有理数的易混易错题
- 格式:pdf
- 大小:357.72 KB
- 文档页数:17
1、绝对值等于本身的数是,绝对值是相反数的数是。
答案:非负数;非正数解析:绝对值等于本身的数是非负数,绝对值是相反数的数是非正数。
2、下列说法中正确的是()A.平方是它本身的数是正数 B.绝对值是它本身的数是零C.立方是它本身的数是±1D.倒数是它本身的数是±1答案:选 D解析:∵平方是它本身的数是 1 和 0;绝对值是它本身的数是零和正数;立方是它本身的数是±1 和 0;倒数是它本身的数是±1,∴正确的答案为 D.3、下列说法中正确的是①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④ 0 是偶数,也是自然数。
答案:①②④解析:第③项错误,整数和分数统称为有理数。
4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。
答案:①②③解析:①:0 的相反数是0,故本选项错误;②:一个非正数的绝对值还可能为0,故本选项错误;③:有理数的绝对值还可能为0,故本选项错误;④:任何有理数的绝对值都不是负数,故本选项正确.5、下列说法正确的有①.整数包括正整数、负整数;②.0 是整数,也是自然数;③.分数包括正分数、负分数和 0;④.有理数中,不是负数就是正数答案:②解析:整数包括正、负整数和 0;分数包括正分数和负分数;有理数中,除了负数和正数还有 0.6、下列各组量中,具有相反意义的量是①节约汽油 10 升和浪费粮食 10 千克;② 向东走 10 公里和向北走 8 公里;③盈利 100 元和支出 200 元;④增加 10%与减少 20%。
答案:④7、在−22,3.1415926,0,−1.234 ⋯,˙,π,有理数的个数是().7 0. 3 2A . 2B . 3C . 4D . 5答案: C解析:−22,3.1415926,0,˙是有理数.7 0. 38、下列说法正确的是① 带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。
有理数混合运算易错题
有理数混合运算的易错题有很多,以下是一些例子:
1. 计算 (-2)^2 × -3 - (-1)^4
学生可能会错误地计算 (-2)^2 为 -4,或者计算 (-1)^4 为 -1。
实际上,(-2)^2 = 4,(-1)^4 = 1。
因此,正确的计算过程应该是:
4 × 3 - (-1) = 12 + 1 = 13。
2. 计算 (-1/2) × [4/(1/4) - 4]
学生可能会错误地将分数的分母和分子混淆,或者在计算中忽略负号。
正确的计算过程应该是:
(-1/2) × [4/(1/4) - 4] = (-1/2) × (16 - 4) = (-1/2) × 12 = -6。
3. 计算 (-5/6) × (3/5) - (-5/6) × (-3/5)
学生可能会错误地将两个分数相加,或者在计算中忽略负号。
正确的计算过程应该是:
(-5/6) × (3/5) - (-5/6) × (-3/5) = (-5/6) × (3/5 + 3/5) = (-5/6) × 6/5 = -1。
总的来说,要避免在有理数混合运算中出现错误,需要注意以下几点:首先,要准确掌握运算顺序(先乘方、再乘除、最后加减);其次,要注意符号的运算(尤其是括号、正负号);最后,要仔细检查每一步的计算结果,确保没有出现错误。
(易错题精选)初中数学有理数的运算易错题汇编含答案解析(1)一、选择题1.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为( )A .8.5×105B .8.5×106C .85×105D .85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n ,其中1≤|a|<10,n 为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【答案】A【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】3.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.4.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.2018年全国高考报名总人数是975万人,用科学记数法表示为( )A .30.97510⨯人B .29.7510⨯人C .69.7510⨯人D .70.97510⨯人【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是69.7510⨯;B.错误,应该是69.7510⨯;C.正确;D. 错误,应该是6⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.7.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.611.610⨯C.7⨯B.7116101.1610⨯⨯D.81.1610【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.a ab b32考点:整式的乘法公式.9.暑期爆款国产动漫《哪吒之降世魔童》票房已斩获4930000000,开启了国漫市场崛起新篇章,4930000000用科学计数法可表示为()A.49.3×108B.4.93×109C.4.933×108D.493×107【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:4930000000=4.93×109. 故选B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.10.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .867【答案】C【解析】【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【详解】输出数据的规律为2+1n n , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C.【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.11.如图,是一个计算流程图.当16x 时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】解:输入16x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根22是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.12.一根1m长的小棒,第一次截去它的12,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是()A.12m B.15m C.116m D.132m【答案】D【解析】【分析】根据题意和乘方的定义可以解答本题.【详解】解:第一次是12m,第二次是211112224⎛⎫⨯==⎪⎝⎭m,第三次是31111122228⎛⎫⨯⨯==⎪⎝⎭m,第四次是411216⎛⎫=⎪⎝⎭m,…,∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m , 故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.13.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.14.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示的关键是要正确确定a的值以及n的值.16.双十一是阿里巴巴打造的年中购物狂欢,从2009年到2018年十年时间,双十一就像一个符号一样,融入到人们的日常生活当中.2018年京东在双十一期间(11月1日﹣11月11日)累计下单金额达1598亿元人民币.用科学记数法表示数1598亿是( )A.1.598×1110B.15.98×101010C.1.598×1010D.1.598×8【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示数1598亿是1.598×1011.故选A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】27 809=2.780 9×410,故选D.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值18.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G网络的商用示范.目前,北京市已经在怀柔试验场对5G进行相应的试验工作.现在4G网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps 【答案】D【解析】【分析】已知4G 网络的峰值速率,5G 网络峰值速率是4G 网络的204.8倍,可得5G 网络峰值速率,通过化简,用科学计数法表示即可.【详解】解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps ,故选D.【点睛】本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.19.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数,n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.。
初学有理数的常见错误剖析 对于初学有理数者,在解题中出现错误是难免的,也是正常的,但必须弄清产生错误的原因,掌握正确的解答方法,只有这样才能逐步形成数学基本技能和能力,本文就有理数这一部分中的解题易犯错误归纳剖析如下.一、答案不完整例1.若一个有理数的:①倒数②绝对值③平方④立方,等于它本身,则这个数分别是⑴ ;(2) ;(3) ;(4) .错误答案:⑴ 1 ⑵ 正数 ⑶ 1 ⑷±1 .分析:给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因主要是把数的认识局限在正数范围之内,忽视0和才引进的负数,对数的范围的拓宽不适应,另外由于对负数、倒数、绝对值等概念没有完全正确理解而造成的错误. 正确答案是:⑴ ±1 ⑵ 正数和0 ⑶ 1和0 ⑷ ±1和0.二、分类不明确例2.有理数中,⑴最小的正整数是 ;⑵最小的整数是 ;⑶绝对值最小的数是 ;⑷最小的正数是 .错误答案:⑴ 0 ⑵ 1 ⑶ 1 ⑷ 1 .分析:产生错误的原因,一是对有理数的分类没有弄清楚,二是“任意两个有理数之间总至少存在一个有理数”的性质不理解,当然也有一部分同学因“正数”和“整数”的概念混淆而导致错误.正确答案:⑴ 1 ⑵ 不存在 ⑶ 0 ⑷ 不存在 .三、概念不清晰例3.判断正误:(1)任何一个有理数的相反数和它的绝对值都不可能相等( )(2)任何一个有理数的相反数都不会等于它的倒数( ) 错误答案:⑴ ∨ ⑵ × .分析:第(1)小题失误原因,一是误认为一个有理数a 的相反数-a 总是负数; 二是误认为a 能够等于a ,而得到a ≠-a ,究其根源是对“相反数”和“绝对值”的概念还没弄明白.第(2)小题失误原因是对一个有理数和它的倒数,以及相反数的符号之间的关系不清晰所致.正确答案:⑴ × ⑵∨.四、运算不准确1.运算符号错误例4.计算)15(120)4()25.6(-÷--⨯-错解:原式=25-8=17.剖析:此解将120前面的“-”号既视为运算符号,又视为性质符号,以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=25-(-8)=33.例5.计算5)6(42-----错解:原式=16+6-5=17.剖析:此解忽略了24-与2)4(-的区别,24-表示4的平方的相反数,其结果为-16,2)4(-表示两个-4相乘,其结果为16。
1、绝对值等于本身的数是________,绝对值是相反数的数是_______。
2、下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零C.立方是它本身的数是±1 D.倒数是它本身的数是±13、下列说法中正确的是_________①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④0是偶数,也是自然数。
4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。
5、下列说法正确的有_______①.整数包括正整数、负整数;②.0是整数,也是自然数;③.分数包括正分数、负分数和0;④.有理数中,不是负数就是正数6、下列各组量中,具有相反意义的量是________①节约汽油10升和浪费粮食10千克;②向东走10公里和向北走8公里;③盈利100元和支出200元;④增加10%与减少20%。
7、在−227,3.1415926,0,−1.234⋯,0.3˙,π2,有理数的个数是( ). A . 2 B . 3 C . 4 D . 58、下列说法正确的是_________①带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。
9、下列说法中正确的有( )①−3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是−3.14;⑤一个数和它的相反数不可能相等.A . 0个B . 1个C . 2个D . 3个或更多10.在有理数中,存在这样的一个数a ,它________.①既是自然数又是整数; ②既是分数又是负数; ③既是非正的数又是非负的数; ④既是正数又是负数。
初一数学有理数易错题1.下列哪个选项是有理数?A.3.14B.2π+1C.0.576D. 10答案:C解析:有理数是指分数和整数,无理数是无限不循环小数。
A是有限小数,属于有理数;B是无限不循环小数,属于无理数;D是无理数。
2.下列哪个选项是正确的?A.(−3)²=−3²B.(−3)²=−3×2C.(−3)²=−3+2D.(−3)²=−3÷2答案:A解析:根据有理数乘方的定义,(−3)²表示2个(−3)相乘,即(−3)²=(−3)×(−3),其结果是9,而其他选项的计算结果均不是9。
3.下列哪个选项是正确的?A.1÷(−3)=−1÷3=−\frac{1}{3}B.(−7)÷(−3)=7÷3=2 (1)C.(−6)÷(−2)=6÷(−2)=−3D.(−16)÷8=(−2)×\frac{1}{8}=−\frac{1}{4}答案:A解析:有理数的除法法则:除以一个不为0的数,等于乘以这个数的倒数。
因此,1÷(−3)=−1÷3=−\frac{1}{3}。
4.下列哪个选项是正确的?A.−\frac{7}{8}<0<\frac{7}{8}<1B.−\frac{7}{8}<0<1<\frac{7}{8}C.−\frac{7}{8}<0<1<\frac{8}{7}D.−\frac{7}{8}<0<\frac{8}{7}<1答案:B解析:有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。
因此,−8/7<0<1<8/7。
5.下列哪个选项是正确的?A.(−4)×(−5)=20B.(−4)×(−5)=−20C.(−4)×(−5)=45D.(−4)×(−5)=50答案:A解析:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
第二章有理数易混易错题一.分类讨论思想:1.在数轴上到-4.5的距离为9的点所表示的数是________8.若|x|=|y|,且x =-3,则y =________.9.若|-x|=-(-8),则x =______,若|-x|=|-2|,则x =________.10.(1)已知|a|=5,|b|=8,且a<b ,则a =________,b =________;(2)有理数a ,b 在数轴上的位置如图所示,若|a|=4,|b|=2,求a ,b 的值.11.如图,数轴的单位长度为1,如果点B 表示的数的绝对值是点A 表示的数的绝对值的3倍,那么点A表示的数是________.12.已知x 是整数,且3≤|x|<5,则x =______________.二.特值法:2.=5=8a3.a 7,10,a-b m 4,6,m ,m 3-1,m ________6.a,b a =6b 17.-x 34,x ________.(3)x 26a b b n n m n n m b x ====+=+--=---==++-已知,,且满足a+b <0,则求-b 的值若则求的值4.已知且则求的值5.如果则的值为已知互为相反数,且,计算的值数轴上两点分别表示5与2,则(1)这两点距离为_________;(2)已知则同理表示数________x 2610,_______.(4)26x x x x ++-=++-轴上有理数所对应的点到和所对应的两点的距离之和,请你找出所有符合条件的有理数的x ,使得这样的数是是否有最小值?如果有,写出最小值;如果没有,说明理由()1..0b 0b b ,02.0--A a a a b a b -下列结论不正确的是若<,>,则a-b <0B.若a >0,<0,则a-b >0C.若a <0,b <0,则a-(-b)>0D.若a <0,b <0,且>则<若<<,则a 与b 的大小关系是__________3.与比较大小,必定为().A .B .C . D.这要取决于b4. 有理数a,b,c的大小关系如图:则下列式子中一定成立的是().A .B .C .D .5. 如图,有理数对应数轴上两点A,B,判断下列各式的符号:________0;________0;0;________0.6.已知满足,则代数式的值是________7.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_____________________________.三.数形结合思想:1.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”、“15cm”分别对应数轴上的,则().A .B .C .D .2. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、 D对应的数分别是整数a,b,c,d,且b-2a=9,那么数轴的原点对应点是().A.A点 B.B点 C.C点 D.D点3.绝对值不大于3的所有整数为________________________________________.4.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.5.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.(第1题)6.在数轴上任取一条长为2 01613个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2 017B.2 016C.2 015D.2 0141117.(1) 1.50-3----422111--4--在数轴上表示下列各数:,,,(),,并利用“<”把它们连接起来;(2)根据(1)中的数轴,找出大于的最小整数和小于()的最大整数,四.简便计算:(1). 请你设计一种几何图形求的值.1011001110802-29-98173-3619184981212115--+36941832156-13+0.34+-13+0.34273717-2-28-2+-2⨯⨯⨯÷÷⨯⨯⨯⨯()()()()()() ()()()()()()()()()()()第三章整式及其加减一.代数式知识概要代数式的定义____________________________________________________________代数式的书写要求:_______________________________________________________典例精讲1. 在式子m+5,ab,a=1,0,π,3(x+y), 2n k 180π,x>3中,是代数式的有( )A 6个B 5个C 4个D 3个2.一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为__ _______,当a=5时,这个两位数为___.3.比x 和y 2的差的一半大3的数应表示为_________________________.4.某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,降价后的售价是__________元,这时仍获利________________________元.5.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折。
有理数易错题汇编及答案一、选择题1.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.2.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.3.2019-的倒数是( ) A .2019B .-2019C .12019D .12019- 【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】 2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.7.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132【答案】D【解析】【分析】根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64, ∴2222e =±=(),33644f ==,∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.8.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.9.实数a 、b 在数轴上的位置如图所示用下列结论正确的是( )A .a+b>a>b>a−bB .a>a+b>b>a−bC .a−b>a>b>a+bD .a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a ,b 在数轴上的位置可以确定a 、b 的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.已知a、b、c都是不等于0的数,求a b c abca b c abc+++的所有可能的值有()个.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据a b c、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】【分析】点P 在3与4之间,满足条件的为B 、C 两项,点P 与4比较靠近,进而选出正确答案.【详解】∵点P 在3与4之间,∴3<P <49P 16 ∴满足条件的为B 、C图中,点P 比较靠近4,∴P 应选B 、C 中较大的一个故选:B .【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.13.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.14.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a15.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<, ∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.16.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的17.下列各组数中互为相反数的是( )A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.18.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D【解析】【分析】 根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,再逐个判断即可.【详解】从数轴可知:a<b<0<c,|b|<|a|,|b|<|c|.A.a<b,故本选项错误;B.|a﹣c|=c﹣a,故本选项错误;C.﹣a>﹣b,故本选项错误;D.|b+c|=b+c,故本选项正确.故选D.【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,用了数形结合思想.。
有理数易错题汇编含答案一、选择题1.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b , ∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.2.16的绝对值是( ) A .﹣6B .6C .﹣16D .16【答案】D【解析】【分析】 利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.3.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求23125c d ab e f ++++的值是( ) A .922+ B .922- C .922+或922- D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64,∴2222e =±=(),33644f ==, ∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.4.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.5.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.已知整数01234,,,,,a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.12.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a13.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.14.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.15.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A.a+b B.a﹣b C.|a+b| D.|a﹣b|【答案】D【解析】【分析】根据数轴确定出a是负数,b是正数,并且b的绝对值大于a的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.16.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.17.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.18.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.19.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.20.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.。
有理数易错题汇编及解析一、选择题1.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4故选C .【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.4.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.【点睛】本题考查数轴的知识点,有两个答案.9.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3 【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.10.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a +1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.13.下列各组数中互为相反数的是( )A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.下列运算正确的是( )A .4 =-2B .|﹣3|=3C .4=± 2D .39=3【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.15.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.16.- 14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】 直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.。
七年级有理数混合运算易错题一、有理数混合运算易错题。
1. 计算:-2^2 (-3)^3×(-1)^2023÷ (-1)^2022解析:先算乘方,这里要注意符号。
对于-2^2,根据乘方运算顺序,先计算指数,再取相反数,所以-2^2=-4;(-3)^3=-27,( 1)^2023=-1,( 1)^2022=1。
原式=-4-(-27)×(-1)÷1接着算乘法(-27)×(-1) = 27。
则原式=-4 27÷1=-4-27=-31。
2. 计算:(-1(1)/(2))^2÷(-(3)/(4))^3×(-1(1)/(3))解析:先将带分数化为假分数,-1(1)/(2)=-(3)/(2),-1(1)/(3)=-(4)/(3)。
然后算乘方,(-(3)/(2))^2=(9)/(4),(-(3)/(4))^3=-(27)/(64)。
原式=(9)/(4)÷(-(27)/(64))×(-(4)/(3))再算除法,除以一个数等于乘以它的倒数,(9)/(4)÷(-(27)/(64))=(9)/(4)×(-(64)/(27))=-(16)/(3)。
最后算乘法-(16)/(3)×(-(4)/(3))=(64)/(9)。
3. 计算:4 5×(-(1)/(2))^3解析:先算乘方,(-(1)/(2))^3=-(1)/(8)。
原式=4 5×(-(1)/(8))再算乘法5×(-(1)/(8))=-(5)/(8)。
最后算减法4-(-(5)/(8)) = 4+(5)/(8)=(32 + 5)/(8)=(37)/(8)。
4. 计算:(-2)^3×0.5 (-1.6)^2÷(-2)^2解析:先算乘方,(-2)^3=-8,(-1.6)^2 = 2.56,(-2)^2 = 4。
(易错题精选)初中数学有理数易错题汇编附解析一、选择题1.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( ) A .4B .4-C .8-D .4或8- 【答案】D【解析】【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.5.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =,Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-. 故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.6.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.7.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.8.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求23125c d ab e f ++++的值是( ) A .922+ B .922- C .922+或922- D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64,∴2222e =±=(),33644f ==, ∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4 【答案】C【解析】【分析】 根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<4P∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.13.2019的倒数的相反数是()A.-2019 B.12019-C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.14.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】解:由绝对值的意义,把方程217x+=变形为:2x+1=7或2x+1=-7,解得x=3或x=-4【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.15.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.16.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.19.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .20.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵2350x y +-=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.。
《有理数》易错题姓名:一、选择题1、数轴上点M 到原点的距离是5,则点M 表示的数是( )A. 5B. -5C. 5或-5D. 不能确定2、 若a 的相反数是非负数,则a 为:( )A 、负数;B 、负数或零;C 、正数;D 、正数或零3、.计算20162015201420132012201101)1()1()1()1(++-+-+-+-的结果是( )A.0B. -1C. 1D.24、下列式子中,-(-3),-|-3|,3)2(--,3-5,-1-5是负数有( )A 1 个B 2个C 3个D 4个5、在数轴上,a 在原点的右侧,b 在原点的左侧,则下列结论一定成立的是)A a+b <0B a+b >0,C ab <0D b a>06、下列说法正确的是( )A 0的倒数是0;B 0.01和100互为倒数;C -4和4互为倒数 ;D 绝对值等于自身的数是0。
7、下列说法正确的是( )A 绝对值等于自身的数是正数;B 绝对值最小的有理数是1;C 相反数等于自身的数是0;D 倒数等于自身的数是1。
8、一个数的绝对值等于这个数,那么这个数是 ( )A 0;B 正数;C 非负数;D 非正数。
二、填空题1、(-7)+(-8)-(-5)写成省略括号和加号的形式是 , 读作 。
2、已知:|x-3|+(y + 2)2 =0,则x 2 + y 2 = 。
3、在2.用科学记数法表示下面的数125000000= 。
4、式子4)2(-的计算结果是 ;-22的计算结果是 。
5、若│a │=5,则a=________ ,-0.25的倒数是 。
6、有理数b 在数轴的位置在-3和-2之间,则|b+2|的结果为 。
三、解答题1、从读法、底数、结果三个方面区别23-和2)3(-。
2、已知|a-2|+|b-3|=0,求b a a b +的值。
3、出租车司机小张某天下午的运营是在一条东西走向的大道上。
如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?离开下午出发点最远时是多少千米?若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?。
第1章《有理数》易错题集:有理数选择题1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数 D.无最大的负整数3.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个 B.3个 C.2个 D.1个4.下列说法中正确的是()A.最小的正整数是零B.自然数一定是正整数C.负数中没有最大的数D.自然数包括了整数5.下列说法正确的是()A.零是最小的整数 B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数6.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<137.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣38.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006 9.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣310.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.511.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣212.如图,正确的判断是()A.a<﹣2 B.a>﹣1 C.a>b D.b>213.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.014.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或215.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>316.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b|C.|a﹣b|>a>b D.|a﹣b|>b>a 17.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数18.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a19.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣120.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<021.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边22.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+623.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数24.在数轴上,表示点中,在原点右边的点有()A.4个 B.3个 C.2个 D.1个25.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<026.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q填空题27.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.28.若|a|=3,则a的值是.29.﹣|﹣2|的绝对值是.30.绝对值比2大比6小的整数共有个.第1章《有理数》易错题集:有理数参考答案与试题解析选择题1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【分析】按照有理数的分类判断:有理数.【解答】解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选:C.2.下列说法正确的是()A.有最小的正数B.有最小的自然数C.有最大的有理数 D.无最大的负整数【分析】根据有理数的分类,利用排除法求解.【解答】解:既没有最大的也没有最小的正数,A错误;最小的自然数是0,B正确;有理数既没有最大也没有最小,C错误;最大的负整数是﹣1,D错误;3.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个 B.3个 C.2个 D.1个【分析】根据0的特殊规定和性质对各选项作出判断后选取答案,注意:2002年国际数学协会规定,零为偶数;我国2004年也规定零为偶数.【解答】解:①0是整数,故本选项正确;②0是自然数,故本选项正确;③能被2整除的数是偶数,0可以,故本选项正确;④非负数包括正数和0,故本选项正确.所以①②③④都正确,共4个.故选:A.4.下列说法中正确的是()A.最小的正整数是零B.自然数一定是正整数C.负数中没有最大的数D.自然数包括了整数【分析】根据有理数的基本概念,进行选择.【解答】解:最小的正整数是1,A错;负数中既没有最大的数,又没有最小的数.没有最大的负数,C对.自然数包括0和正整数,B、D均错.故选:C.5.下列说法正确的是()A.零是最小的整数 B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【解答】解:A、整数包括正整数、0、负整数,负整数小于0,且没有最小值,B、有理数没有最大值,故B错误;C、整数包括正整数、0、负整数,故C错误;D、正确.故选D.6.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13【分析】本题图中的刻度尺对应的数并不是从0开始的,所以x对应的数要减去﹣3.6才行.【解答】解:依题意得:x﹣(﹣3.6)=15,x=11.4.故选:C.7.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣3【分析】此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.8.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.【解答】解:依题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.故选:C.9.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣3【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.故选:D.10.如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.5【分析】根据数轴的相关概念解题.【解答】解:∵数轴上的点A,B分别表示数﹣2和1,∴AB=1﹣(﹣2)=3.∵点C是线段AB的中点,∴AC=CB=AB=1.5,∴把点A向右移动1.5个单位长度即可得到点C,即点C表示的数是﹣2+1.5=﹣0.5.故选:A.11.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣2【分析】首先根据绝对值的意义“数轴上表示一个数的点到原点的距离,即为这个数的绝对值”,求得点M对应的数;再根据平移和数的大小变化规律,进行分析:左减右加.【解答】解:因为点M在数轴上距原点4个单位长度,点M的坐标为±4.(1)点M坐标为4时,N点坐标为4+2=6;(2)点M坐标为﹣4时,N点坐标为﹣4+2=﹣2.所以点N表示的数是6或﹣2.故选:D.12.如图,正确的判断是()A.a<﹣2 B.a>﹣1 C.a>b D.b>2【分析】根据数轴上点的位置关系确定对应点的大小.注意:数轴上的点表示的数右边的数总比左边的数大.【解答】解:由数轴上点的位置关系可知a<﹣2<﹣1<0<1<b<2,则A、a<﹣2,正确;B、a>﹣1,错误;C、a>b,错误;D、b>2,错误.故选:A.13.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.0【分析】A与E之间的距离已知,根据AB=BC=CD=DE,即可得到DE之间的距离,从而确定点D所表示的数.【解答】解:∵AE=14﹣(﹣6)=20,又∵AB=BC=CD=DE,AB+BC+CD+DE=AE,∴DE=AE=5,∴D表示的数是14﹣5=9.故选:B.14.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.15.若|a﹣3|﹣3+a=0,则a的取值范围是()A.a≤3 B.a<3 C.a≥3 D.a>3【分析】移项,|a﹣3|﹣3+a=0可变为,|a﹣3|=3﹣a,根据负数的绝对值是其相反数,0的绝对值是0可知,a﹣3≤0,则a≤3.【解答】解:由|a﹣3|﹣3+a=0可得,|a﹣3|=3﹣a,根据绝对值的性质可知,a﹣3≤0,a≤3.故选:A.16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b|C.|a﹣b|>a>b D.|a﹣b|>b>a 【分析】根据所给条件,分析a,b的正负值,然后再比较大小.【解答】解:∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选:C.17.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数【分析】根据相反数和绝对值的性质,对选项进行一一分析,排除错误答案.【解答】解:A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选:D.18.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a【分析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=﹣b,代入|a|<|b|<1,得a<﹣b<1,由不等式的性质得﹣b>a,则1﹣b>1+a,又1+a>1,1>﹣b>a,进而得出结果.【解答】解:∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选:D.19.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣1【分析】首先根据两数相乘,同号得正,得到a,b符号相同;再根据同正、同负进行分情况讨论.【解答】解:因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选:D.20.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A.b﹣a>0 B.﹣b<0 C.﹣|a|>﹣b D.ab<0【分析】本题可先对数轴进行分析,找出a、b之间的大小关系,然后分别分析A、B、C、D即可得出答案.【解答】解:根据数轴,知a>0,b<0,且b的绝对值大于a的绝对值.A、b<a,所以b﹣a<0,错误;B、﹣b>0,错误;C、正数大于一切负数,错误;D、两数相乘,异号得负,正确.故选:D.21.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边【分析】根据绝对值的性质判断出a的符号,然后再确定a在数轴上的位置.【解答】解:∵|a|=﹣a,∴a≤0.所以有理数a在原点或原点的左侧.故选:C.22.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.故选:B.23.下列说法正确的是()A.有理数的绝对值一定是正数B.一个负数的绝对值是它的相反数C.如果两个数的绝对值相等,那么这两个数相等D.如果一个数的绝对值是它本身,那么这个数是正数【分析】根据绝对值的定义及性质进行判断.【解答】解:因为一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.所以A、D错,B正确;如果两个数的绝对值相等,那么这两个数相等或互为相反数,故C也不正确.故选B.24.在数轴上,表示点中,在原点右边的点有()A.4个 B.3个 C.2个 D.1个【分析】根据数轴上点的特点:原点右边的点都表示正数,化简后找出即可.【解答】解:在数轴上,原点右边的点都表示正数,本题中的正数有0.125,,,共3个.故选:B.25.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<0【分析】根据“一个负数的绝对值是它的相反数”求解.【解答】解:∵=﹣1,∴|a|=﹣a,∵a是分母,不能为0,∴a<0.故选:B.26.已知|a|=﹣a,且a<,若数轴上的四点M,N,P,Q中的一个能表示数a,(如图),则这个点是()A.M B.N C.P D.Q【分析】首先根据|a|=﹣a,且a<求出a的取值范围,然后根据数轴上表示的数的特点,找出在此取值范围内的数.【解答】解:∵|a|=﹣a,∴a≤0①,又∵a<,∴a<﹣1或0<a<1②,综上①②可知,a<﹣1,∴a<﹣1由图可知,只有点M表示的数小于﹣1.故选:A.填空题27.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣328.若|a|=3,则a的值是±3.【分析】根据绝对值的性质求解.注意a值有2个答案且互为相反数.【解答】解:∵|a|=3,∴a=±3.29.﹣|﹣2|的绝对值是2.【分析】先计算|﹣2|=2,﹣|﹣2|=﹣2,所以﹣|﹣2|的绝对值是2.【解答】解:﹣|﹣2|的绝对值是2.故本题的答案是2.30.绝对值比2大比6小的整数共有6个.【分析】根据绝对值的性质直接求得结果.【解答】解:设这个数为x,则:2<|x|<6,∴x为±3,±4,±5,∴绝对值比2大比6小的整数共有6个.。
“有理數運算”常見錯誤剖析濟寧附中李濤一、概念不清例1 a 和-a 各是什麼數?錯解:a 是正數,-a 是負數評析:帶正號の數不一定是正數,帶負號の數不一定是負數,上述解法錯在沒弄清正、負數の概念。
正解:當a 大於零時,a 是正數,-a 是負數;當a 小於零時,a 是負數,-a 是正數;當a 等於零時,a 和-a 都是零。
例2 若,m m -=則m 是( )A. 正數 B. 負數 C. 非正數 D. 非負數 錯解:選B 評析:由於“0の相反數是0”,因此“0の絕對值是0”也可以說成是“0の絕對值是它の相反數”,上述解法錯在對絕對值概念の理解不透徹。
正解:選C二、符號問題例3 計算:)21(65)53(8-⨯⨯-⨯- 錯解:原式=22165538=⨯⨯⨯ 評析:由積の符號法則可知,幾個不等於0の數相乘,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正,上述解法錯在符號上。
正解:原式=22165538-=⨯⨯⨯- 例4 計算:)23(15)4()3(-÷--⨯-錯解:原式=12―10=2評析:錯解將15前面の“―”號既視為運算符號,又視為性質符號,重複使用,以致出錯,應二選其一。
(按照順序,不要跨步; 先定符號,再定大小)正解:原式=12+10=22三、對乘方の意義理解不透徹例5 計算:364)2()1(32---⨯+-錯解:原式=―8+3×(―6)―(―6)=―8+(―18)+6=―20評析:此解有三處錯,都是把乘方運算當作底數與指數相乘,這是由不理解乘方の意義造成の。
正解:原式=―16+3×1―(―8)=―16+3+8=―5例6 計算:4)2(2322⨯--+-錯解:原式=9+4―(―8)=9+4+8=21評析:錯解忽略了24-與2)4(-の區別:24-表示4の平方の相反數,其結果為16;而2)4(-表示兩個(―4)相乘,其結果為16。
正解:原式=―9+4―(―8)=―9+4+8=3四、違背運算順序例7 計算:6―(―10)÷(―4)錯解:原式=16÷(―4)=―4評析:有理數混合運算の順序是:先算乘方,再算乘除,最後算加減;如果有括弧,先算括弧裏面の;對同一級運算,應從左至右進行。
有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?答绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.解-a-11.17.用语言叙述代数式:-a-3.解代数式-a-3用语言叙述为:a与3的和的相反数.18.算式-3+5-7+2-9如何读?解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;解 (1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.解 (1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。
《有理数》易错问题一、绝对值1、定义:数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作∣a ∣。
2、去绝对值的方法:①当a 是正数或0(即a ≥0)时,∣a ∣= ;②当a 是负数或0(即a ≤0)时,∣a ∣= ; 3、练习①-3的绝对值是 ,∣3∣= ,绝对值等于3的数是 。
②若点A 表示-2,则距离点A 三个单位的点B 表示的数是 。
③若25=-x ,则=x . ④02b 1=++-a ,则()2016b a ++()2015b a ++…()2b a ++=+)(b a .⑤有理数a , b , c 在数轴上的位置如图所示,试化简下式:c b a c a -+-+⑥结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.二、倒数1、定义:乘积为 的两个数互为倒数,其中一个数叫做另一个数的倒数。
其中 没有倒数。
2、非零数a 的倒数的求法:a 的倒数等于 。
3、练习:①-3.2的倒数是 , 与412-互为倒数。
②若m 、n 互为相反数,x 、y 互为倒数,则=++n xy m 5__________。
③已知两个数a 与b 互为相反数,c 是d 的倒数,x 的绝对值是1,y 是绝对值最小的数, 则y b x cd a 20132012201320122++-+的值是 。
三、较大数的近似值①2010年5月某日参观上海世博园的人数大约256000人,用科学记数法表示为( )A 、610256.0⨯B 、556.2C 、4106.25⨯D 、51056.2⨯ ②640000精确到十万位的近似值为 。
③3.02亿精确到 位,有 个有效数字。
④近似数51010.4⨯有 个有效数字,精确到 位。
四、乘方①4)32(-的底数是 ,指数是 幂是 ,②432-的底数是 ,指数是 幂是 ,③计算:=-4)2( ,=-42 ,=-3)2( ,=-32 ,④计算:=-4)1( ,=-3)1( ,=320111,五、混合计算1、绝对值不相等的异号两数相加,取绝对值 的加数的符号,并用较大的绝对值减去较小的绝对值.①=+-97 , ② =-139 , ③ =---)8(7 , ④ =--1010 ,2、运算顺序:先 ,再 ,最后 ,如有括号,先算 里面的。