线相等。
()3. 分数和小数可以互相转换。
()4. 三角形的内角和是180度。
()5. 奇数加偶数等于奇数。
()三、填空题(每题1分,共5分)1. 5的立方是______。
2. 正方形的面积是边长的______。
3. 分数3/4可以写成小数______。
4. 三角形的周长是______。
5. 偶数乘以偶数等于______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述正方形和长方形的区别。
3. 请简述分数和小数的区别。
4. 请简述三角形和四边形的区别。
5. 请简述奇数和偶数的区别。
五、应用题(每题2分,共10分)1. 一个正方形的边长是5厘米,请计算它的面积。
2. 一个分数是2/3,请将它转换为小数。
3. 一个三角形的底是6厘米,高是4厘米,请计算它的面积。
4. 一个奇数是7,请计算它与相邻的偶数的和。
5. 一个长方形的长是8厘米,宽是4厘米,请计算它的周长。
六、分析题(每题5分,共10分)1. 分析正方形和长方形的性质,并举例说明。
2. 分析三角形和四边形的性质,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺子和圆规画一个正方形。
2. 请用尺子和圆规画一个三角形。
八、专业设计题(每题2分,共10分)1. 设计一个包含至少三个质数的数列。
2. 设计一个正方形,使其面积等于24平方厘米。
3. 设计一个分数,使其小于1/2。
4. 设计一个三角形,使其周长等于15厘米。
5. 设计一个偶数,使其能被4整除。
人教版七年级数学下册期末试卷(共4套)(含答案)人教版七年级数学下册期末试卷(共4套)(含答案)一、选择题1. 下列四个数中,最小的数是()。
A. -10B. -1/2C. 0D. 1/32. 如果a = -3,b = 4,c = -3,则a + b + c的值是()。
A. 0B. -6C. -2D. 63. 一根木条长12 cm,它的三等分线段的长度是()cm。
A. 3B. 4C. 6D. 84. 下列四组数中,乘法逆元是()。
A. 5和3B. 8和4C. 0和3D. 9和5二、填空题1. 子集A={a, b, c, d}的子集的个数是________。
2. 已知x的相反数是-16,则x的值是________。
3. -5和-8中较大的是________。
4. -2是整数,它的相反数是________。
5. -7和0中较小的是________。
三、解答题1. 小明身高1.65米,小红身高为小明身高的9/10,问小红身高是多少米?解答:小明身高为1.65米,小红身高为小明身高的9/10。
小明身高的9/10 = 1.65 * (9/10) = 1.485米。
所以,小红身高是1.485米。
2. 有一个0.5千克的西瓜,小杰、小明和小红一起吃,小杰吃了西瓜重量的1/5,小明吃了剩下的1/2,小红吃了剩下的部分,问小红吃了多少千克?解答:小杰吃了西瓜重量的1/5 = 0.5 * (1/5) = 0.1千克。
剩下的部分是0.5 - 0.1 = 0.4千克。
小明吃了剩下的1/2 = 0.4 * (1/2) = 0.2千克。
所以,小红吃了0.2千克。
四、应用题某工厂原有职工人数为600人,其中男性为300人,女性是男性人数的3/4,后来工厂又招聘了500人,其中男性是女性人数的4/5,问现在工厂的总人数和男性的人数分别是多少?原有男性人数是300人,女性人数是男性人数的3/4 = 300 * (3/4) = 225人。
人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号12345678答案1.如图所示,下列条件中,不能判断l 1∥l 2的是..A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生(第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3.下列计算中,正确的是A .x 3÷x =x 2B .a 6÷a 2=a 3C .x ⋅x 3=x 3D .x 3+x 3=x 64.下列各式中,与(a -1)2相等的是A .a 2-1B .a 2-2a +1C .a 2-2a -1 D .a 2+15.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A .4个B .5个C .6个D .无数个6.下列语句不正确的是...A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7.下列事件属于不确定事件的是A .太阳从东方升起 B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直.尺.和.圆.规.作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根1DBD ′B ′OC A O ′C ′A ′(第8题图)据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为cm .10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y=.11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.(第16题图)13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:m正面朝上的频率试验者试验次数n 正面朝上的次数mn布丰404020480.5069德·摩根费勤409210000204849790.50050.4979那么估计抛硬币正面朝上的概率的估计值是 .A 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、P OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:OC ①PC=P′C;P′②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一B 个正确结果的序号:.(第16题图)三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC 全等且有一个公共顶点的格点△A 'B 'C ';在图②中画出与△ABC 全等且有一条公共边的格点△A ''B ''C ''.218.计算或化简:(每小题4分,本题共8分)(1)(—3)+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x3-x(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)⎧x=150-2y(1)⎨(2)4x+3y=300⎩⎧x+y=300⎨⎩5%x+53%y=25%⨯300⎧ax+by=3⎧x=2 21.(本题共8分)已知关于x、y的方程组⎨的解是⎨,bx+ay=7y=1⎩⎩3求a +b 的值.22.(本题共9分)如图,AB=EB ,BC=BF ,∠ABE =∠CBF .EF 和AC 相等吗?为什么?CFB(第22题图)EA23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费50金额/元60504030短信费月功能费4%基本话费 40%长途话费短信费金额/元5(1)请将表格补充完整;(2)请将条形统计图补充完整.42010长途话费 36%(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
20232024学年全国初一下数学人教版期末考试试卷(含答案解析)一、选择题(每题1分,共5分)1. 下列数中,哪个是无理数?A. √9B. √16C. √2D. √12. 下列各式中,哪一个不是二次根式?A. √(x+1)B. √(x^21)C. √(x^3)D. √(x^2+1)3. 若a+b=5,ab=3,则a^2+b^2的值为:A. 16B. 18C. 20D. 224. 下列函数中,哪一个是一次函数?A. y=x^2B. y=2x+1C. y=x^3D. y=1/x5. 在平面直角坐标系中,点P(2, 3)关于原点对称的点是:A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何有理数都可以表示为分数的形式。
()2. 两个无理数相加一定是无理数。
()3. 平方根和立方根都是二次根式。
()4. 一次函数的图像是一条直线。
()5. 两个点关于原点对称,则它们的坐标互为相反数。
()三、填空题(每题1分,共5分)1. 已知a=3,b=2,则a+b=______。
2. 若√(x1)=3,则x=______。
3. 一次函数y=2x+1的图像经过______象限。
4. 在平面直角坐标系中,点A(1, 2)到原点的距离是______。
5. 两个平行线的距离是______。
四、简答题(每题2分,共10分)1. 请解释无理数的概念。
2. 什么是一次函数?请举例说明。
3. 如何求两个一次函数的交点坐标?4. 简述平面直角坐标系的四个象限的特点。
5. 请说明点P(x, y)关于x轴对称的点的坐标。
五、应用题(每题2分,共10分)1. 小明家距离学校3公里,他每天以相同的速度上学,如果速度提高20%,则上学时间缩短15分钟。
求小明原来的速度。
2. 一辆汽车从A地出发,以60km/h的速度行驶,另一辆汽车从B 地出发,以80km/h的速度行驶。
两车相向而行,2小时后相遇。
新人教版七年级数学(下册)期末试卷及答案(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x y x y -=-⎧⎨+=⎩ (2)4(1)3(2)833634x y x y --+=⎧⎪++⎨=⎪⎩2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、D5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、83、(3,7)或(3,-3)4、-405、40°6、5三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.3、(1)略;(2)112.5°.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)40;(2)72;(3)280.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
一、选择题(每题1分,共5分)1. 下列数中,最大的数是()A. 2^3B. 3^2C. 2^2D. 3^32. 下列哪一个图形是平行四边形?()A.B.C.D.3. 一个正方形的边长为2,那么它的对角线长为()A. 2B. 2√2C. 4D. 4√24. 下列哪一个数是质数?()A. 21B. 31C. 29D. 205. 下列哪一个比例式是正确的?()A. a:b = b:aB. a:b = a:cC. a:b = c:dD. a:b = b:c二、判断题(每题1分,共5分)1. 任何两个奇数相加的结果都是偶数。
()2. 任何两个偶数相乘的结果都是偶数。
()3. 1是质数。
()4. 任何一个正整数都可以分解为几个质数的乘积。
()5. 两条平行线之间的距离是相等的。
()三、填空题(每题1分,共5分)1. 2^5 = _______。
2. 如果一个正方形的边长为3,那么它的面积为_______。
3. 两个质数相乘的结果是_______。
4. 如果a:b = 3:4,那么a和b的比例式是_______。
5. 两条平行线之间的距离是_______。
四、简答题(每题2分,共10分)1. 请简述平行四边形的性质。
2. 请简述质数的定义。
3. 请简述比例式的性质。
4. 请简述因式分解的意义。
5. 请简述勾股定理。
五、应用题(每题2分,共10分)1. 如果一个正方形的边长为4,那么它的对角线长为多少?2. 如果a:b = 2:3,那么a和b的比例式是什么?3. 请将20分解为几个质数的乘积。
4. 如果一个长方形的长为6,宽为4,那么它的面积是多少?5. 如果一个三角形的两个直角边长分别为3和4,那么它的斜边长为多少?六、分析题(每题5分,共10分)1. 请分析平行四边形和矩形的性质,并说明它们之间的关系。
2. 请分析质数和合数的区别,并说明它们在数学中的应用。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5的正方形。
人教新版七年级下册数学期末冲刺试题及答案一.选择题1.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限2.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<3.下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是()A.B.C.D.4.下列实数:15,,,﹣3π,0.10101中,无理数有()个.A.1B.2C.3D.45.如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC6.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生近视情况的调查B.对我市市民国庆出游情况的调查C.对全国人民掌握新冠防疫知识情况的调查D.对我国自行研制的大型飞机C919各零部件质量情况的调查7.已知0≤a﹣b≤1且1≤a+b≤4,则a的取值范围是()A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤8.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.9.下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个10.为了奖励疫情期间线上学习表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3种C.4种D.5种11.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补12.将点A(﹣5,3)向右平移3个单位长度,那么平移后的对应点A′的坐标为()A.(﹣5,6)B.(﹣8,3)C.(﹣2,3)D.(﹣5,0)13.若方程组的解中x+y=16,则k等于()A.15B.18C.16D.1714.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P 从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2020秒时,点P的坐标是()A.(2019,0)B.(2020,0)C.(2019,1)D.(2020,﹣1)二.填空题15.如果某数的一个平方根是﹣5,那么这个数是.16.如果点P在x轴下方,到x轴的距离是5,到y轴的距离是2,那么点P的坐标为.17.写出“对顶角相等”的逆命题.18.某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数频率分布表(部分)如下(其中m,n为已知数):项目乒乓球羽毛球篮球足球频数8050m频率0.40.25n则mn的值为.19.欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是°.20.已知m、n满足方程组,则m+n的值是.21.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.三.解答题22.计算或解方程(1)计算:(﹣1)2018+﹣3+×(2)解方程组(3)解不等式(3x﹣4)﹣3(2x+1)<﹣1(4)解不等式组并把它的解集表示在数轴上.23.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).24.若关于x、y的二元一次方程组的解满足x+y<5,求出满足条件的m的所有非负整数解.25.郑州市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.26.如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P(m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)写出A1、B1、C1三点的坐标;(2)求三角形A1B1C1的面积.27.为响应阳光体育运动的号召,学校决定从体育用品商店购买一批篮球和足球.按标价若购买2个篮球和3个足球需600元,若购买3个篮球和1个足球需550元.(1)求篮球、足球每个分别是多少元?(2)由于购买数量较多,商店决定给予一定的优惠,篮球每个优惠20%,足球每个优惠10%,若学校决定买两种球共40个,在购买资金不超过4500元时,则购买篮球至多是多少个?参考答案一.选择题1.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.2.解:A、若m=3,n=﹣2,则2m>3n,故不符合题意.B、若m>n,则2+m>2+n,故符合题意.C、若m>n,则2﹣m<2﹣n,故不符合题意.D、若m>n,则>,故不符合题意.故选:B.3.解:A、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;B、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;C、能看成由某一个基本图形通过平移形成的,故此选项符合题意;D、不能看成由某一个基本图形通过平移形成的,故此选项不合题意;故选:C.4.解:15 是整数,属于有理数;是分数,属于有理数;0.10101是有限小数,属于有理数;无理数有,﹣3π,共2个,故选:B.5.解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.6.解:A、对我市中学生近视情况的调查,人数众多,应采用抽样调查,故此选项不合题意;B、对我市市民国庆出游情况的调查,人数众多,应采用抽样调查,故此选项不合题意;C、对全国人民掌握新冠防疫知识情况的调查,人数众多,应采用抽样调查,故此选项不合题意;D、对我国自行研制的大型飞机C919各零部件质量情况的调查,意义重大,应采用全面调查,故此选项符合题意;故选:D.7.解:0≤a﹣b≤1①,1≤a+b≤4②,①+②得1≤2a≤5,0.5≤a≤2.5,故选:C.8.解:依题意得:.故选:A.9.解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如=2是有理数.故选:B.10.解:设购买篮球x个,排球y个,根据题意可得120x+90y=1200,则y=,∵x、y均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4.所以购买资金恰好用尽的情况下,购买方案有3种,故选:B.11.解:如图知∠A和∠B的关系是相等或互补.故选:D.12.解:根据题意,从点A平移到点A′,点A′的纵坐标不变,横坐标是﹣5+3=﹣2,故点A′的坐标是(﹣2,3).故选:C.13.解:由题意得,①+③得:4x=4k+11④,①×6+②得:20x=25k﹣30,即4x=5k﹣6⑤,⑤﹣④得:k=17,故选:D.14.解:点运动一个半圆用时为=2秒,∵2020=1009×2+2,∴2020秒时,P在第1010个的半圆的最末尾处,∴点P坐标为(2020,0),故选:B.二.填空题15.解:如果某数的一个平方根是﹣5,那么这个数是25,故答案为:2516.解:因为点P在x轴下方,到x轴的距离是5,所以点P的纵坐标是﹣5;因为点P到y轴的距离是2,所以点P的横坐标是2或﹣2,所以点P的坐标为(2,﹣5)或(﹣2,﹣5).故答案为:(2,﹣5)或(﹣2,﹣5).17.解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.18.解:由表可知被调查的学生总数为80÷0.4=200,则m=200×0.25=50,∵足球的频数为200﹣(80+50+50)=20,∴n=20÷200=0.1,则mn=50×0.1=5,故答案为:5.19.解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.20.解:,①+②,得4m+4n=16,即4(m+n)=16,所以m+n=4.故答案为:4.21.解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.三.解答题22.解:(1)(﹣1)2018+﹣3+×=1+2﹣3+1=1.(2),①+②,得4x=12,解得:x=3,将x=3代入①,得9﹣2y=11,解得y=﹣1.故方程组的解是;(3)(3x﹣4)﹣3(2x+1)<﹣1,3x﹣4﹣6x﹣3<﹣1,3x﹣6x<﹣1+4+3,﹣3x<6,x>﹣2;(4),解不等式①,得x≥﹣2,解不等式②,得x<﹣,∴原不等式组的解集为:﹣2≤x<﹣,把它的解集表示在数轴上为:23.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.24.解:,①+②得3x+3y=3m+2,即:x+y=,又:x+y<5,故:,解得m<.故m取所有非负整数解是0,1,2,3,4.25.解:(1)这次被调查的总人数是19÷38%=50(人),故答案为:50;(2)C组人数为50﹣(15+19+4)=12(人),补全条形图如下:(3)表示A组的扇形圆心角的度数为360°×=108°;(4)路程是6km时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km的人数所占的百分比是:×100%=92%.26.解:(1)如图所示:A1(﹣4,3),B1(0,0),C1(1,4);(2)△A1B1C1的面积为:==.27.解:(1)设篮球的单价是x元,足球的单价是y元.根据题意,得,解得.答:篮球的单价为150元,足球单价为100元;(2)优惠后篮球单价150×(1﹣20%)=120,足球单价100×(1﹣10%)=90,设购买z个篮球,则购买(40﹣z)个足球,根据题意,得120z+90×(40﹣z)≤4500,解得:z≤30,答:该校最多可以购买30个篮球.。
精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
人教版七年级下册数学期末测试卷一.选择题(每小题3分,共36分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.二元一次方程2a+5b=﹣6,用含a的代数式表示b,下列各式正确的是()A.B.C.D.3.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠2=180°4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7、将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于()A.56°B.68°C.62°D.66°8、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40º D.30º9、若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.610、若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣5201511、若关于x的不等式组只有5个整数解,则a的取值范围()A.B.C.D.12、. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(–13,–13)C.(14,14)D.(–14,–14)二、填空题(每小题3分,共18分)13.如图,当剪刀口∠AOB增大21°时,∠COD增大__________度.14.在二元一次方程x+4y=13中,当x=5时,y=__________.15.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是__________位置.16、已知关于的不等式组只有两个整数解,则的取值范围__________.17、如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是__________.18、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是__________.三、解答题(共8小题,共66分)19.(6分)计算:20.(6分)解方程组:21.(8分)解不等式组:22.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.23.(9分)如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.24.(9分)已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.25.(10分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.D.4.D.5.A.6.D.7、B.8、D 9、B.10、B 11、A 12、C 二.填空题(共6小题,满分24分,每小题4分)13.21度.14.215.(9,12).16、17、2∠α=∠β+∠γ.18、(2011,2)三解答题19.答案为:20.答案为:x=2,y=–1.5;21.解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.22.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.23解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
火车站李庄七下期期末一、选择题:1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 5.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PBA 小刚小军小华(1) (2) (3)6.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 27.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. C 1A 1ABB 1CD15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
人教版初一数学下册期末测试题
一、人生的道路上有许多抉择,现在来看一下,自己是否具有慧眼识真的能力!(本大题共10个小题,每小题3分,共30分。
注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在括号里)
1、计算)3(623m m -÷的结果是( )
A、m 3- B、m 2- C、m 2 D、m 3 2、下列各组长度的三条线段能组成三角形的是( ) A、5cm ,3cm ,9cm ; B、5cm ,3cm ,8cm ; C、5cm ,3cm ,7cm ; D、6cm ,4cm ,2cm ;
3、面积是160平方米的长方形,它的长y 米,宽x 米之间的关系表达式是 ( ) A 、 y =160x B 、 y =
x
160 C 、 y =160+x D 、 y =160-x
4、下图中,正确画出△ABC 的 AC 边上的高的是 ( )
A .
B .
C . D.
5、把0.000295用科学计数法表示并保留两个有效数字的结果是( ) A 、4
3.010-⨯ B 、5
3010-⨯ C 、4
2.910-⨯ D 、5
3.010-⨯
6、如图,下列条件中,不能判断直线l 1∥l 2的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°
7、某同学骑自行车上学,开始以正常速度匀速行驶,但行至中途因车出了毛病,只好停下修车,车修好后,因怕耽误上课,他比修车前加快了骑车速度,继续匀速行驶,下图是行驶路程S 关于行驶时间t 的图象。
其中横轴表示行驶时间,纵轴表示行驶路程,那么符合这个同学形式情况的图象大致是( )。
8
A C 9E
则在下列条件中,无法判定△ABE ≌△ACD 的是 ( ) A 、AD =AE B 、AB =AC C 、BE =CD D 、∠AEB =∠ADC
二、相信自己一定能把最准确的答案填在空白处!(本大题共 8个小题,每小题3分,共24分)
11、计算:2
25155-⎪⎭
⎫
⎝⎛⨯÷=____________。
12、我们都晓得,三角形的高是比较活泼的,它会出现在三角形的内部,也会出现在三角形的外部,然而,当它与三角形一边相会时,你可能找不到它了,今天就请你猜一猜,如果三角形的高与一边重合了,那么这是 三角形。
13、有一种原子的直径约为0.000000563米,它可以用科学计数法表示为___________米。
14、已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是_____ 。
15、若∠1+∠2=1800,∠3+∠4=1800
,且∠1=∠3,则 = ,理由: 。
16、已知“★”表示新的一种运算符号,且规定如下运算规律:m ★n=3m —2n ,则计算 (—2★(—3)的值是 。
17、在地球某地,温度)(C T ︒与高度)(m d 的关系可以近似地用150
10d
T -=来表示,则当高度m d 900=时,温度T 为C ︒________; 18、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使 △ABC ≌△DEF ,则需添加的条件是 .
19、(本题6分)计算:⎪⎭
⎫
⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 224
20、(本题6分)先化简,再求值:(2a+b) 2-(3a -b) 2+5a(a -b),其中110a =,15
b =. 21、(本题6分)利用乘法公式计算:1242-123×125(写出计算过程)
22、(本题6分) ))((z y x z y x --++
F
E
C B A
D
4.5t (小时)
s (千米)3
21.580
E
O
120D
C
B A
23、(本题10分)如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?说明你判断的理由.
24、(本题10分)如图,已知AB=AD,AC=AE, ∠BAE=∠DAC 。
∠B 与∠D 相等吗?请你说明理由。
E C
B
A
25、(本题10分)如图所示,描述了一辆汽车在某直路上行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的变化情况,根据图中提供的信息,回答下列问题:
(1)汽车共行驶多少小时? (2)汽车在途中停留了多少小时? (3)汽车共行驶了多少千米?
(4)从图中你还能得到什么信息?(只写出一条)
A
D B
C
F
E
l
图②
C 26、(本题12分)如图①,直线l 过正方形ABC
D 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作A
E ⊥直线l 、C
F ⊥直线l . (1)试说明:EF =AE +CF ;
(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).。