生物医用钛合金材料的研究进展
- 格式:doc
- 大小:46.50 KB
- 文档页数:4
钛合金在骨科植入领域的研究进展钛合金因其具有良好的生物相容性和机械性能,已成为骨科植入物领域的首选材料之一。
骨科植入物是一种用于支撑和修复骨骼系统的医疗设备,对于治疗骨折、关节病变等疾病具有重要意义。
本文将综述钛合金在骨科植入领域的研究进展,包括文献综述、研究现状、研究方法、成果与不足以及未来展望等方面。
在骨科植入领域,钛合金的应用已经有了大量的研究。
早期的研究主要集中在钛合金的生物相容性、耐腐蚀性和机械性能等方面。
随着材料科学的不断发展,人们对钛合金表面改性、微观结构等方面的研究也越来越深入。
研究人员还针对钛合金在骨科植入物中的应用开展了大量临床试验,为钛合金在骨科植入领域的广泛应用提供了依据。
目前,钛合金在骨科植入领域的应用已经非常广泛。
钛合金植入物的设计、制造和表面处理等方面得到了不断改进,使得其生物相容性、机械性能和耐腐蚀性等得到了显著提高。
随着3D打印技术的不断发展,钛合金在定制化植入物方面的应用也越来越受到。
然而,钛合金植入物也存在一些问题,如应力遮挡效应、植入物松动等,这些问题需要进一步研究和解决。
在钛合金在骨科植入领域的研究中,研究人员采用了多种方法,包括实验设计、动物试验、临床试验等。
实验设计主要涉及材料的选取、加工工艺的确定、表面处理方法的优化等方面。
动物试验主要用于评价钛合金植入物的生物相容性和耐腐蚀性等。
临床试验则主要考察钛合金植入物在治疗人类骨科疾病中的疗效和安全性。
通过大量的研究,我们已经取得了许多关于钛合金在骨科植入领域的成果。
钛合金的生物相容性得到了显著提高,这得益于表面改性技术的发展。
通过优化加工工艺和改进植入物设计,钛合金植入物的机械性能和耐腐蚀性得到了提升。
3D打印技术的应用为定制化植入物的发展提供了新的途径。
然而,尽管取得了一定的成果,但仍存在一些问题和不足。
应力遮挡效应是钛合金植入物中一个普遍存在的问题,可能导致骨骼强度下降。
植入物松动是另一个需要的问题,这可能与植入物的固定方式以及患者活动量增加有关。
发布日期:[2006-12-28] 共阅[2695]次摘要综述了生物医用钛及其合金材料的最新开发应用进展与市场状况;对我国目前应用生物医用钛及其合金方面存在的问题进行了初步分析;并对这一领域的发展前景进行了展望。
关键词生物医用钛及其合金材料;生物相容性;弹性模量;骨整合 1 概述生物医用材料是材料科学的一个重要分支,是用于诊断、治疗或替代人体组织、器官或增进其功能、具有高技术含量和高经济价值的新型载体材料,是材料科学技术中一个正在发展的新领域。
生物医用材料对于探索人类生命奥秘、保障人类健康长寿做出更大贡献。
近10多年以来,生物医用材料及制品的市场增长率一直保持在20%—25%左右,预计未来10年-15年内,包括生物医用材料在内的医疗器械产业将达到医药制品市场规模,成为21世纪世界经济的支柱产业。
在生物医用金属材料中,钛及其合金凭借优良的综合性能,成为人工关节(髋、膝、肩、踝、肘、腕、指关节等)、骨创伤产品(髓内钉、钢板、螺钉等)、脊柱矫形内固定系统、牙种植体、牙托、牙矫形丝、人工心脏瓣膜、介入性心血管支架等医用内植物产品的首选材料。
目前,还没有比钛合金更好的金属材料用于临床。
发达国家和世界知名体内植入物产品供应商都非常重视钛合金的研发工作,推出了一系列新的医用钛合金材料,包括具有生物活性的钛合金仿生材料,在医用钛合金材料的表面处理方面也做了很多专利性的设计与开发,赋予医用钛合金材料更好的生物活性以满足人体的生理需要,从而达到使患者早日康复的目的。
世界人口近65亿,据不完全统计,伤残者接近4亿,肢体伤残者6000万,牙病患者20亿,目前生物材料器件植入者仅有3500万人,每年关节置换量约150 万例,与实际需要置换者的数量相差甚远。
因此,生物医用材料市场需求潜力巨大。
而作为生物医用金属材料的首选——钛及其合金需求也将大增,因此加大医用钛合金材料的研发力度势在必行[1]。
2 生物医用钛及其合金材料的发展历程、最新进展及市场状况生物医用钛及其合金材料的发展与应用经历了4个标志性阶段。
钛合金材料在生物医学方面的应用信息43常晨2140502056钛合金材料在生物医学方面的应用信息43 常晨2140502056内容摘要:生物医用钛合金材料已经成为全世界外科植入材料以及各种医疗器械产品生产所需的主要原材料。
本文简略介绍了生物医用钛合金材料的发展历史,以及生物医用钛合金材料及制品的研发、生产及其在生物医学工程领域的具体应用现状,分析了现在生物医用钛合金材料及制品在研发、生产、应用等方面的问题,并就此提出大体发展方向。
关键字:钛合金材料生物医用材料生物相容性性质及应用正文:一、发展历史金属材料是最早用于临床医学的生物医用材料,金属材料用于人体修复已有数百年的历史,早在18 世纪后期,Fe、Au、Ag、Pt 等金属就已经用于人体断骨固定。
与高分子材料、陶瓷材料等其他材料相比,金属材料作为医用材料具有强度高、韧性良好及加工性能好等特点,目前用于外科植入物和矫形器械的金属材料主要包括不锈钢、钴基合金和钛合金三大系列,它们占整个生物材料产品市场份额的40% 左右。
然而在人体环境内,不锈钢和钴基合金会溶出Ni、Cr 和Co 等元素,对人体产生毒副作用。
另外,不锈钢及钴基合金的弹性模量与人体骨骼相差略大,容易对骨骼产生较大伤害最终导致植入后松动或断裂。
钛合金由于其优良的耐腐蚀性与良好的生物相容性已广泛应用于人体硬组织的缺损、创伤和疾病等修复、矫形及替代等治疗。
20 世纪中叶以来,以钛合金为主的医用金属材料开始在人体硬组织的外科植入及人体软组织的介入治疗方面显示出独特而神奇的疗效,而钛合金人工关节、牙种植体、血管内支架和心脏瓣膜等具有典型代表性的医疗器械产品的问世,对医学的发展具有划时代的意义和革命性贡献,使得临床治疗从初级的简单“修复、矫形”治疗上升到更高层次的组织与器官的“替代式”治疗,极大改善和提高了人们的生活质量,克服了以往重大疾病只能单纯依靠药物治疗的不足。
二、分类及特点生物医用钛合金材料是专指用于生物医学工程的一类功能结构材料,主要用于外科植入物和矫形器械等产品的生产和制造。
生物医用钛合金材料的市场现状及问题分析近年来,生物医用钛合金材料作为新型医疗材料一直受到极大的关注。
本文首先回顾了生物医用钛合金材料市场的发展历程,研究了其在医疗器械、牙科用具以及生物医学技术等领域的应用。
其次,分析了当前生物医用钛合金材料市场存在的问题,包括加工技术的发展不足、材料的质量控制状况不佳、价格过高等。
最后,本文提出了一些改善目前市场现状的建议,如加强技术转让、降低生产成本、提高产品质量控制水平等。
综上,本文对生物医用钛合金材料市场进行了深入的分析,给出了改善现状的建议,以推动生物医用钛合金材料的发展与应用。
一、生物医用钛合金材料市场的发展历程某些金属材料在20世纪60年代开始被用作生物医学工具,如钛合金材料和不锈钢材料,从而推动了医疗器械和医疗技术的发展,为医护人员提供了良好的工具。
目前,随着科学技术的发展,国际上已经开发出了一系列具有良好生物相容性和耐腐蚀性的钛合金材料,像纯钛材料和Ti6Al4V材料等,能够适应和有效满足多种医疗技术领域的需求,尤其在医疗器械、牙科用具、组织再生等领域得到了广泛应用。
此外,生物医用钛合金材料也在生物医学技术领域得到了广泛应用。
例如,它可以用于假体材料的生物再生、组织工程、心脏支架的制造、超声刀的制造、影像诊断技术的开发等,以及许多其他的医疗设备研发与应用。
自上世纪八十年代开始,钛合金材料的应用越来越广泛,在医疗器械、牙科用具和生物医学技术等领域已经发展出了一系列生物医学材料,从而推动了生物医用钛合金材料市场的发展。
二、生物医用钛合金材料市场现状及问题当前市场上,与生物医用钛合金材料相关的技术和设备都相对落后,加工技术的革新和改进水平难以跟上生物医用钛合金材料的发展,国内加工技术仍处于起步阶段,严重制约了生物医用钛合金材料的应用推广。
此外,生物医用钛合金材料的质量控制也是一个突出的问题。
由于材料制备过程复杂,偏差率很大,容易导致医疗技术应用的失败和性能不佳。
生物医用金属材料研究现状与应用进展
随着人们对健康的关注度不断提高,生物医用金属材料在医学领域中的应用越来越广泛。
这些金属材料具有良好的生物相容性、力学性能和稳定性,同时也能够满足医学设备的需求。
目前,主要的生物医用金属材料包括钛及钛合金、铬钼合金、不锈钢、镍钛形状记忆合金等。
其中,钛及钛合金是应用最为广泛的生物医用金属材料。
钛及钛合金具有良好的生物相容性,能够与人体组织良好地结合,对人体无毒副作用,同时还具有较高的力学性能和耐腐蚀性。
因此,钛及钛合金制成的医疗器械、种植体、修复材料等在骨科、牙科、耳鼻喉科等医学领域得到广泛应用。
铬钼合金具有优异的耐腐蚀性和高温抗氧化性,因此在心脏起搏器、血管支架等领域也有广泛的应用。
不锈钢在手术器械制造和医用耗材的生产中也有着广泛的应用。
近年来,镍钛形状记忆合金的应用也越来越受到关注。
镍钛合金具有良好的生物相容性、耐腐蚀性和形状记忆性能,因此在牙科、神经外科等领域中得到了广泛应用。
例如,在牙科种植体中,镍钛形状记忆合金能够更好地适应患者的口腔形态,提高种植体的成功率。
总之,生物医用金属材料在医学领域的应用前景广阔,未来还有很大
的发展空间。
但是,金属材料也存在一些问题,例如金属离子的释放、磨损等会对人体造成不良影响。
因此,随着技术的不断进步,对生物医用金属材料的研究和改进也需要不断推进,以更好地满足医学的需求。
生物医用金属材料研究现状与应用进展
生物医用金属材料是指能够与生物体内细胞、组织等进行交互作用,并在体内长期留存的一类金属材料。
随着人口老龄化和医疗技术的进步,生物医用金属材料的研究和应用也越来越广泛。
目前,生物医用金属材料主要包括钛合金、不锈钢、钴合金、复合材料等。
以下是生物医用金属材料的研究现状和应用进展:
1. 钛合金:钛合金具有高强度、耐腐蚀、耐高温等特点,被广泛用于生物医用金属材料中。
目前,钛合金已被广泛应用于人工关节、心脏支架、人工肌肉等领域。
2. 不锈钢:不锈钢具有高耐腐蚀性、良好的机械性能和可焊性,被广泛应用于生物医用不锈钢支架、人工关节等领域。
3. 钴合金:钴合金具有高强度、良好的耐腐蚀性和生物相容性,被广泛用于人工关节、心脏支架等领域。
4. 复合材料:复合材料具有高强度、良好的耐腐蚀性和生物相容性,常被用于生物医用金属材料的制作。
例如,生物医用钛合金支架主要由不锈钢和复合材料制成。
5. 纳米材料:纳米材料具有小的尺寸和强大的表面效应,在生物医用金属材料的应用中具有广阔的前景。
例如,纳米钛合金具有更好的生物相容性和耐腐蚀性。
生物医用金属材料的应用涉及到许多领域,随着科技的发展,其应用领域也将不断扩展。
生物医用钛合金材料的研究进展随着现代医学的发展,生物医用材料在医疗领域中起着至关重要的作用。
其中,钛合金材料由于其优良的生物相容性和机械性能而备受关注。
本文将就生物医用钛合金材料的研究进展进行探讨。
一、钛合金材料的特点钛合金是由钛和其它元素(如铝、钼等)合金化而成的材料。
它具有重量轻、力学性能好、耐蚀性高、生物相容性好的特点,成为了生物医学领域中广泛使用的材料之一。
钛合金的重量轻是由于钛的密度较小,在医疗设备中使用可以减轻患者的负担,提高手术的成功率。
同时,钛合金的力学性能优异,能够满足不同医学需求的要求,比如可以使用于骨骼支架、牙科种植体等方面。
另外,钛合金具有良好的耐蚀性,不易被体液和生物组织腐蚀,因此可以长期应用于植入体内的医疗器械。
此外,钛合金表面易于与骨组织结合,能够促进骨与植入物的整合,提高植入物的稳定性与功能。
二、生物医用钛合金材料的应用(一)骨骼修复领域钛合金材料在骨骼修复领域中有着广泛的应用。
具体而言,钛合金可以制成骨板、骨螺钉等用于骨折固定,或制成人工关节、人工髋等用于关节置换。
这些医用器械不仅具有良好的生物相容性,而且由于钛合金的机械性能优良,可以承受髋关节等关节处较大的压力,降低植入物疲劳破坏的风险。
(二)牙科应用领域钛合金材料在牙科应用领域中也有着重要的地位。
一些研究表明,钛合金种植体可以与骨组织无缝结合,能够成为牙齿修复的稳定支撑。
此外,钛合金材料表面可进行氧化处理,形成微米级的表面粗糙度,有助于促进骨细胞的黏附和生长,提高种植体的成功率。
(三)心脏血管领域钛合金材料在心脏血管领域的应用主要体现在人工心脏瓣膜上。
钛合金人工心脏瓣膜具有平滑的表面、良好的机械性能和生物相容性,能够在血流中保持无阻力、无泄漏的状态。
三、钛合金材料改性与表面处理目前,对钛合金材料的改性与表面处理成为了研究的热点。
常见的改性方法包括氧化、纳米涂层、生物功能化修饰等。
氧化处理可以改善钛合金表面的生物相容性和机械性能,增强钛合金与骨组织的结合。
钛合金生物相容性的研究进展钛合金是一种常用的材料,在医疗器械和人工骨骼等领域得到了广泛的应用。
然而,钛合金可塑性强、生物相容性好等特点,却没有被完全解开其神秘面纱。
今天我们就来探讨一下钛合金生物相容性的研究进展。
一、钛合金在人工骨骼领域中的应用人工骨骼的替代品主要包括金属、陶瓷、塑料等材料。
钛合金几乎成为了这种替代品的比较主要的材料,因为钛合金本身力学性能极为优越,较大程度上可以模拟人体骨骼的生物力学性能。
同时,在与骨骼相接触的表面上具有良好的生物相容性。
虽然钛合金作为人工骨骼的替代品已经被广泛应用于临床领域,但是其材料主要由钛、铝等成分组成,无法恰当的仿真人骨。
在众多研究中发现,当接近应力、接口应变时,较弱的机械性能会导致钛合金生物相容性出现问题。
因此钛合金在医疗领域的应用还有很大的拓展空间。
二、改善钛合金表面粗糙度可以提高其生物相容性在钛合金上生长组织海绵是一种常见的技术,这种技术是通过水热法在钛合金表面生长出微小孔洞,然后在孔洞中生长出组织形态类似于骨骼组织的三维网状结构。
这种三维多孔结构可以有效的增加钛合金接口的面积,做到更加长时间的连接,也可以提高钛合金的生物相容性。
通过淬火等材料表面处理的方法,可以极大的提高钛合金的力学性能,也可以改善钛合金的生物相容性。
三、钛合金复合材料可以拓展钛合金应用范围随着科技的发展和人们生活质量的提升,提高钛合金的生物相容性、力学性能、生物学行为和抗腐蚀能力已经成为了钛合金研究的热点。
复合材料作为一种新兴的研究领域,也不断地走近工业界的小伙伴。
复合材料通过结合不同材料的优点,使钛合金更适用于广泛的领域,比如生物医用类、航空航天领域、汽车、船舶和石油开采等领域。
与此同时,相比单一材料的缺点,复合材料的合成过程更复杂,价格也相对昂贵,所以尽管如此,钛合金复合材料仍具有极高的应用前景。
四、结语总而言之,钛合金生物相容性的研究已经出现了一些显著的进展,但是,目前来看,钛合金依然面临很大的问题。
生物医用材料钛合金的发展概况及前景戴开超1080910217摘要:本文主要论述了我国生物医用材料钛合金的发展历程,生物医用材料钛合金的生物相容性等性能要求,生物医用材料钛合金的发展前景等。
关键词:钛合金生物医用生物相容性前言生物医用材料可对机体组织进行诊断、治疗、置换损伤组织、器官或增进其功能,属医疗器械范畴,其研究是介于生物学、医学、材料学和化学之间的交叉性边缘学科,研究内容几乎覆盖材料科学与生命科学的整个领域,具有知识、技术密集和多学科交叉的特点。
尽管现代意义上的生物医学材料起源于20世纪40年代,其学科也仅形成于20世纪80年代,但生物医用材料涉及亿万人的健康,是保障人类健康的必需品。
生物医用材料的应用不仅挽救了数以千万计人的生命,使疾病得以早期发现和有效治疙并显著降低了重大疾病的死亡率,同时,它对于改善人们的健康状况和提高生活质量,具有重要的民用价值和社会意义。
生物医用材料的发展生物医用材料在我国起步仅仅20年左右的时间,无论是原始创新的基础研究,还是技术创新性研究,整体水平均落后于发达国家。
尽管如此,在国家自然科学基金、“863”项目、“973”项目以及国家科技支撑计划等项目的大力支持下,近些年来我国生物医用材料的研究已从分散、低水平的重复研究,逐步集中于学科发展的方向和前沿,并取得了举世瞩目的蓬勃发展。
骨科修复材料因市场需求巨大,其研究与产业快速发展,在组织工程、药物缓释、纳米材料、血液相容与净化材料、非病毒性基因治疗载体等领域与国际先进水平的差距已逐渐缩小,并取得子一批具有自主知识产权的技术项目。
进入21世纪以来,我国生物医用材料加速发展我国生物医用材料研究领域研究论文的发表数量正在大幅度上升、被引用的次数也不断增加,在国际刊物上所占的比重也在提高。
钛合金在生物医学方面的研发史可追溯到20世纪40年代初期,Bothe等人首先把纯钛引入到生物医学领域,他们发现钛与老鼠股骨之间无任何不良反应。
XXXX学院生物材料学期末考查XXXX学年第一学期题目:生物医用钛合金材料的研究进展学院:XXX专业:XXX班级:XXX姓名:XXX学号:XXXXX年XX月XX日生物医用钛合金材料的研究进展XXXXXXXX学院【摘要】:介绍了钛合金属材料的发展历程,应用要求及功能特性,阐述了钛合金材料的医学应用研究与发展前景。
【关键词】:钛合金材料;特性;应用The application of biological titanium alloy materialsXXXXXXXX UniversityAbstract: Introduced the development history,application requirements functional characteristics ; functional properties and application research and development prospect of biological titanium alloy materials.Key Words: biological titanium alloy materials; characteristics; Application一、简介生物金属材料是植入人体(或动物体)以修复器官和恢复功能用的金属材料。
生物金属材料是一种发展较早的生物材料,它们在医学上的应用已有很长的时间。
但近20年来,与发展迅速的医用高分子材料、生物陶瓷材料和天然生物材料相比,医用金属材料的发展较为缓慢,但由于医用金属材料除具有其他材料不能比拟的高机械强度和优良的抗疲劳性外,一些材料还具有一定的韧性,所以目前在临床上仍有广泛的应用。
近年来钛及其合金在临床上的应用有明显主导地位,已逐步取代了Co-Cr合金及其不锈钢,钛及其合金以其与骨相近似的弹性模量、良好的生物相容性及在生物环境下优良的抗腐蚀性在临床上得到了越来越广泛的应该二、钛合金材料发展历程医用钛及钛合金的发展经历了 3 个时代: 第一个时代是α型, 以纯钛和Ti -6 Al- 4 V为代表; 第二个时代是α+ β型, 以Ti-5Al-5Fe 和T i-6Al-7Nb 为代表; 第三个时代是目前正在研制开发的生物相容性更好、弹性模量更低的β型钛合金时代。
作为人体植入物的主要金属基生物材料有不锈钢、钴基合金、钛及钛合金。
由于在人体环境内不锈钢和钴基合金比较容易发生腐蚀, 溶出Ni、Cr 和Co 元素, 对人体有毒副作用。
另外, 不锈钢和钴基合金的弹性模量比人体骨高很多。
不锈钢的弹性模量约为210 GPa, 钴基合金的弹性模量约240 GPa, 远高于人体骨约为20~ 30 GPa 的弹性模量。
而钛及钛合金以其与人体骨相近的弹性模量、良好的生物相容性及在生物环境下优良的抗腐蚀性能, 而在临床上得到越来越广泛的应用。
从20 世纪60 年代以来, Ti-6Al-4V 和Ti-6A1-4VELI 合金开始大量应用于医用领域。
然而, 随着生物医学的发展, Kiviluto、Schiff等人通过对工业上与V 接触的工人观察和动物实验认为, V 对机体有潜在的毒性。
S. G. Steineman[ 10]研究V 在兔子体内的植入行为也得出同样结论。
由于大量数据证实V 对人体具有毒性作用, 因而自20 世纪80年代以来, 德国和瑞士先后研制出无V 的α+ β型钛合金T i-5Al-5Fe和T i-6Al-7Nb合金。
这两种合金的力学性能与T i-6A1-4V 相近, 弹性模量为骨弹性模量的4~ 10 倍, 然而材料性能并没有较大的改进, 而且这些合金仍含有Al 元素。
由于20世纪90年代不断有关于Al 对人体存在潜在危害的报告, 因此美国和日本开始研制开发了不含Al、V的低弹性模量的新型生物医用?型钛合金, 例如T i-13Nb-13Zr、T i-12Mo-6Zr-2Fe和T i?35Nb-7Zr-5T a等。
三、生物医用金属的应用要求植入体内的金属材料是浸泡在血液、淋巴液、关节润滑液等体液之中使用的。
体液含有有机酸、无机盐,存在Na+、K+、Ca2+、Cl-等离子,是一种电解质,而且使用时间长达几年甚至几十年之久,因此生物金属材料首先要具备与人体组织、体液有良好的适应性(无毒,不引起变态反应和异常新陈代谢,对组织无刺激性),同时还要有耐蚀性和化学稳定性(金属离子不随血液转移,在体内生物环境中不发生变化,不受生物酶的影响)。
生物金属材料要承受人体的各种机械动作,因此在力学上应具有适宜的强度、韧性、耐磨性和耐疲劳性能。
此外,生物金属材料还要容易加工成各种复杂形状,价格便宜和使用方便。
由于生物金属材料的种类不同,应用目的不同,制植制备和加工方法有所差异,但无论何种方法都必须满足生物材料的基本要求四、生物医用钛合金材料的应用现状1、金属钛和钛合金纯钛具有无毒、质轻、强度高、生物相容性好等优点,且纯钛不会生锈,而且耐高温、低温、耐腐蚀,可与骨组织直接连接形成物理性结合,经证明与骨组织也可以发生化学性结合,因此在骨科领域应用较广。
基于以上优点,20世纪50年代,美国和英国就开始把纯钛用于生物体。
到了20世纪60年代,钛合金开始作为人体植入材料而广泛应用于临床。
钛合金就是为了进一步加强纯钛的强度而制成的。
生物相容性不如纯钛,但强度是不锈钢的3.5倍,为目前所有工业金属材料中最高。
1973年北京有色金属研究总院与天津市骨科医疗器械厂合作生产了300个钛人工股骨和髋关节,并用于临床。
由于钒有毒,对人体具有潜在的有害影响,因此20世纪70~80年代世界各国开始用钛合金研制无钒植入物。
临床领域内纯钛及其合金在修补各类大(颅、肋、胸、颌骨等)骨缺损、人工关节、种植体以及作为骨固定用板、钉、螺丝等材料中广泛使用,并取得了令人瞩目的成绩。
2、记忆合金记忆合金是形状记忆,使用最多的是镍钛记忆合金。
镍钛记忆合金具有优异的生物相容性,其表面易形成TiO2钝化膜。
TiO2膜的功能主要表现在两个方面:一方面阻止了基本的腐蚀,增加了材料的稳定性;另一方面形成一层物理化学屏障,阻止Ni的氧化,从而改变了Ni的氧化方式。
镍钛合金有较好的力学性能,具有耐蚀性、耐磨性,抗疲劳性高,弹性模量与人骨较相近(7~30GPa),因此,镍钛形状记忆合金已成为医学领域中一种理想的生物材料,随着介入医学的发展,在医学领域的应用更加广泛。
镍钛记忆合金主要用于齿科、骨科、心血管外科以及胸外科、耳鼻喉科、肝胆科、泌尿外科和妇科的支架等。
3、形状记忆合金形状记忆合金是一种新型医生物材料,国内医用形状记忆合金研究始于20世纪70年代,并很快得到了广泛应用。
临床上已采用的形状记忆合金主要有镍钛形状记忆合金和铜基形状记忆合金,前者应用广泛。
医用镍钛形状记忆合金在相变区具有形状记忆特性和超弹性,在低温下(0℃左右,处于马氏体状态)比较柔软,可以变形,将其加热到人体温度时(高温相状态)立刻恢复到原来形状,产生持续柔和的恢复力。
而此时材料较硬富有弹性,可起到矫形或支撑作用。
其记忆恢复温度为36±2℃,符合人体温度,在临床上表现出与不锈钢和钛合金相当的生物相容性。
其优良的生物相容性、耐腐蚀、耐磨性、无毒等特征,被称为21世纪的新型功能材料。
但由于镍钛记忆合金中含有大量的镍元素,如果表面处理不当,则其中的镍离子可能向周围组织扩散渗透。
医用形状记忆合金主要用于整形外科和口腔科,镍钛记忆合金应用最好的例子是自膨胀支架,特别是心血管支架。
五、钛合金材料应用展望近年研究开发了多种性能优越的新型医用β型钛合金, 但目前临床广泛使用的材料仍以纯钛和T i-6Al-4V 合金为主。
总体来讲, 目前使用的钛合金存在的主要问题有:( 1) 植入材料与人体骨组织弹性模量差距大, 力学不相容;( 2) 植入物表面生物活性不佳, 不利于骨组织的长入;( 3) 耐磨性能较差;( 4) 耐蚀性能有待提高。
金属材料的耐蚀性能将直接影响到材料的生物相容性。
由于人体环境中存在氯离子和蛋白质, 所有金属及合金在接触体液时都会被腐蚀, 在植入物表面会发生各种化学反应。
因此, 通过表面改性提高材料的耐腐蚀性能, 延长材料的使用寿命就显得非常重要。
六、结语随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。
人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。
这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求。
因此生物材料己成为各国科学家竞相进行研究和开发的热点。
当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业。
参考文献[1]浦素云1990 金属植入材料及其腐蚀北京北京航空航天大学出版社[2]肖纪美2002 材料腐蚀学原理北京化学工业出版社[3]周长忍.生物材料学.北京:中国医药科技出版社,2004[4]夏胜利,杨庆秋.复合异种骨研究进展[J].中国矫形外科杂志,2003,11(9):622-623.[5]顾其胜,侯春林,徐政.实用生物医用材料学.上海:上海科学技术出版社,2005[6]郑玉峰,李莉.生物医用材料学.哈尔滨:哈尔滨工业大学出版社,2005[7]陈贻瑞,王建1999 基础材料与新材料天津:天津大学出版社。