EMS能量管理系统介绍
- 格式:doc
- 大小:6.85 MB
- 文档页数:17
EMS能源管理系统简介EMS能源管理系统简介一.引言EMS(能源管理系统)是一种基于先进技术和软件平台的集中管理系统,旨在有效监测、分析和优化能源使用情况。
通过实时数据采集和分析,EMS可以提供对能源消耗的监控、诊断和管理,帮助用户实现能源节约和减排目标。
二.系统架构1. 数据采集模块数据采集模块负责收集能源使用相关的数据,包括电力、燃气、水等各项指标数据。
采集方式可以采用传感器、智能仪表等多种技术手段,将数据实时传输到系统。
2. 数据存储与处理模块数据存储与处理模块负责接收和存储采集到的能源使用数据,并进行数据清洗和预处理。
通过数据处理算法,对能源数据进行分析和计算,能源管理报告和分析结果。
3. 用户界面模块用户界面模块是用户与EMS系统进行交互的接口,提供了可视化的数据展示和操作界面。
用户可以通过界面查看实时能耗数据、能源监测报告和能源分析结果,进行能源调整和管理。
4. 控制与优化模块控制与优化模块是EMS的核心功能之一,通过对能源数据的分析和计算,提供能源消耗的预测、能耗调整和节能优化策略。
系统可以根据用户设定的能源节约目标,自动调整能耗参数和设备运行状态,实现能源的最优利用。
三.功能特点1. 能源监测和诊断EMS系统具备实时监测和诊断能源使用情况的能力,可以实时采集数据并能源监测报告。
用户可以通过报告了解各项能源指标的趋势和变化,及时发现能源浪费和异常情况。
2. 节能优化策略EMS系统可以分析能源使用数据,提供节能优化策略,帮助用户实现能源的最优利用。
系统可以自动控制设备的运行参数,调整能耗策略,减少能源浪费,并提高能源利用效率。
3. 风险分析和预测EMS系统可以对能源消耗数据进行风险分析和预测,帮助用户识别潜在的能源风险,并提供相应的预防措施。
系统通过分析历史能源数据和环境因素,预测未来的能源需求和供应情况。
四.附件本文档涉及以下附件:1. EMS系统架构图2. 能源监测报告样本3. 节能优化策略示例五.法律名词及注释1. 能源管理能源管理是指通过科学的方法和管理手段,对能源进行监测、分析和优化,达到节约能源和减少排放的目的。
储能EMS能量管理系统(二)引言概述:储能EMS(能量管理系统)是一种智能化的系统,用于管理和优化储能设备的能量存储和释放。
本文将会对储能EMS的功能和特点进行详细阐述,包括能源存储和监控、电池健康管理、系统调度和优化、安全性能以及未来发展趋势等方面。
正文:1. 能源存储和监控:- 实时能量监测:储能EMS通过传感器监测能量存储系统的充放电状态,以实现对能量储存情况的实时监控。
- 能量计划管理:储能EMS能够制定并管理能量计划,根据能源需求和价格波动来调整储能装置的充放电策略,以实现经济和高效的能量使用。
- 能源流量控制:通过储能EMS优化能量的流动和分配,实现能源的有效利用和可靠分配,从而最大限度地减少能源浪费。
2. 电池健康管理:- 储能设备状态监测:储能EMS能够监测和分析储能设备的实时状态,包括电池温度、电压和电容等参数,以确保设备正常运行。
- 电池寿命预测:通过对电池的循环和老化进行分析,储能EMS能够预测电池的剩余寿命,并提供合理的维护和更换建议,延长电池的使用寿命。
- 故障诊断和预警:储能EMS能够及时发现储能设备的故障,并提供警报和报警信息,以便及时采取相应的修复措施,确保设备的正常运行。
3. 系统调度和优化:- 能量需求预测:根据历史数据和算法模型,储能EMS能够对能量需求进行准确的预测,从而在负荷高峰期提供高效的能量支持。
- 能量供应调度:储能EMS能够根据能源市场价格和能量需求,自动调整储能设备的充放电策略,以实现能源的高效利用和节约成本。
- 各种能源集成:储能EMS能够与其他能源管理设备(如太阳能电池、风力发电机等)集成,形成综合能源管理系统,提高整体能源利用效率。
4. 安全性能:- 故障保护和应急措施:储能EMS具备故障保护功能,能够及时检测并解决储能设备的故障问题,确保设备的安全运行。
- 安全规范和标准遵守:储能EMS遵循相关的安全规范和标准要求,包括电池安全性能测试和设备防护要求,以确保系统的安全性和稳定性。
EMS能源管理系统简介EMS能源管理系统简介一、引言能源管理是现代社会发展的重要课题,有效的能源管理可以提高能源利用效率,减少能源消耗和环境污染。
EMS能源管理系统作为一种集成化的管理工具,可以帮助企业实现对能源的全面监控和管理,从而提高能源利用效率,并达到节能减排的目标。
二、系统概述EMS能源管理系统是一种利用计算机技术和通信技术,将各个能源消耗设备、系统和流程进行数据监测、分析和控制的管理系统。
通过各种传感器和自动化设备,EMS能够实时监测能源的消耗情况,并通过数据分析、模型预测和控制策略来实现对能源的优化管理。
三、系统架构EMS能源管理系统的架构包括以下几个主要组成部分:1、数据采集与监测单元:负责采集各种能源消耗设备的数据,并将其发送到数据中心进行处理和存储。
2、数据存储与处理中心:负责接收、存储和处理数据,进行数据分析和模型建立,能源消耗统计和分析报告。
3、控制与调节单元:通过与能源消耗设备的通信,对其进行远程控制和调节,实现能源的优化利用。
4、用户界面与操作平台:提供给用户进行数据查询、报表查看和操作控制的图形化界面。
四、系统功能EMS能源管理系统具有以下主要功能:1、实时监测:能够实时采集和监测各种能源消耗设备的数据,包括用电量、用水量、用气量等。
2、数据分析与预测:通过对采集数据进行分析和建模,可以预测能源消耗趋势,提前发现问题并进行调整。
3、能源节约控制:根据能源消耗情况和控制策略,对能源消耗设备进行控制和调节,实现节能减排的目标。
4、报表与分析:能够各种能源消耗统计和分析报告,帮助用户了解能源使用情况和节能效果。
五、附件本文档附带以下附件:1、EMS能源管理系统用户手册:详细介绍系统的安装、配置和使用方法。
2、EMS能源管理系统技术规格:详细描述系统的硬件配置要求和软件功能要求。
六、法律名词及注释1、能源管理:是指对能源的合理利用和有效管理,包括能源消耗监测、能源节约控制和能源利用优化等方面。
能量管理系统摘要能源是现代社会发展所必需的资源,而能源管理的有效性对于实现可持续发展和资源节约至关重要。
能量管理系统是一种用于监测、分析和控制能源使用的工具。
本文将介绍能量管理系统的定义、功能和重要性,并探讨其应用领域和优势。
引言随着能源供应紧张和能源消耗的不断增加,能源管理变得越来越重要。
传统的能源管理方法已经无法满足日益增长的能源需求和环境保护的要求。
为了解决这一问题,能量管理系统应运而生。
一、能量管理系统的定义能量管理系统(Energy Management System,EMS)是一种专门为组织和企业设计的系统,旨在监测、分析和控制能源的使用。
它提供了对能源消耗的实时数据,帮助用户识别并改进能源效率,减少能源浪费。
能量管理系统通过综合应用技术手段,包括传感器、数据采集设备、软件和算法等,实现能源监测和优化管理。
二、能量管理系统的功能1. 能源监测:能量管理系统可以实时监测和记录能源的使用情况,包括电力、燃气、水等能源类型。
用户可以通过系统查看能源使用量的实时数据和历史数据,以便了解能源消耗的变化趋势。
2. 能源分析:能量管理系统可以对能源消耗数据进行分析,帮助用户了解能源使用的模式和主要消耗点。
通过能源分析,用户可以识别出能源浪费的原因,并采取相应措施进行改进。
3. 能源控制:能量管理系统可以通过智能控制设备实现对能源的精细管理。
用户可以设定能源使用的各项参数和限制条件,系统会自动控制设备工作状态,以使能源使用效率最大化。
4. 能源报告:能量管理系统可以生成定期的能源报告,向用户提供关于能源使用情况的详细信息。
这些报告可以用于评估能源管理的效果,帮助用户制定更合理的能源管理策略。
三、能量管理系统的重要性能量管理系统在实现可持续发展和资源节约方面起到了至关重要的作用。
以下是能量管理系统的重要性体现:1. 节约能源:能量管理系统通过监测和控制能源使用,能够发现并纠正能源浪费的问题,从而减少能源的浪费,实现能源的高效利用。
能量管理系统(EMS)2021110620一、系统概述能量管理系统(EMS)是一种集监测、分析、控制、优化于一体的智能化能源管理平台。
它旨在帮助企业和个人实现能源消耗的实时监控、数据分析、节能优化,从而降低能源成本,提高能源利用效率,助力绿色可持续发展。
二、系统功能1. 实时监测:EMS系统能够实时采集各类能源数据,包括电力、水、气、热等,为用户提供详细的用能信息。
2. 数据分析:通过对能源数据的深度挖掘,系统可各类统计报表,帮助用户了解用能状况,为节能决策提供依据。
3. 能耗预警:当能耗异常时,系统会自动发出预警,提醒用户及时采取措施,防止能源浪费。
4. 节能控制:EMS系统可根据用户需求,自动调整用能设备运行状态,实现节能目标。
5. 报表输出:系统可定期能耗报表,便于用户了解能源使用情况,为企业节能考核提供数据支持。
6. 系统兼容性:EMS系统支持多种通信协议,可轻松接入各类用能设备,实现能源管理的全面覆盖。
三、应用场景1. 工业企业:通过EMS系统,企业可实时掌握生产线能耗情况,优化生产流程,降低能源成本。
2. 商业综合体:EMS系统助力商业综合体实现能源精细化管理,提高能源利用率,降低运营成本。
3. 公共建筑:公共建筑通过部署EMS系统,可实现能耗监测与控制,为节能减排提供有力支持。
4. 住宅小区:EMS系统帮助小区居民了解家庭用能情况,培养节能意识,共创绿色家园。
四、实施效益1. 经济效益:通过节能降耗,降低企业运营成本,提高经济效益。
2. 社会效益:促进绿色低碳发展,提升企业形象,履行社会责任。
3. 环保效益:减少能源消耗,降低污染物排放,保护生态环境。
4. 管理效益:提升能源管理水平,优化资源配置,提高企业竞争力。
五、系统特点2. 灵活性:系统可根据用户需求进行定制,满足不同场景下的能源管理需求。
3. 易用性:界面设计简洁直观,操作便捷,无需专业培训即可上手。
4. 安全性:系统采用多重安全防护措施,确保数据安全和系统稳定运行。
EMS系统技术介绍EMS(能源管理系统)是指通过应用物联网、云计算、大数据等技术手段,对能源系统进行集中、实时、高效的监控与管理,以实现对能源消耗的控制和优化。
EMS系统结合了能源监控、数据管理、能源计划、调度控制、能源协同等功能,能够帮助企业和机构实现能源的科学利用、节能降耗、环境保护和经济效益最大化。
一、EMS系统的基本框架EMS系统由物联网、云计算、大数据技术构成,包括传感器、通信网络、数据中心和用户终端。
传感器是采集能源系统各个环节的实时数据,通信网络实现数据的传输和交互,数据中心用于存储、处理和分析大量的实时数据,用户终端则提供用户的操作界面和反馈信息。
二、EMS系统的核心功能1.能源监控:EMS系统通过传感器采集能源系统的各个环节的实时数据,包括电力消耗、水消耗、气体消耗等。
这些数据能够帮助用户了解能源的使用情况以及能源系统存在的问题。
2.数据管理:EMS系统可以对采集的数据进行存储、管理和分析,为用户提供历史数据和趋势分析。
通过对数据的分析,用户可以了解能源消耗的模式和趋势,以制定更加科学的能源计划。
3.能源计划:EMS系统可以根据用户的需求和能源系统的状态,制定合理的能源计划。
能源计划包括能源的供应和使用计划,可以有效调节能源的供需关系,降低能源的消耗和浪费。
4.调度控制:EMS系统可以对能源系统进行调度和控制,实现对能源消耗的实时监控和调整。
通过对能源的控制,可以最大程度地引导能源的合理利用,提高能源利用效率和节能效果。
5.能源协同:EMS系统可以实现不同能源之间的协同和配合,实现能源的优化配置和共享。
通过能源协同,可以实现能源的互补利用和提高整体能源效益。
三、EMS系统的应用领域EMS系统广泛应用于各个领域,包括工业、商业、建筑、交通等。
在工业领域,EMS系统可以帮助企业实现能源生产和消耗的协同控制,提高能源的利用效率和降低成本。
在商业领域,EMS系统可以帮助商户管理能源消耗和成本,提高经济效益和竞争力。
EMS系统技术介绍EMS(Energy Management System)系统是一种能源管理系统,通过对能源的监测、分析和控制,实现对能源的高效利用和减少浪费,从而达到降低成本、减少碳排放和提升可持续发展的目标。
EMS系统结合了传感器、数据采集、数据传输、数据分析和应用软件等各种技术,可以对能源的使用情况进行实时监控和控制,为企业和机构提供全面的能源管理解决方案。
1.传感器技术:EMS系统通过安装各种传感器来实时监测各种能源的使用情况,例如电能、水能、气能等。
传感器可以将能源的使用情况转化为电信号或其他信号,然后传输给数据采集设备进行处理和分析。
2.数据采集技术:EMS系统使用数据采集设备来收集传感器所产生的信号,并将其转化为数字信号。
数据采集设备一般包括模数转换器、信号放大器等组件,可以将模拟信号转化为数字信号,并将数据传输给数据传输设备。
3.数据传输技术:EMS系统使用数据传输设备将采集到的数据传输到数据分析和控制中心。
数据传输设备可以使用有线或无线通信技术,例如以太网、无线局域网、蜂窝网络等,以实现数据的实时传输。
4.数据分析技术:EMS系统使用数据分析技术对采集到的数据进行处理和分析,从而得出能源的使用情况、趋势和异常情况等信息。
数据分析可以采用各种算法和模型,例如统计分析、时间序列分析、机器学习等,以实现对能源的优化管理和节能控制。
5.应用软件技术:EMS系统通过应用软件将数据分析结果呈现给用户,并支持用户进行能源管理决策和控制操作。
应用软件可以提供各种功能和模块,例如能源监测、能源计费、能源预测、能源评估等,以满足不同用户的需求。
在实际应用中,EMS系统可以广泛应用于各个行业和领域,例如工业生产、商业建筑、住宅小区等。
通过对能源的实时监控和控制,EMS系统可以实现能源的精细化管理和优化利用,提高能源利用率和节能效果,降低能源成本,并减少对环境的影响。
总之,EMS系统是一种基于传感器、数据采集、数据传输、数据分析和应用软件等多种技术的能源管理系统。
能量管理系统的名词解释能量管理系统(Energy Management System,简称EMS)是一种用于监控、测量和控制能源消耗的系统。
它是一种集成化的解决方案,通过整合各种技术和策略,帮助组织实现能源效率和可持续发展的目标。
能量管理系统在各个行业和领域都得到了广泛的应用,包括商业建筑、制造业、交通运输等。
能量管理系统的核心概念是实时监测和分析能源数据。
它通过安装传感器和监测设备,实时采集能源消耗的数据,包括电力、水、燃气等。
这些数据被传输到能量管理系统的中央控制台,通过软件分析和可视化展示,帮助管理人员了解能源消耗的情况,并做出相应的决策和调整。
能量管理系统的基本功能包括能源监测、能源分析和能源控制。
能源监测是指对能源消耗进行实时监测和记录,以便获取准确的数据。
能源分析是指对能源消耗数据进行统计和分析,找出能源浪费和瓶颈点,并提出改进建议。
能源控制是指通过自动化控制和智能调节,优化能源利用效率,降低能源消耗。
能量管理系统的关键特点是可定制化和可持续性。
它可以根据不同组织的需求进行定制和配置,以适应不同问题和环境。
例如,商业建筑可以通过能量管理系统监测和控制照明和空调系统的能耗,制造业可以通过能量管理系统优化生产线的能源利用。
此外,能量管理系统也注重可持续发展,帮助组织减少碳排放,提高环境可持续性。
在实际应用中,能量管理系统还可以结合其他技术和措施,进一步提高能源效率。
例如,与建筑自动化系统结合,能够实现对建筑设备的智能控制和调整。
与可再生能源技术结合,可以利用太阳能、风能等替代传统能源。
与能源存储技术结合,可以实现能源的储存和平衡。
这些技术的结合可以最大程度地降低能源消耗,提高资源利用效率。
随着能源安全和环境保护的重要性日益突出,能量管理系统作为一种有效的工具受到了越来越多组织的关注和应用。
它不仅可以帮助组织降低能源成本,提高竞争力,还可以减少环境影响,推动可持续发展。
因此,能量管理系统的发展具有广阔的前景,将在未来得到更加广泛的应用和推广。
EMS能量管理系统介绍EMS(能源管理系统)是一种集成化的能量管理解决方案,通过使用实时监测、控制和优化技术,能够帮助组织实现能源效率的提升、成本的降低以及环境的保护。
EMS能够监测和管理各种能源资源,包括电力、水、天然气等,以及能源消耗设备和系统。
EMS系统的关键功能是数据收集、分析和控制。
通过连接各种传感器和仪器设备,EMS能够实时收集能源数据,并将其汇总在一个中心控制系统中进行分析。
通过这种方式,组织可以了解其能源消耗模式、能源浪费情况以及可能的节能潜力。
通过获取这些数据,EMS能够提供有关如何利用能源资源更加高效的建议和决策支持。
EMS系统还可以与其他建筑自动化系统(如楼宇管理系统)集成,实现智能化的能源控制和优化。
通过根据实际的能源需求和使用情况进行自动调节,EMS能够确保能源的恰当供应,并避免不必要的浪费。
这种动态能源管理的方法可以大大减少能源消耗,并降低能源成本。
EMS系统还具有预测功能,即通过使用历史数据和模型分析来预测未来的能源需求和消耗。
这有助于组织在提前做出相应的能源调整和计划,并有效地规划未来的能源采购和使用。
此外,EMS系统还可以提供能源报告和监测功能。
通过将能源数据可视化呈现,EMS可以帮助组织了解其能源消耗模式和趋势,并识别节能机会。
同时,监测功能可以及时发现能源设备的故障和异常,以便及时采取措施维修和改进。
EMS系统的部署和应用具有广泛的范围。
它可以应用于各种组织类型,包括住宅、商业建筑、工业企业等。
而且,EMS系统也不限于特定的行业,可以适用于任何涉及能源管理的领域。
从长远来看,EMS系统对于可持续发展和环境保护也具有积极的作用。
通过减少能源的浪费和消耗,EMS能够减少碳排放和环境污染,为可持续发展做出贡献。
总之,EMS能源管理系统是一种集成化的解决方案,可以帮助组织实现能源效率的提升、成本的降低以及环境的保护。
它通过数据收集、分析和控制等功能,实现能源的实时监测、自动控制和优化。
EMS能源管理系统简介钢铁企业能源管理系统简介系统概述国内外先进钢铁企业的成功实践证明,利用先进能源管理系统来进行能源管理,对能源的统一调度、优化能源介质平衡、减少煤气放散、提高环保质量、降低吨钢综合能耗和提高劳动生产率有重要作用,而且对于能源事故原因的快速分析和及时判断处理、能源计划编制、实绩分析、质量管理、能源预测等都是十分有效的。
针对钢铁企业能耗水平和节能技术现状,建立以能源管理业务为依托,以能源介质和主要能效设备在线监测为主要基础,融合能源负荷预测、能源供需平衡分析、能源结构和调度优化等技术,形成适用于大型钢铁企业的能源在线监测、能效分析平台和企业级能源优化系统软件,实现节能降耗的技术提升和创新,显著降低钢铁企业的能耗,可满足当前实现经济和社会可持续发展的迫切需要,并对实现国家节能减排总体目标具有重大意义。
系统目标能源管理系统的主要能源介质主要有:电力、焦炉煤气、高炉煤气、转炉煤气、混合煤气、压缩空气、氧气、氮气、氩气、蒸汽、净环水、浊环水、软水、源水、排水、回用水、冷风等。
通过能源管理系统的建设,将实现以下目标:将采集的数据进行归纳、分析和整理,结合生产计划的数据,进行能源管理工作,包括能源计划与实绩管理、能源调度运行、能源质量、能源设备管理、能源效率分析、能源平衡管理、能源监察等。
能源管理系统为钢铁企业基础能源管理供完善的解决方案和稳定可靠的先进实用平台。
能源管理系统功能主要功能: 1) 能源管理咨询调研企业现状,结合先进管理理论和实践,提出满足企业需要的能源管理制度、方法等。
以钢铁企业能源生产管理现状为基础,借鉴先进的生产管理思想(“先进的计划和调度”、“精益化生产”、“标准操作规范”、“准时制物料控制”、“质量控制6西格玛”、“设备效率管理”),对钢铁企业能源生产管理现状进行现场诊断,找出优势和不足,提出改进方案,制定符合先进能源生产管理体系的方法和工作流程,建立完善的能源生产管理体系。
储能EMS能量管理系统一、引言本章节主要介绍储能EMS能量管理系统的目的和背景,以及本文档的编写目的和结构概述。
二、系统概述本章节主要介绍储能EMS能量管理系统的整体架构和功能,包括系统组成、核心模块、数据流程等。
2.1 系统组成①储能设备②监控装置③控制器④数据管理平台2.2 核心模块①储能管理模块②实时监控模块③控制策略模块④数据分析模块2.3 数据流程①储能设备数据采集②数据传输和存储③数据处理和分析④控制指令和下发三、系统配置本章节主要介绍储能EMS能量管理系统的系统配置要求和步骤,包括硬件设备配置、软件系统配置等。
3.1 硬件设备配置要求①储能设备要求②监控装置要求③控制器要求④数据管理平台要求3.2 软件系统配置要求①操作系统要求②数据管理软件要求③监控与控制软件要求四、系统使用本章节主要介绍储能EMS能量管理系统的使用方法和操作流程,包括登录系统、数据监控、控制指令下发等。
4.1 系统登录①用户登录②系统权限管理4.2 数据监控①实时数据监控②历史数据查询③数据图表分析4.3 控制指令下发①控制参数设置②控制策略调整③控制指令下发五、系统维护与故障排除本章节主要介绍储能EMS能量管理系统的维护方法和故障排除步骤,包括系统维护、软硬件故障处理等。
六、附件本文档附带以下附件:●储能EMS能量管理系统系统架构图●储能EMS能量管理系统用户手册●储能EMS能量管理系统技术规格书附件(注释):1.系统架构图:详细描述储能EMS能量管理系统的整体架构和各模块之间的关系。
2.用户手册:提供用户使用储能EMS能量管理系统的操作指南。
3.技术规格书:包含储能EMS能量管理系统的技术参数和性能指标。
法律名词及注释:1.储能设备:指用于储存和释放能量的设备,如储能电池组。
2.监控装置:负责采集和传输储能设备的运行数据的设备。
3.控制器:负责监控和控制储能设备运行状态的设备。
4.数据管理平台:负责接收、存储、处理和分析储能EMS系统中的数据的平台。
EMS能量管理系统1 引言项目名称名称:EMS能量管理系统研发设备:1、监控主机2、EMS Master3、EMS Slave1.2.4 用户1〕直接用户项目完成后的直接用户为微网电站。
2〕潜在用户海岛、政府办公大楼、小区建筑型等是其潜在用户,也可以应用于其它储能微网项目、或并网项目。
1.2.5同其他系统或其他机构基本的相互来往关系随着电子技术和电脑技术,特别是电力电子技术的飞速发展,以及各类型蓄电池的成本减低和普及,微网、储能电站会有一个越来越大的市场。
在微网系统中,为了协调各个发电设备,需要有一个功能调度设备完成功率分配工作。
本系统带有RS485接口,可以满足与远程监控系统接口,可实现太阳能光伏发电系统的无人值守。
1.2.6与其他监控系统通信通信协议:MODBUS RTU物理接口:RS-485定义EMS能量管理系统:微网中负责管理各种发电设备、负载设备的功能调度、管理设备。
EMS上位机:EMS Master:EMS Slave:2.可行性研究的前提2.1 要求功能要求随着全球范围内能源紧缺和环境保护问题的日益突出,可再生能源的利用引起广泛的重视。
大规模太阳能光伏微网发电系统是充分利用太阳能的一种有效方式之一,微网系统中发电调度是系统中最核心的装置之一,直接关系到电网的稳定和太阳能的利用和转换效率,一直是人们关注和研究的热点问题之一。
能量管理单元是根据收集到的各个发电设备运行状态数据、负载的用电数据,做出合适的判断,管理、控制各设备正常运行、保证电网稳定的装置。
将光伏、风电和柴油发电相结合,以获得间歇性太阳能和风能资源发电的最大化利用,同时保证能够提供持续的高质量电能供给。
另外,系统运行费用以及对环境的污染均降低了。
光伏阵列、蓄电池、风电机组、负荷、柴油发电机组是这个系统中的主要部分,如何能保证能量在这几部分中合理的分配以到达整个系统的稳定运行是建设永兴岛微电网需要解决的一个关键问题。
能量管理系统就是要解决光/风/柴/储/负荷之间的配合问题,使得系统能够协调运行,既保证可再生能源的充分利用、降低柴油消耗、保护环境。
EMS能量管理系统一,EMS能量管理系统的作用二,系统概述储能能量管理系统,主要功能包括储能系统设备(PCS、BMS、电表、消防、空调等)数据采集、数据分析展示以及能量调度(主要体现为运行经济运行策略及安全保护策略),是专门应用于设备管理的一套软件系统平台。
EMS能源管理系统适用于储能站、微电网、新能源储能一体化等类型项目的系统监控、功率控制及能量管理的监控系统,实现对储能电站BMS和PCS的集中监控,统一操作、维护、检修和管理,实现故障的快速切除、在负荷高峰时缓解电网压力、降低电网运行成本、提高经济效益。
三,系统架构四,系统功能1、系统总览1)进行实时数据采集和监控,包括储能站关键运行信息:包括电站额定功率、电站额定容量、电站PCS运行台数以及根据储能电站上送的运行数据,分析系统运行状态,挖掘或抽取有用的信息,如储能系统 SOC、SOH、储能充放电效率等。
2)地图显示储能站的地理位置。
3)展示近期的历史数据:今日和昨日削峰电量、本月、本周、昨日、24小时的充放电有功功率曲线。
2、监视与控制1)显示当前储能站的充放电情况,以及相关关键数据情况2)对储能电站下多个储能单元的事故汇总,可通过点击光字牌查看详细。
3)对计划控制中储能电站的显示数据,包括充放电实时曲线、日中计划曲线、日内超短期曲线。
3、日前计划1)充放电计划维护:此页面对用户的展示内容包括储能站的充放电计划、新能源预测信息曲线及储能充放电信息曲线。
用户在“充放电计划维护”一栏可以新增、修改、删除储能站的充放电计划。
可以通过充一放、两充两放或一充两放等模式进行削峰填谷、新能源消纳、削峰填谷兼顾新能源消纳、应急保电的控制策略。
2)历史计划查询:通过日期选择查询相应时间段的调度计划值或系统自动生成的储能充放电计划值。
4、报警查询用户可通过报警界面能够对历史报警信息进行查询并导出。
准确轻松得进行历史报警信息的寻找,无需每次通过系统进行查找。
五,EMS能量管理系统的其他应用1,现代电网调度自动化系统EMS能量管理系统是现代电网调度自动化系统(含硬、软件)总称。
EMS能量管理系统介绍————————————————————————————————作者:————————————————————————————————日期:EMS能量管理系统1 引言1.2.1 项目名称名称:EMS能量管理系统研发设备:1、监控主机2、EMS Master3、EMS Slave1.2.4 用户1)直接用户项目完成后的直接用户为微网电站。
2)潜在用户海岛、政府办公大楼、小区建筑型等是其潜在用户,也可以应用于其它储能微网项目、或并网项目。
1.2.5同其他系统或其他机构基本的相互来往关系随着电子技术和计算机技术,特别是电力电子技术的飞速发展,以及各类型蓄电池的成本减低和普及,微网、储能电站会有一个越来越大的市场。
在微网系统中,为了协调各个发电设备,需要有一个功能调度设备完成功率分配工作。
本系统带有RS485接口,可以满足与远程监控系统接口,可实现太阳能光伏发电系统的无人值守。
1.2.6与其他监控系统通信通信协议:MODBUS RTU物理接口:RS-4851.3 定义EMS能量管理系统:微网中负责管理各种发电设备、负载设备的功能调度、管理设备。
EMS上位机:EMS Master:EMS Slave:2.可行性研究的前提2.1 要求2.1.1 功能要求随着全球范围内能源紧缺和环境保护问题的日益突出,可再生能源的利用引起广泛的重视。
大规模太阳能光伏微网发电系统是充分利用太阳能的一种有效方式之一,微网系统中发电调度是系统中最核心的装置之一,直接关系到电网的稳定和太阳能的利用和转换效率,一直是人们关注和研究的热点问题之一。
能量管理单元是根据收集到的各个发电设备运行状态数据、负载的用电数据,做出合适的判断,管理、控制各设备正常运行、保证电网稳定的装置。
将光伏、风电和柴油发电相结合,以获得间歇性太阳能和风能资源发电的最大化利用,同时保证能够提供持续的高质量电能供应。
另外,系统运行费用以及对环境的污染均降低了。
光伏阵列、蓄电池、风电机组、负荷、柴油发电机组是这个系统中的主要部分,如何能保证能量在这几部分中合理的分配以达到整个系统的稳定运行是建设永兴岛微电网需要解决的一个关键问题。
能量管理系统就是要解决光/风/柴/储/负荷之间的配合问题,使得系统能够协调运行,既保证可再生能源的充分利用、降低柴油消耗、保护环境。
对EMS能量管理单元功能的基本要求➢稳定电网:1.协调发电、用电设备,稳定电网。
2.统计用电数据。
3.记录、显示电网状态。
➢控制功能:1.接收上级指令,并作出对应动作。
2.控制各个发电设备的运行。
3.管理部分负载。
➢控制器显示、通信功能:1.自带显示界面,显示各种状态、参数。
2.RS485通信接口与上位机通信。
2.1.2技术要求1、产品安全稳定,成本低。
2、在现有成熟技术的基础上进行创新,开发出具有高性能的,容量扩展容易的新产品,借鉴国内外同行同类产品的成熟技术,吸收国内同仁先进的算法和编程技巧。
3、产品应符合相关国家或行业标准。
3系统设计3.1系统整体结构综合分析国内外的情况,能量管理系统上位机采用工控机作为硬件平台。
工控机具有较强的抗干扰能力、外部扩展口种类多,而且开发相平台是与普通计算机相同,这样开发相对方便。
系统框图:EMS上位机EMS SlaveEMS MasterCAN/ETHEMS Slave EMS Slave EMS SlaveCAN/ETHCAN/ETHPCS逆变器CAN/ETH油机风机电网电网参数采集I/O远程监控远程调度ETH现场显示CAN/ETH可控负荷风、光功率预测ETH/RS485/CAN3.2具体功能要求3.2.1 EMS上位机具体功能要求1、显示实时显示电网运行的数据、状态。
如电网频率、电压、电流、发电功率、用电功率、有功、无功等。
实时显示网络中设备运行状态。
发电设备状态数据、用电设备状态数据、PCS电池充放电状态及容量等。
查询显示各设备运行记录;显示数据库中记录设备的运行数据曲线、工作状态曲线等。
根据曲线对电网、设备进行分析,从而制定出更好的控制策略和方法。
2、控制控制网络中设备的启动、停止。
手动控制一个或多个设备停止工作,从而可以进行检修工作。
手动控制PCS对电池进行充放电,电池活化处理以及电池检测等工作。
手动控制可控负荷的工作。
接收上级指令或通过编辑好的控制过程,向EMS系统发送控制指令,满足调度的要求。
3、记录记录电网运行数据、状态,可以远传到远程监控中心,以便将来进行电网运行状态分析时使用。
记录网络中各个设备运行状态数据、运行状态。
可以远传到远程监控中心进行查询、显示和分析。
记录控制命令执行过程,记录远端下发的控制指令,记录向EMS系统下发的控制指令。
可以通过网络将数据远传到监控中心或分析设备中,以便将来进行电网运行状态分析时使用。
4、数据输入编辑系统网络结构。
通过界面操作配置系统网络图,设备链接示意图,自动产生网络对应的数据库。
设备设备配置数据。
通过界面操作配置系统中各个设备、Slave设备的配置数据,下发的各个设备。
5、通信远程通信。
通过RS485或TCP/IP将EMS管理网络的数据远传到监控中心或分析设备中,共分析人员使用。
与Master通信。
向Master下发远程或界面操作产生的控制指令,接收Master运行状态数据。
3.2.2 EMS Master具体功能要求1、采集数据、控制设备通过采集设备(串口、CAN采集)或电压、电流传感器采集电网的运行参数(电压、电流、频率等),计算电网的有功、无功。
累计计算发电设备的运行数据(Slave上传或外接采集设备);采集可控负荷的状态数据。
根据电网数据和状态、上级的调度命令,根据设定好的调度算法,计算出控制量,将控制量根据控制算法,细分到各个Slave中,向Slave发送合适的控制指令。
监控模拟、数字输入口的状态,根据逻辑做出相对应的动作。
控制模拟、数字口的状态。
2、通信与上位机、上级或监控进行通信。
接收上级(控制)指令,作为控制算法的输入条件。
管理Slave。
查询控制管辖的Slave,判断Slave的状态。
3、记录记录电网运行数据、状态,供上位机查询显示用,以便将来进行电网运行状态分析时使用。
记录Slave运行状态数据,记录Slave管辖设备的运行状态数据。
可以通过专用设备或上位机进行查询和显示。
记录控制命令执行过程,记录上位机、监控主机下发的控制指令,记录向Slave下发的控制指令。
可以通过网络将数据读入上位机或分析设备中,以便将来进行电网运行状态分析时使用。
3.2.3 EMS Slave具体功能要求1、控制控制协调PCS、逆变器、油机、风机、可控负荷等设备运行。
具有一定的自主控制功能,在满足Master控制要求的基础上,自动分配管辖设备的工作点。
2、通信与Master进行通信。
接收Master下发的控制指令,作出判断并执行。
向Master主动/查询报告管辖设备的运行状态。
与管辖设备PCS、逆变器等进行通信。
向管辖设备发送控制指令,调节设备的运行状态。
接收设备的运行状态数据,向Master进行报告。
3、记录记录Master下发到本Slave的控制执行指令,以便将来进行电网运行状态分析时使用。
记录下发到管辖PCS、逆变器等设备的控制命令,并记录管辖设备对下发指令执行的情况。
记录管辖PCS、逆变器等设备运行状态及数据,同时向Master报告设备的各种运行数据、状态、报警等。
3.3技术指标3.3.1 EMS系统技术指标EMS系统指标设备容量上位机监控平台1台Master 1台Slave最大数量8台Slave控制设备数量4台最大控制设备数量32台发电设备最多24台负载最多8台控制功率最大发电功率12MW最大控制负载功率4MW时间响应检测控制时间<100ms(检测->判断->下发命令->设备执行)3.3.2 EMS上位机具体技术指标EMS上位机接口RS485接口1个,MODBUS协议,通信速率2400bps-38400bps,默认9600bps,最大通信距离<1500m(2400bps)RJ45接口1个,100M/10MVGA接口1个,现场显示供电电压交流220V/50Hz,直流18-32V最大功耗120W系统参数防护等级IP20噪声<83dB工作环境温度-20℃~+40℃工作环境湿度20%-93%冷却方式风冷显示方式TFT 触摸屏安装方式机柜、琴台EMC要求EMC要求ClassB软件参数操作记录数量最多1万条报警记录数量最多1万条运行参数记录数量最多10万条操作密码保护3级无密码:查询记录、报警等1级:复位报警等;现场维护人员使用2级:更改系统运行参数,控制设备;设备管理人员使用3级:配置系统等,厂家使用编辑、下载系统参数3.3.3 EMS Master具体技术指标EMS Master时间指标检测控制时间<100ms(检测->判断->下发命令->设备执行)上位机命令响应<10ms巡检Slave周期<100ms接口RS485接口2个,MODBUS协议,通信速率2400bps-38400bps,默认9600bps,最大通信距离<1500m(2400bps)RJ45接口1个,100M/10MCAN接口2个,通信速率2Kbps-50Kbps,默认10Kbps,最大通信距离<1500m(2Kbps)模拟输入接口6路(电网电压、电流),4-20mA模拟输出接口8路,4-20mA开关量输入接口12路,无源开关量输出接口12路,无源供电电压DC18-32V电流<1A最大功耗20W系统参数防护等级IP20工作环境温度-20℃~+70℃工作环境湿度20%-93%3.3.4 EMS Slave具体技术指标EMS Slave时间指标检测控制时间<100ms(检测->判断->下发命令->设备执行)上位机命令响应<10ms巡检Slave周期<100ms接口RS485接口2个,MODBUS协议,通信速率2400bps-38400bps,默认9600bps,最大通信距离<1500m(2400bps)RJ45接口1个,100M/10MCAN接口2个,通信速率2Kbps-50Kbps,默认10Kbps,最大通信距离<1500m(2Kbps)模拟输入接口6路(电网电压、电流),4-20mA模拟输出接口8路,4-20mA开关量输入接口12路,无源开关量输出接口12路,无源供电电压DC18-32V电流<1A最大功耗20W系统参数防护等级IP20工作环境温度-20℃~+70℃工作环境湿度20%-93%4技术路线4.1 开发环境4.1.1 EMS上位机方案1:采用组态软件开发。