有压管道水击计算实例
- 格式:pdf
- 大小:460.84 KB
- 文档页数:2
成品油输送管道水击计算分析以及措施摘要:成品油长输管道启输或运行过程中,各类操作导致发生水击现象,引起管道区部超压、液柱分离等现象。
介绍输油管道水击发生的原因,计算分析华南管道压力异常上涨,验证管道发生水击详细情况。
分析管道水击预防措施,自动泄压、水击超前保护,提出各类工况优化。
关键词:成品油输油管道;水击计算分析;水击防护措施.管道水击产生原因和计算.成品油输送过程中,因流量变化、中间站启停下载、泵切换等情况,会使整个水力系统由一个稳定状态过渡到另一个稳定状态。
油品在管道因原有的流体惯性,在工况变化的过程中,液体流速发生改变引起的压力瞬变的过程中,进行能量转换,由原有的动能转变为压能,这就称为水击。
根据茹科夫斯基公式,由于液流速度的瞬时变化所引起的水击压力变化为P=ρa(v0-v),式中ρ为液体密度,kg/m³;a为水击波在该管道中的传播速度,m/s;v0—正常输油时液体流速,m/s;v—突然改变后的液体流速,m/s;管道流速计算公式为v=,式中Q为管道内瞬时流量m³/s;R为管道内径 m。
压力波在管道传播速度取决于管壁的弹性和液体的压缩性,其关系为a=,式中E为管材弹性模量,Pa;D为管道内径,m;δ为管壁厚度,m;K为液体的体积弹性系数,Pa;对于一般的钢质管道,压力波在油品中的传播速度大约为1000~1200m/s。
二、成品油输送管道水击分析.管道不满流产生水击现象分析.输油管道启输时,管内油品由静态转变成动态,输油泵启动时,可作为油品状态变化瞬间。
当管道满流的情况下,管内油品因流体惯性,输油泵对油品进行均匀做功,此时油品流速变化小且管道内各处流速相等。
若管道内存有气体,当输油泵对油品做功时,因输油泵出口的气体惯性小,经由输油泵输出的油品速度提升快,同时对管内气体进行压缩,导致管道内油品流速不一致且不可控。
此时管道内油品部分流速快,部分流速慢,当流速不一的油品接触后,两股油品流速发生变化,引起压力瞬变,从而产生水击。
水击计算当发生水击现象时,根据流体力学原理,压力管道中任一点的流速和压力不仅与该点的位置有关,而且与时间有关,这一不稳定状态将持续过渡到下一个稳定状态。
设在水平管内取出一段流体,在时间段△t 内,水击波从流体的一边传递到另一边。
水击波传播速度为a ,所以流体长度为△L= a △t 。
设原有的流速为V 0,水击波通过后的流速为V 0 –△V ,流速变化值为△V 。
压强也从原有的γH 增大到γ(H+△H),同时流体密度和管道断面都有相应的变化。
根据冲量变化应等于动量变化的原理,即△ p △t = m △V[(γ+△γ)( H+△H)( A+△A)-γHA] △t=()g γγ∆+( A+△A) △L △V 忽略二阶微量,并且t L ∆∆ = a ,得: △H + H A A ∆ = ga △V 再忽略管道断面的变化,得出水击压头的增值为:△H = g a△V = g a(V 0 –V)式中:△H —— 水击压头 ,m ;a —— 水击波速 ,m/s ;V 0 —— 起始流速 ,0.91m/s ;V —— 终了流速 ,0m/s ;A —— 管内截面积,m 2 ;γ —— 流体的容重,kg/m 2. S 2;g —— 重力加速度 ,9.81m/s 2。
再根据连续方程,求得水击波速为:a = EeKD K +1ρ 式中: a —— 水击波速 ,m/s ;K —— 介质的体积弹性模量,1242MPa ;ρ —— 介质密度 ,856kg/m 3 ;D —— 管道内径 , 0.208m ;e —— 管壁厚度 ,0.0052m ; E —— 管材的弹性模量,2.5×105MPa 。
a 约为 1100m/s 。
水击压头: △H = g a(V 0 –V) =81.91100× 0.91 = 102 m。
第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。
第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。
(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。
导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。
(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。
1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。
(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。
(4) 研究减小水击压强及机组转速变化的措施。
2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。
第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。
天津大学,水电站249页水锤压力例题9-2某水电站压力管道长L=400m ,直接自水库引水,上下游水头差120m ,水击波速度a=1000m/s 。
阀门全部开启(τ0=1)时,管道流速Vmax=4.5m/s 。
(1)设阀门在0.5s 中全部关闭,求阀门断面最大水击压力。
(2)设阀门按线性规律关闭,有效关闭时间Ts=4.8s 。
①若阀门由全开到全关,求阀门断面最大水击压力。
②若阀门由部分开启(τ0)到全关,求阀门断面最大水击压力。
解:1判断水击类型计算相长,s a L t r 8.0100040022=⨯== (1)阀门在0.5s 中全部关闭,a L t 2<,发生直接水锤,)(4595.48.910000m v g a H =⨯==∆ (2)阀门按线性规律关闭①有效关闭时间Ts=4.8s ,阀门由全开到全关,aL t 2>=0.8s ,发生间接水锤。
②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s ),a L t 2>=0.8s ,发生间接水锤。
2计算管道特性常数ρ、σ91.11208.925.4100020max =⨯⨯⨯==gH av ρ 32.08.48.95.44000max =⨯⨯==s T gH Lv σ 3判断何种间接水锤、计算水锤压力值①有效关闭时间Ts=4.8s ,阀门由全开到全关,ρτ0=1.91×1=1.91>1,为极限水锤。
采用表9-1中简化公式38.032.0232.0222=-⨯=-=σσξA m ; )(6.4512038.00m H H A m =⨯==∆ξ②若阀门由部分开启(τ0=0.5)到全关,Ts=4.8s ×0.5=2.4(s )ρτ0=1.91×0.5=0.96<1,按照第一相水锤近似公式32.05.091.1132.021201-⨯+⨯=-+=σρτσξA =0.39 )(8.4612039.001m H H A =⨯==∆ξ。
水电站的水击与调节保证计算第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。
在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。
此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。
由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。
其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。
丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。
反之增加负荷时机组转速降低。
(2) 在有压引水管道中发生“水击”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水击。
导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。
反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。
(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。
无压引水系统中产生的水位波动计算在第八章已介绍。
二、调节保证计算的任务水击压力和机组转速变化的计算,一般称为调节保证计算。
调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。
最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。
水击压力的计算和防护1、水击及其危害水击是压力管道中一种重要的非恒定流。
当压力管道中的流速因外界原因而发生急剧变化时,引起液体内部压强迅速交替升降的现象,这种交替升降的压强作用在管壁、阀门或其他管路元件上好像锤击一样,称为水击。
水击引发的压强的升高或降低,有时会达到很大的数值,处理不当将导致管道系统发生强烈的震动,引起管道严重变形甚至爆裂。
因此,在压力管道引水系统的设计中,必须进行水击压力计算,并研究防止和削弱水击作用的措施。
2、管道水击计算管道水击计算时,管道的计算长度就是从阀门开始到上游离它最近的安全阀(调压井)之间的距离,阀门的关闭时间按按照操作规程确定。
水击类型判别由计算管段长度和水击波速可计算出水击波在管路中往返一次所需的时间,即水击相时;然后根据阀门关闭历时与水击相时确定水击类型,即直接水击或间接水击。
当阀门关闭历时等于或小于一个水击相时,瞬时关闭阀门所产生的水击为直接水击,否则为间接水击。
将管道中正常计算的压力水头加上水击产生的压力水头,就是管道中压力水头的值,是用来控制管道级别的重要数据。
3、水击压力防护措施为确保管道安全运行,除在设计中慎重考虑外,更应加强管理,制定和遵守严格操作规程。
水击压力计算公式表明:影响水击压力的主要因素有阀门起闭时间、管道长度和管内流速,因此,可针对以上因素在管道工程设计和运行管理中采取以下措施来避免和减小水击危害。
(1)操作运行中应缓慢启闭闸门以延长闸门启闭时间,从而避免产生直接水击并可降低间接水击压力。
(2)由于水击压力与管内流速成正比,因此在设计中应控制管内流速不超过流速限制范围。
但有时管道中的流量是一定的,管径一般由动能经济计算确定,减小流速意味着加大管径。
用减小流速的办法降低水击压强,往往是不经济的,一般并不采用。
但在一定的条件下,例如适当的加大管径可以免设调压井时,采用这一措施可能是合理的。
(3)由于水击压力与管道长度成正比,因此在设计中可隔一定距离设置具有自由水面的调压井或安装安全阀和进排气阀,以缩短管道计算长度并消减水击压力。