2012年吉林省中考数学试题及答案解析
- 格式:doc
- 大小:3.76 MB
- 文档页数:15
1.在四个数0,-2,-1,2中最小的数是()A. 0B. -2C. -1D. 22.如图,由5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()3.下列计算正确的是()A. 3a-a=2B. a2+2a2=3a2C. a2·a3=a6D. (a+b)2=a2+b24.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数为()A. 40°B. 60°C. 80°D. 120°5.如图,菱形OABC的的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数kyx=(x>0)的图象经过点A,则k的值为()A. -6 B. -3 C. 3 D. 6 6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x台机器,则可列方程为()A.6004505x x=+B.60045050x x=-C.60045050x x=+D.60045050x x=-7.=_________.8.不等式2x-1>x的解集为_____________.9.若方程x2-x=0的两根为x1,x2(x1<x2),则x2-x1=__________.10.若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为S甲2=1.5,S乙2=2.5,则________芭蕾舞团参加演出的女演员身高更整齐(填“甲”或“乙”).11.如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=________度.12.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以A为圆心,AC为半径画弧,交AB于点D,则BD=_________.13.如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠P AB 的度数可能为__________.(写出一个符合条件的度数即可)14.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转第(4)题A B C D第(2)题60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△AED 的周长是___________. 15.先化简,在求值:(a +b )(a -b )+2a 2,其中a =1,b16.如图,在东北秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm ,演员踩在高跷上时,头顶距离地面的高度为224cm ,设演员的身高为xcm ,高跷的长度为ycm ,求x ,y 的值.17.如图,有一盘棋和一个质地均匀的正四面体骰子(各面上依次标有1,2,3,4四个数字),游戏规则是游戏者每掷依次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如:若棋子位于A 处,游戏者所掷骰子着地一面所示数字为3,则棋子由A 处前进3个方格到达B 处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A 处前进6个方格到达C 处的概率.18.在如图所示的三个函数图像中,有两个函数图象能近似地刻画如下a ,b 两个情景:情景a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校; 情景b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1) 情景a ,b 所对应的函数图象分别为___________,______________.(填序号) (2) 请你为剩下的函数图象写出一个合适的情景.19.在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C . (1)若点A 的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则=A D O ABCS S △△__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为___________.20.如图,沿AC方向开修一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路CE段得长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75).21.为了宣传节约用水,小明随机调查了某小区家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.如图,在△ABC中,AB=AC,D为BC边上一点,以AB,BD为邻边□ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.23.如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B的直线折叠,点O恰好落在 AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一点D点,D与B有道路(细实线部分)相同,A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货,该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次,货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含有x的代数式填空当0≤x≤25时.货车从H到A往返1次得路程为2xkm,货车从H到B往返1次得路程为______km.货车从H到C往返2次的路程为_________km,这辆货车每天行驶的路程y=___________km.当25<x≤35时,这辆货车每天行驶的路程y=__________;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?25.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动,当点P到达B点时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F,设点P的运动时间为ts,正方形APDE和梯形BCFQ重合部分面积为Scm2.(1)当t=_________s时,点P与点Q重合;(2)当t=_______s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0),分别过点A,点B作x 轴的垂线,交抛物线y=x2于点C,点D,直线OC交直线BD于点E,直线OD交直线AC于点F,点E,点F的纵坐标分别为y E,y F.特例探究:填空:当m=1,n=2时,y E=________,y F =__________.当m=3,n=5时,y E=________,y F =__________.归纳证明:对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用:(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S=3S△OFE时,直四边形OFEB接写出m与n的关系及四边形OFEA的形状.。
2012年长春市初中毕业生学业考试数 学本试卷包括七道大题,共26小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸上、试卷上答题无效.一. 选择题(每小题3分,共24分)1. 在2、0、-2、-1这四个数中,最大的数是( ) (A )2 (B) 0. (C) -2. (D) -1.2. 神舟九号飞船发射成功,一条相关的微博被转发了3570000次,3570000这个数用科学计数法表示为( ) (A)435710⨯. (B) 535.710⨯ (C) 61057.3⨯ (D) 73.5710⨯ 3.不等式3x-6≥0的解集为( )(A) x >2 (B) x ≥2. (C)x <2 (D)x ≤2.4. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是( )5.右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是( )(A) 27 (B)29 (C) 30 (D)316.有一道题目:已知一次函数y=2x+b,其中b <0,…,与这段描述相符的函数图像可能是( )7.如图,在Rt △ABC 中,∠C=90°.D 为边CA 延长线上的一点,DE ‖AB,∠ADE=42°,则∠B 的大小为( )(A) 42° (B) 45°(C) 48° (D)58°8. 如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A, B为圆心,以大于12AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为( )(A)m+2n=1 (B)m-2n=1 (C)2n-m=1 (D)n-2m=1二、填空题(每小题3分,共18分)9.计算:23-3___10.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).11.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,则弧FG所对的圆周角∠FPG 的大小为度.12.如图,在△ABC中,AB=5,AC=4,点D在边AB上,∠ACD=∠B,则AD的长为.13.如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为。
2012年长春市初中毕业生学业考试(数学)参考答案本试卷包括七道大题,共26小题,共6页.全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形区域内.2.答题时,考试务必按照考试要求在答题卡上的指定区域作答,在草稿纸、试卷上答题无效.一. 选择题(每小题3分,共24分)1.在2、0、-2、-1这四个数中,最大的数是(A)(A) 2 (B) 0. (C) -2. (D) -1.2.神舟九号飞船发射成功,一条相关的微薄被转发了 3570000次,3570000这个数用科学计数法表示为(C)(A) 357xlO4. (B) 35.7xlO5(C) 3.57xlO6(D) 3.57xlO73.不等式3x-6>0的解集为(B)(A) x>2 (B) xN2. (C)x<2 (D)xW2.4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是(D)5.右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为 (单位:人):30, 31, 27, 26, 31.这组数据的中位数是(C)(A) 27 (B)29 (C) 30 (0)316.有一道题目:巳知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是(A)7.如图,在 RtAABC 中,ZC=90° . D 为边 CA 延长线上的一点,DE || AB, ZADE=42° ,则ZB 的大小为(C)8.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、0B,使OA=OB;再分别以点A, B为圆心,以大于L AB长为半径作弧,两孤交于点C.若点C的坐标为(m-l,2n),则m2与n的关系为(B)(A)m+2n=l (B)m-2n=l (C)2n-m=l (D)n-2m=l二、填空题(每小题3分,共18分)9.计算:2吏)-也= V310.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为Lab册(用含a、b的代数式表示).2 —11.如图,。
吉林省2012年中考数学试卷分析一、基本情况:本卷共有26道题,其中单项选择题6小题,填空题8小题,解答题12小题,满分120分,数与代数、图形与空间、统计与概率试题分数分别为48分、57分、15分,占总分的40%、47.5%、12.5%。
本卷十分注重体现课程标准的评价理念,题目立意新,结构合理,突出对知识发生过程以及实际应用和创新意识的考查,将传统题型与创新题型相结合,同时试题的难度表现出一定的坡度,既考察了学生是否达到课程标准所规定的毕业水平,又照顾了升学考试的分流要求。
二、试题分析(一)各考点所占分值情况:(1)数与式占12分;(2)方程与不等式占13分;(3)函数占23分;(4)图形的认识与变换占12分;(5)三角形与四边形占31分;(6)圆占14分;(7)统计与概率占15分。
(二)从试卷考查的内容来看,基本覆盖了《数学课程标准》所列的主要知识点,对初中数学的主要内容:数与式、方程、三角形、四边形、统计与概率都作了重点考查。
出现了视图、代数式化简求值、解不等式、列分式方程和二元一次方程组、二次函数图像性质、求函数解析式、等腰三角形、四边形、相似三角形、圆的相关知识、坐标系画图、统计与概率计算等考点。
(三)注重基础知识和基本技能的考查。
试题利用填空题、选择题和解答题三种题型,全面考查了初中数学的基础知识和基本技能。
有不少题目紧扣课标,源于课本,又着重于对考生能力的考查。
从试题分布情况来看,直接运用有关知识进行解答的容易题和稍难题近70%,试题编排从最基本的知识(数的比较)开始,由易到难,逐步提高难度,学生动手很容易。
选择题、填空题基本上是课本练习题的改编,解答题中的大部分题目都立足于考查初中数学核心的基础知识、基本技能和基本数学思想方法,如15题先化简再求值,16题列方程组解应用题,17题求概率,18题函数图象,20题解直角三角形,都是历年中考的热点,也是考查的核心部分。
(四)评卷过程中发现的学生答题存在的问题:1、选择题(1—6)选择题是电脑自动阅卷,看不到答题情况,从试题上看,选择题突出了对学生基础知识和基本技能的考查,试题难度不大。
2012年长春市初中毕业生学业考试数 学本试卷包括七道大题,共26小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一、选择题(每小题3分,共24分) 1.在2,0,2-,1-这四个数中,最大的数是(A )2. (B )0. (C )2-. (D )1-.2.神舟九号飞船发射成功,一条相关的微博被转发了3 570 000次.3 570 000这个数用科学记数法表示为(A )357×104. (B )35.7×105. (C )3.57×106. (D )3.57×107. 3.不等式3x -6≥0的解集为(A )2x >. (B )x ≥2. (C )2x <. (D )x ≤2.4.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是(A ) (B ) (C ) (D )5.右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31. 这组数据的中位数是 (A )27. (B )29. (C )30.(D )31. 6.有一道题目: ,与这段描述相符的函数图象可能是(A ) (B ) (C ) (D ) 7.如图,在Rt ∆ABC 中,90C ∠=︒,D 为边CA 延长线上一点,DE //AB ,∠ADE =42︒,则∠B 的大小为(A )42︒. (B )45︒. (C )48︒. (D )58︒.已知一次函数2y x b =+,其中b<0,…(第5题)(第7题)(第8题)8.如图,在平面直角坐标系中,在x轴、y轴的正半轴上,分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点C.若点C的坐标为(1m-,2n),则m与m的关系为(A)21m n+= .(B)21m n-=.(C)21n m-=.(D)21n m-=.二、填空题(每小题3分,共18分)9.计算:= .10.学校购买了一批图书,共a箱,每箱有b册.将这批图书的一半捐给社区,则捐给社区的图书有册(用含a、b的代数式表示).11.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,则⌒FG所对的圆周角∠FPG 的大小为度.(第11题) (第12题)12.如图,在∆ABC中,AB=5,AC=4,点D在边AB上,若ACD∠=B∠,则AD的长为.13.如图,□ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若ACD∆的面积为3,则图中阴影部分两个三角形的面积和为.(第13题) (第14题)14.如图,在平面直角坐标系中,点A是抛物线2(3)y a x k=-+与y轴的交点,点B是这条抛物线上另一点.且AB//x轴,则以AB为边的等边三角形ABC的周长为.三、解答题(每小题5分,共20分)15.先化简,再求值:2(2)(2)2(3)a a a+-++,其中13a=.16.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.2数学试题 第 页(共 6 页)317. 某班有45名同学参加紧急疏散演练.对比发现:经专家指导后,平均每秒撤离的人数是指导前的3倍,这45名同学全部撤离的时间比指导前快30秒.求指导前平均每秒撤离的人数.18. 如图,在同一平面内,有一组平行线1l 、2l 、3l ,相邻两条平行线之间的距离均为4.点O 在直线1l 上,⊙O 与直线3l 的交点为A 、B ,AB =12,求⊙O 的半径.四、解答题(每小题6分,共12分)19.长春市某校准备组织七年级学生游园.供学生选择的游园地点有:东北虎园、净月潭、长影世纪城,每名学生只能选择其中一个地点.该校学生会从七年级学生中随机抽取了a 名学生,对他们选择各游园地点的情况进行了调查,并根据调查结果绘制成如下条形统计图.(1)求a 的值.(2)求这a 名学生选择去净月潭游园的学生人数的百分比.(3)按上述调查结果,估计该校七年级650名学生中选择去净月潭游园的人数.20.如图,有一个晾衣架放置在水平地面上.在其示意图中,支架OA 、OB 的长均为108cm ,支架OA 与水平晾衣杆OC 的夹角AOC 为59º,求支架两个着地点之间的距离AB .(结果精确到0.1cm )【参考数据:sin59º=0.86,cos59º=0.52,tan59º=1.66】4五、解答题(每小题6分,共12分)21. 图①、图②均为44⨯的正方形网格,线段AB 、BC 的端点均在格点上. 按要求在图①、图②中以AB 和BC 为边各画一个四边形ABCD .要求:四边形ABCD 的顶点D 在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.22. 如图,在平面直角坐标系中,□ABCO 的顶点A 、C 的坐标分别为A (2,0) 、C (1-,2),反比例函数(0)ky k x=≠的图象经过点B . (1)求k 的值.(2)将□ABCO 沿x 轴翻折,点C 落在点C '处.判断点C ’是否落在反比例函数(0)ky k x=≠的图象上,请通过计算说明理由.六、解答题(每小题7分,共14分)23.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人积极性.工人每天加工零件获得的加工费y (元)与加工个数x (个)之间的部分函数图象为折线OA -AB -BC ,如图所示.(1)求工人一天加工零件不超过20个时每个零件的加工费. (2)求40≤x ≤60时y 与x 的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元.在这两天中,小王第一天加工零件不足20个,求小王第一天加工的零件个数.数学试题 第 页(共 6 页)5 24.感知:如图①,点E 在正方形ABCD 的BC 边上,BF ⊥AE 于点F ,DG ⊥AE 于点G .可知△ADG ≌△BAF .(不要求证明)拓展:如图②,点B 、C 在∠MAN 的边AM 、AN 上,点E 、F 在∠MAN 内部的射线AD上, ∠1 、∠2分别是△ABE 、△CAF 的外角.已知AB =AC ,∠1 =∠2= ∠BAC .求证:△ABE ≌△CAF .应用:如图③,在等腰三角形ABC 中, AB =AC ,AB >BC .点D 在边BC 上,CD =2BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC .若△ABC 的面积为9,则△ABE 与△CDF 的面积之和为 .七、解答题(每小题10分,共20分)25. 如图,在平面直角坐标系中,直线242y x =-+交x 轴于点A ,交直线y x =交于点B .抛物线22y ax x c =-+分别交线段AB 、OB 于点C 、D ,点C 和点D 的横坐标分别为16和4,点P 在这条抛物线上. (1)求点C 、D 的纵坐标. (2)求a 、c 的值.(3)若Q 为线段OB 上一点,且P 、Q 两点的纵坐标都为5,求线段PQ 的长.(4)若Q 为线段OB 或线段AB 上一点,PQ ⊥x 轴.设P 、Q 两点之间的距离为d (d >0),点Q 的横坐标为m ,直接写出d 随m 的增大而减小时m 的取值范围.【参考公式:二次函数2y ax bx c =++(a ≠0)图象的顶点坐标为24()24,b ac b a a --】26.如图,在Rt △ABC 中,∠ACB =90°,AC =8cm ,BC =4cm ,D 、E 分别为边AB 、BC 的中点,连结DE .点P 从点A 出发,沿折线AD -DE -EB 运动,到点B 停止.点P 在AD的速度运动,在折线DE -EB 上以1cm/s 的速度运动.当点P 与点A 不重合时,过点P 作PQ ⊥AC 于点Q ,以PQ 为边作正方形PQMN ,使点M 落在线段AC 上.设点P 的运动时间为t (s ).(1)当点P 在线段DE 上运动时,线段DP 的长为 cm (用含t 的代数式表示). (2)当点N 落在AB 边上时,求t 的值.(3)当正方形PQMN 与△ABC 重叠部分图形为五边形时,设五边形的面积为S (cm 2),求S与t的函数关系式.(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.6数学试题 第 页(共 6 页)7 2012年长春市初中毕业生学业考试数学参考答案及评分标准一、选择题(每小题3分,共24分)1.A 2.C 3.B 4.D 5.C 6.A 7.C 8.D 二、填空题(每小题3分,共18分) 910.2ab 11.60 12.16513.3 14.18 三、解答题(每小题5分,共20分)15.解:原式=22242632a a a -++=+. (3分)当13a =时,原式=2173()233⨯+=. (5分) 16.解:(3分)∴P (两个数字之和是6)=29. (5分) 17. 解:设指导前平均每秒撤离x 人. (1分)根据题意,得4545303x x-=. (3分) 解得1x =.经检验,1x =是原方程的解,且符合题意.答:指导前平均每秒撤离1人. (5分)18. 解:过点O 作OC ⊥AB 于C ,连结OA . (1分)∴1112622AC AB ==⨯=. 在Rt △AOC 中,∠ACO =90°,OC =428⨯=, (3分) ∴10OA =.∴⊙O 的半径为10 . (5分)或8四、解答题(每小题6分,共12分) 19.解:(1)18201250++=,所以a 值为50. (2分) (2)20100%40%50⨯=, 所以这50名学生选择去净月潭游园的人数的百分比为40%. (4分) (3)650×40%=260(人).所以该校七年级650名学生中会选择净月潭游园的人数约为260人.(6分)20.解:过点O 作OD ⊥AB 于D . (1分)∵OA =OB , ∴ AB=2 AD . ∵CO ∥AB ,∴∠OAD =∠AOC =59º . (2分) 在Rt △ADO 中,∠ADO =90,cos ADOAD OA∠=, (4分) ∵OA =108,∴cos 108cos591080.5256.16AD OA OAD =⋅∠=⨯=⨯=. ∴AB =2×56.16=112.32≈112.3(cm).答:支架两个着地点之间的距离AB 约为112.3cm . (6分)五、解答题(每小题6分,共12分) 21.解:以下答案供参考.画对一个得3分,共6分.(画出符合要求的凹四边形同样赋分)22.解:(1) ∵四边形OABC 是平行四边形,∴CB = OA , CB ∥OA . ∵A (2,0) ,C (1-,2),∴B (1,2). (3分)数学试题 第 页(共 6 页)9 ∵反比例函数ky x=(k ≠0)的图象经过点B , ∴21k=,2k =. (4分) (2) 点C '在反比例函数2y x=的图象上.理由:由翻折可知,点C '与点C 关于x 轴对称, ∵C (1-,2), ∴C '(-1,-2).由(1)知,反比例函数解析式为 2y x= . ∵当1x =-时,221y ==--, ∴点C '在反比例函数2y x=的图象上. (6分)六、解答题(每小题7分,共14分) 23.解:(1)∵60320=(元), ∴工人一天加工零件不超过20个时每个零件的加工费为3元. (1分) (2)当40≤x ≤60 时,设y 与x 的函数关系式为y kx b =+.∵图象经过(40,140)、(60,240),∴40140,60240.k b k b +=⎧⎨+=⎩解得5,60.k b =⎧⎨=-⎩∴当40≤x ≤60 时,y 与x 的函数关系式为560y x =- . (4分) (3)设小王第一天加工a 个零件,则第二天加工(60)a -个零件.∵小王第一天加工零件不足20个, ∴0≤a <20. ∴40<60a -≤60. 根据题意,得()356060220a a +--= . 解得a =10.∴小王第一天加工10个零件. (7分)24.拓展: ∵1ABE BAE ∠=∠+∠, BAC CAF BAE ∠=∠+∠,又∵1BAC ∠=∠,∴ABE BAE CAF BAE ∠+∠=∠+∠.10∴ABE CAF ∠=∠. (2分) ∵∠1 =∠2, 1180AEB ∠+∠=︒,2180CFA ∠+∠=︒,∴AEB CFA ∠=∠. (4分) 又∵AB =AC ,∴△ABE ≌△CAF . (5分)应用: 6 (7分) 七、解答题(每小题10分,共20分)25.解:(1)在242y x =-+中,当x =16时,y =10.在y x =中,当x =4时y =4.∴点C 的纵坐标为10,点D 的纵坐标为4. (2分) (2)由(1)知,点C 的坐标为(16,10),点D 的坐标为(4,4).∵抛物线图象经过点C 、D ,∴2563210,168 4.a c a c -+=⎧⎨-+=⎩解得1,810.a c ⎧=⎪⎨⎪=⎩ ∴a 的值为18, c 的值为10. (4分) (3) 在y x =中,当x =5时y =5.∴点Q 的横坐标为5.由(2)可知,抛物线的解析式为212108y x x =-+. 当y =5时,2121058x x -+=,解得8x =±∴点P的横坐标为8±①当点P 在点Q 左侧时,线段PQ的长为5(83--=. ②当点P 在点Q 右侧时,线段PQ的长为(853+-=+ ∴线段PQ的长为3或3+(8分) (4)当0≤m <4或12≤m <16时,d 随m 增大而减小. (10分)26.解:(1)(2t -) (不要求写t 的取值范围) (1分)(2)①当点P 在线段DE 上时,如图①.PD = PN =PQ =2.数学试题 第 页(共 6 页) 11 ∴22t -=.∴t =4.②当点P 在线段BE 上时,如图②.PN =2PB .∵PN =PC =(t -6)+2=t -4,BP=2-(t -6)=8-t ,∴42(8)t t -=-,解得 203t =. ∴当点N 落在AB 边上时,t 的值为4或203. (3分) (3)①当2<t <4时,如图③,S =2212(4)4t --, 即2124S t t =-+. ②当203<t <8时,如图④, S =()221(4)3204t t ---, 即2522844S t t =-+-. (7分) (4)143t =或5t =或6≤t ≤8. (10分) 提示:当点H 第一次落在线段CD 上时,12.5(4)(4)22t t -+-=,解得143t =. 当点H 第二次落在线段CD 上时,12.5(4)2(4)2t t --=-,解得5t =. 当点H 第三次落在线段CD 上时,16 2.5(4)(4)2t t --=-,解得6t =. 当6≤t ≤8时,点H 恒在线段CD 上.。
2012年长春市初中毕业生学业考试 数 学 试 卷 解 析本试卷包括七道大题,共26小题,共6页.全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形区域内. 2. 答题时,考试务必按照考试要求在答题卡上的指定区域作答,在草稿纸、试卷上答题无效. 一. 选择题(每小题3分,共24分) 1. 在2、0、-2、-1这四个数中,最大的数是(A ) 2. (B) 0. (C) -2. (D) -1.解析:A 根据正数大于0,0大于负数。
考查知识:有理数的大小比较2. 神舟九号飞船发射成功,一条相关的微薄被转发了3570000次,3570000这个数用科学计数法表示为(A)435710⨯. (B) 535.710⨯ (C) 61057.3⨯ (D) 73.5710⨯解析:C 3570000=3.57×1000000=61057.3⨯ 。
考查知识:科学计数法3.不等式3x-6≥0的解集为(A) x >2 (B)x ≥2. (C)x <2 (D)x ≤2.解析:B 3x-6≥0 x 3≥6 x ≥2。
考查知识:解不等式4. 在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是解析:D 根据中心对称图形的概念可得。
考查知识:解不等式中心对称图形的概念5.右图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是(A) 27 (B)29 (C) 30 (D)31解析:C 根据中位数是把数据从小到大的顺序排列,取中间的数。
考查知识:中位数的计算6.有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图像可能是解析:A 一次函数y=2x+b,当b<0时交y轴负半轴。
2012年吉林省中考数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)1.(2012•吉林)在四个数0,﹣2,﹣1,2中,最小的数是()A.0B.﹣2C.﹣1D.22.(2012•吉林)如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()A.B.C.D.3.(2012•吉林)下列计算正确的是()A.3a﹣a=2B.a2+2a2=3a2C.a2•a3=a6D.(a+b)2=a2+b2 4.(2012•吉林)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.(2012•吉林)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.66.(2012•吉林)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()A.B.C.D.二、填空题(每小题3分,共24分)7.(2012•吉林)计算:= .8.(2012•吉林)不等式2x﹣1>x的解集为.9.(2012•吉林)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1= .10.(2012•吉林)若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则芭蕾舞团参加演出的女演员身高更整齐(填:“甲”或“乙”).11.(2012•吉林)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=度.12.(2012•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= .13.(2012•吉林)如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为(写出一个符合条件的度数即可)14.(2012•吉林)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三、解答题(每小题5分,共20分)15.(2012•吉林)先化简,再求值:(a+b)(a﹣b)+2a2,其中a=1,b=.16.(2012•吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y 的值.17.(2012•吉林)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.(2012•吉林)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.四、解答题(每小题7分,共28分)19.(2012•吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则= ;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.20.(2012•吉林)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)21.(2012•吉林)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.五、解答题(每小题8分,共16分)23.(2012•吉林)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.(2012•吉林)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为km,货车从H到C往返2次的路程为km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题(每小题10分,共20分)25.(2012•吉林)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t= s时,点P与点Q重合;(2)当t= s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.(2012•吉林)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为y E,y F.特例探究填空:当m=1,n=2时,y E= 2 ,y F= 2 ;当m=3,n=5时,y E= 15 ,y F= 15 .归纳证明对任意m,n(n>m>0),猜想y E与y F的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出y E与y F的大小关系;(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.2012年吉林省中考数学试卷参考答案与试题解析一、选择题(每小题2分,共12分)考点:有理数大小比较。
吉林省2012年初中毕业生学业考试
数学试题
数学试题共6页,包括六道大题,共26道小题.全卷满分120分.考试时间为120分钟.考试结束后,将本试题和答题卡一并交回. 一、单项选择题(每小题2分,共12分) 1.在四个数0,-2,-1,2中,最小的数是
(A )0. (B )-2. (C) -1 (D)2 2. 如图,由5个完全相同的小正方形组合成一个立体图形,它的俯视图是
3. 下列计算正确的是
(A)3a -a =2. (B)222a 23a a +=. (C)236a a a ⋅=. (D) 2
2
2
()a b a b +=+.
4.如图,在△ABC 中,∠A =80°,∠B =40°,D ,E 分别是AB ,AC 上的点,且DE BC ,则∠AED 的度数为 (A)40°. (B)60°. (C) 80°. (D)120°.
5.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-3,2).若反比例函数k
y x
=(x >0)的图像经过点A ,则k 的值为
(A) -6. (B) -3. (C) 3. (D) 6.
6. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划每天生产x 台机器,则可列方程为
二、填空题(每小题3分,共24分) 7.计算:123-=_____.
8.不等式2x -1>x 的解集为__________.
9.若方程2
12120,()x x x x x x -=<的两个根为,则21x x -=______.
10. 若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为2
S 甲=1.5,
2
S 乙=2.5,则______芭蕾舞团参加演出的女演员身高更整齐(填“甲”或“乙”).
11.如图,A ,B ,C 是☉O 上的三点,∠CA O =25°.∠B C O =35°,则∠AOB =_____度.
12. (如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD =______.
13.如图,AB 是⊙O 的直径,BC 是⊙O 的切线,∠ACB =40°,点P 在边BC 上,则∠PAB 的度数可能为_____(写出一个符合条件的度数即可).
14.如图,在等边△ABC 中,D 是边AC 上的一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△AED 的周长是______. 三、解答题(每小题5分,共20分)
15.先化简,再求值:2
()()2a b a b a +-+,其中a =1,b 2.
16.如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度是
28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.
17.如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4,四个数字).游戏
规则是游戏者每投掷一次骰子,棋子按骰子着地一面所示的数字前进相应的格数.例如;若棋子位于A 处,游戏者所投掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求投掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.
18.在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a、b两个情境:
情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.
(1)情境a,b所对应的函数图像分别为_______,______.(填写序号)
(2)请你为剩下的函数图像写出一个适合的情境.
四、解答题(每小题7分,共28分)
19.在平面直角坐标系中,点A 关于y 轴的对称点为B ,点A 关于原点O 的对称点为点C .
(1)若点A 的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则
ADO
ABC
S S △△=________; (2)若点A 的坐标为(a ,b )(ab 0),则△ABC 的形状为_______.
20.如图,沿AC 方向开山修一条公路,为了加快施工进度,要在小山的另一边寻找点E 同时施工.从AC 上的一点B 取∠ABD =127°,沿BD 方向前进,取∠BDE =37°,测得BD =520m ,并且AC ,BD 和DE 在同一平面内.
(1)施工点E 离D 多远正好能使 A ,C ,E 成一直线(结果保留整数); (2)在(1)的条件下,若BC =80m ,求公路CE 段的长(结果保留整数) (参考数据:sin 37°=0.60,cos 37°=0.80,tan 37°=0.75)
21.为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计
图.
(1)小明一共调查了多少户家庭?
(2)求所调查家庭5月份用水量的众数、平均数;
(3)若该小区有400户居民,请你估计这个小区5月份的用水量.
22.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:△ADC △ECD;
(2)若BD=CD,求证四边形ADCE是矩形.
五、解答题(每小题8分,共16分)
23.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.
24.如图1,A , B , C 为三个超市,在A 通往C 的道路(粗实线部分)上有一D 点,D 与B 有道路(细实线部分)相通.A 与D ,D 与C ,D 与B 之间的路程分别为25km ,10km ,5km .现计划在A 通往C 的道路上建一个配货中心H ,每天有一辆货车只为这三个超市送货.该货车每天从H 出发,单独为A 送货1次,为B 送货1次,为C 送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H .设H 到A 的路程为xkm .这辆货车每天行驶的路程为ykm . (1)用含x 的代数式填空:
当0≤x ≤25时,货车从H 到A 往返1次的路程为2x km .货车从H 到B 往返1次的路程为_______km . 货车从H 到C 往返2次的路程为_______km .这辆货车每天行驶的路程y =__________.当25<x ≤35时,这辆货车每天行驶的路程y =_________;
(2)请在图2中画出y 与x (0≤x ≤35)的函数图像; (3)配货中心H 建在哪段,这辆货车每天行驶的路程最短?
5
10
1520
25
30
35
50
100150200250x/h
O
图2
六、解答题(每小题10分,共20分).
25.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B
运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P, Q两点同时停止运动.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为t s,正方形APDE和梯形BCFQ重合部分的面积为Scm².
(1)当t=_____s时,点P与点Q重合;
(2)当t=_____s时,点D在QF上;
(3)当点P在Q, B两点之间(不包括Q, B两点)时,求S与t之间的函数关系式.
26.问题情境
如图,在x 轴上有两点A (m ,0),B (n , 0)(n >m >0).分别过点A ,点B 作x 轴的垂线,交抛物线y =x ²于点C ,点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F ,点E ,点F 的纵坐标分别记为.E y ,F y . 特例探究 填空:
当m =1,n =2时,.E y =____,F y =______. 当m =3,n =5时,.E y =_____,F y =______. 归纳证明
对任意m , n (n >m >0),猜想.E y 与F y 的大小关系,并证明你的猜想 拓展应用.
(1)若将“抛物线y =x ²”改为“抛物线y =ax ²(a >0)”,其它条件不变,请直接写出.E y 与F y 的大小关系. (2)连接EF , AE .当.3OFE OFEB S S △四边形时,直接写出m 和n 的关系及四边形OFEA 的形状.。