IGBT主要运行参数的计算方法
- 格式:pdf
- 大小:418.31 KB
- 文档页数:24
IGBT 耗散功率计算不管是正常负荷还是超负荷,IGBT安全工作必须确保结温T i 不超过片皿⑰。
—一关于IGBT及损耗IGBT模块由IGBT本部和续流二极管FWD组成,各自发生的损耗的合计为IGBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗和交换(开关)损耗。
1 GET总扌員耗PtoLal通态损耗可通过稳态输出特性计算;交换损耗可通过交换损耗-集电极电流特性来计算二IGBT (本部)耗散功率计算1、通态功耗的计算开逢损耗T=亍 /\(上)*" IGBT 通态平均功耗是■ 通态损耗近似是P sat = V CE(sat) X^CE(sat) IGBT 饱和J k 降l c -一集电极电流D] 占空比I 和V C E 的波形,对其进行积分T T(积分时间是开通时间 '或关断时间')关断损耗:'N ' ?11'-的积分面积是以焦耳为单位的开关能量。
总的开关损耗是开通与关断过程所损耗能量之和,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到: 实际上E ON 和可由交换损耗-集电极电流特性曲线来估算 大多数IGBT 都会提供交换损耗与集电极电流特性曲线,如下图: Sct«aitw1us.teswrtehanQ losses (G EJ T —Verter 电typ.ca 口 耳・=t He).丘■” = T (lc)V GE = ±15 V. FUif = 0,91 Q t 尺 j” = 1.2 a” V CE = 1800 V, T wJ — T25・U. C GE = N2O nF2、 PWM 应用时,近似通态损耗 开关损耗计算Psat = V CE(sat) X I c X D y开关损耗精确计算:测量开关过程中 开通损耗:[MJJw-v CE(sat)(t )*dt [] p-1 sw(on) t on u =f -/L (t)・ v CE(sat)(t )・ d依据IGBT实际流过的电流值,查曲线得到E ON和E o(r,即可计算平均开关损耗:卩加二^WM % t E ON + E O F J3、IGBT本部总损耗是通态损耗和开关损耗之和P igbt = P sat + P sw三IGBT(FWD-二极管部)功率损耗P FWD =V F X I。
正确理解IGBT模块规格书参数本文将阐述IGBT模块手册所规定的主要技术指标,包括电流参数、电压参数、开关参数、二极管参数及热学参数,使大家正确的理解IGBT模块规格书,为器件选型提供依据。
本文所用参数数据以英飞凌IGBT模块FF450R17ME3 为例。
一、电流参数1. 额定电流(IC nom)大功率IGBT模块一般是由内部并联若干IGBT芯片构成,FF450R17ME3内部是3个150A 芯片并联,所以标称值为450A额定电流可以用以下公式估算:Tjmax–TC= VCEsat·IC nom·RthJCVCEsat 是IC nom的函数,见规格书后图1,采用线性近似VCEsat=(IC nom+287)/310 Tjmax=150℃,TC=80℃,RthJC =0.055K/W计算得:IC nom=500A2. 脉冲电流(Icrm 和Irbsoa)Icrm是可重复的开通脉冲电流(1ms仅是测试条件,实际值取决于散热情况)Irbsoa 是IGBT可以关断的最大电流所有模块的的Icrm和Irbsoa都是2倍额定电流值3. 短路电流ISC短路条件:t<10μs,Vge<15V,Rg>Rgnom(规格书中的值),Tj<125℃短路坚固性ØIGBT2为平面栅IGBT:5-8倍ICØIGBT3/IGBT4为沟槽栅IGBT:4倍IC二、电压参数1. 集电极-发射极阻断电压Vces测量Vces时,G/E两极必须短路Vces为IGBT模块所能承受的最大电压,在任何时候CE间电压都不能超过这一数值,否则将造成去器件击穿损坏Vces和短路电流ISC一起构成了IGBT模块的安全工作区:RBSOA图由于模块内部寄生电感△V=di/dt*Lin 在动态情况下,模块耐压和芯片耐压有所区别2. 饱和压降VCEsatIFX IGBT的VCEsat随温度的升高而增大,称为VCEsat具有正温度系数,利于芯片之间实现均流VCEsat 是IC的正向函数,随增大而增大ICVCEsat的变化VCEsat随IC的增大而增大VCEsat随VG的减小而增大VCEsat 值可用来计算导通损耗对于SPWM 控制, 导通损耗是:三、开关参数1. 内部门极电阻RGint为了实现模块内部芯片的均流,模块内部集成了内部门极电阻。
一、逆变模块计算(1) 每个IGBT 的平均通态损耗()1(cos )83sat cp CE sat D P I V θπ=⨯⨯+=200×1.414×1.5×0.211=89.5W(2) 每个IGBT 的平均开关损耗()()1[]SW on off PWMP E E f π=+⨯=0.318×(100+100)×1000/1000=63.6W(3) 每个IGBT 的总功耗 T sat SW P P P =+=89.5+63.6=153.1W(4) 反并联续流二极管的通态平均功耗1(cos )83D CP F D P I V θπ=⨯-=200×1.414×1.4×0.031=12.3W(5) IGBT 和反并联二极管的功耗A T D P P P =+=153.1+12.3=165.4Wcp I 为输出正弦电流峰值;D 为PWM 信号占空比,取0.9;θcos 为功率因数,取0.9; on E 为j T =125C ︒时,峰值电流cp I 下从曲线可查到的开通能量;off E 为j T =125C ︒时,峰值电流cp I 下从曲线可查到的关断能量;PWM f 为PWM 开关频率;)(sat CE V 为j T =125C ︒时,峰值电流cp I 下,IGBT 的饱和压降;F V 为反并联二极管导通压降。
对于三电平逆变器,耗散总功率为IGBT 损耗功率与箝位二极管损耗功率之和, Total P =A P ×12+D P ×6=2058.6W结温核算:)(c j th T C j R P T T -⨯+== 80+153.1×0.04=86<125C ︒从而可算出逆变模块所选散热器的热阻:Total a c sa P T T R /)(max -=θ×3=686.2max c T 是设计结温时j T =125C ︒,允许的最大壳温max c T =80C ︒;a T 为设计中的最高环境温度,a T =40C ︒sa R θ=0.058C ︒/W二 、整流模块计算(1)每个IGBT 的平均通态损耗()1(cos )83sat cp CE sat D P I V θπ=⨯⨯+=260×1.414×1.8×0.211=139.6W(2)每个IGBT 的平均开关损耗()()1[]SW on off PWMP E E f π=+⨯=0.318×(130+130)×1000/1000=82.7W(3)每个IGBT 的总功耗 T sat SW P P P =+=139.6+82.7=222.3W(4)反并联续流二极管的通态平均功耗1(cos )83D CP F D P I V θπ=⨯-=260×1.414×1.6×0.031=18.2W(5)IGBT 和反并联二极管的功耗A T D P P P =+=222.3+18.2=240.5Wcp I 为输出正弦电流峰值;D 为PWM 信号占空比,取0.9;θcos 为功率因数,取0.9; on E 为j T =125C ︒时,峰值电流cp I 下从曲线可查到的开通能量;off E 为j T =125C ︒时,峰值电流cp I 下从曲线可查到的关断能量;PWM f 为PWM 开关频率;)(sat CE V 为j T =125C ︒时,峰值电流cp I 下,IGBT 的饱和压降;F V 为反并联二极管导通压降。
IGBT的驱动特性及功率损耗计算IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关器件,广泛应用于电力电子领域。
IGBT的驱动特性和功率损耗计算是研究和设计IGBT电路时重要的考虑因素。
以下是对IGBT驱动特性和功率损耗计算的详细介绍。
一、IGBT的驱动特性1.输入阻抗:IGBT的输入阻抗较高,通常在几百欧姆到几兆欧姆之间,可以接受微弱的输入信号。
2.输入电容:IGBT的输入电容通常较大,约为几十皮法(pF),需要充放电过程来实现开关控制。
3.驱动电压:IGBT的驱动电压通常在12V至15V左右,在工作过程中,需要适当控制驱动电压的大小和时间,以保证其正常工作。
4.驱动电流:IGBT的驱动电流是驱动IGBT的关键参数,通常需要较大的驱动电流来保证IGBT的稳定工作。
5.驱动方式:常见的IGBT驱动方式有电流驱动和电压驱动两种。
电流驱动方式可以提供更好的保护性能和更高的驱动能力。
6.驱动信号:IGBT的驱动信号通常为脉宽调制(PWM)信号,通过控制脉宽来调节流过IGBT的电流,从而实现对电路的开关控制。
7.驱动时间:IGBT的驱动时间是指IGBT从关断到导通或从导通到关断的时间,通常需要较短的驱动时间来保证IGBT的快速开关。
IGBT在工作过程中会产生一定的功率损耗,包括导通损耗、关断损耗和开关损耗。
功率损耗的计算对于设计IGBT电路和散热系统非常重要。
1.导通损耗:IGBT在导通状态下会有一定的导通电压降和导通电流,导致功率损耗。
导通损耗可以通过以下公式计算:Pcon = Vce × Ic其中,Pcon为导通损耗,Vce为导通电压降,Ic为导通电流。
2.关断损耗:IGBT在关断过程中会有一定的关断电流和关断电压降,导致功率损耗。
关断损耗可以通过以下公式计算:Pdis = Vce × Ic × td其中,Pdis为关断损耗,Vce为关断电压降,Ic为关断电流,td为关断时间。
IGBT模块参数详解二-IGBT动态参数IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。
RGint:模块内部栅极电阻:为了实现模块内部芯片均流,模块内部集成有栅极电阻。
该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。
RGext:外部栅极电阻:外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。
上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。
用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。
已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。
实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。
如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。
最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。
Cge:外部栅极电容:高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。
IGBT寄生电容参数:IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。
输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。
其中:Cies = C GE + C GC:输入电容(输出短路)Coss = C GC + C EC:输出电容(输入短路)Cres = C GC:反馈电容(米勒电容)动态电容随着集电极与发射极电压的增加而减小,如下图所示。
与大多数功率半导体相比,IGBT 通常需要更复杂的一组计算来确定芯片温度。
这是因为大多数IGBT 都采用一体式封装,同一封装中同时包含IGBT 和二极管芯片。
为了知道每个芯片的温度,有必要知道每个芯片的功耗、频率、θ 和交互作用系数。
还需要知道每个器件的θ 及其交互作用的psi 值。
本应用笔记将简单说明如何测量功耗并计算二极管和IGBT 芯片的温升。
损耗组成部分根据电路拓扑和工作条件,两个芯片之间的功率损耗可能会有很大差异。
IGBT 的损耗可以分解为导通损耗和开关(开通和关断)损耗,而二极管损耗包括导通和关断损耗。
准确测量这些损耗通常需要使用示波器,通过电压和电流探针监视器件运行期间的波形。
测量能量需要用到数学函数。
确定一个开关周期的总能量后,将其除以开关周期时间便可得到功耗。
图 1. TO−247 封装,显示了IGBT 芯片(左)和二极管芯片(右)图 2. IGBT 开通损耗波形将开通波形的电压和电流相乘,即可计算出该周期的功率。
功率波形的积分显示在屏幕底部。
这就得出了IGBT 开通损耗的能量。
功率测量开始和结束的时间点可以任意选择,但是一旦选定了一组标准,测量就应始终遵循这些标准。
IGBT导通损耗图 3. IGBT 传导损耗波形导通损耗发生在开通损耗区和关断损耗区之间。
同样应使用积分,因为该周期内的功率并不是恒定的。
图 4. IGBT 关断损耗波形开通、导通和关断损耗构成了IGBT 芯片损耗的总和。
关断状态损耗可以忽略不计,不需要计算。
为了计算IGBT 的总功率损耗,须将这三个能量之和乘以开关频率。
IGBT 损耗必须使用阻性负载或在负载消耗功率的部分周期内进行测量。
这样可消除二极管导通。
图 5. 二极管导通损耗波形FWD反向恢复图 6. 二极管反向恢复波形图 5 和图 6 显示了二极管在整流器或电抗模式下工作期间的电流和电压波形。
二极管损耗的计算类似于IGBT 损耗。
需要了解的是,损耗以半正弦波变化。
IGBT 耗散功率计算不管是正常负荷还是超负荷,IGBT安全工作必须确保结温T不超过Tj。
一关于IGBT及损耗IGBT模块由IGBT本部和续流二极管FWD组成,各自发生的损耗的合计为I GBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗和交换(开关)损耗。
通态损耗可通过稳态输出特性计算;交换损耗可通过交换损耗-集电极电流特性来计算。
二IGBT(本部)耗散功率计算1、通态功耗的计算IGBT通态平均功耗是P sat。
通态损耗近似是PsaPWM应用时,近似通态损耗P sat。
2、开关损耗计算开关损耗精确计算:测量开关过程中I C和形,对其进行积分(积分时间是开通时间T时间TOf)开通损耗:关断损耗:t积是以焦耳为单位的开关能量。
总的开关损耗是开通与关断过程所损耗能量之和,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到:实际上EO损耗-集电极电流特性曲线来估算大多数IGB T都会提供交换损耗与集电极电流特性曲线,如下图:依据IGBT实际流过的电流值,查曲线得到,即可计算平均开关损耗:3、IGBT本部总损耗是通态损耗和开关损耗之和三IGBT(FWD-二极管部)功率损耗四VVVF变频器中IGB T模块的功耗计算在SPWM调制的变频器中,IGBT的电流值及占空比经常变换,使得功耗计算很困难。
以下是估算公式:1每一个IG B T的平均通态损耗2 每一个IGB T的平均开关损耗3 每一个桥臂I GBT的总功耗4 反并联续流二极管的通态平均功耗5 每一个IGB T总功耗计算举例条件:IGBT:eupec公司型号:FZ1200R33KF2C开关频率20kHz;功率因素c0.8;SPWM变频器,400Kva,320kW。
IGBT基本参数详解讲解1.静态参数1.1 集射极阻断电压集射极阻断电压是指在可使用的结温范围内,当栅极和发射极短路时,集射极所能承受的最高电压。
手册里一般给出的是25℃下的数据,但随着结温的降低,该值会逐渐降低。
在关断时,最容易超过该限值。
1.2 最大允许功耗最大允许功耗是指在25℃时,IGBT开关的最大允许功率损耗,即通过结到壳的热阻所允许的最大耗散功率。
其中,结温为芯片结温,环境温度为PCB板的环境温度。
二极管的最大功耗可以用同样的公式获得。
需要注意的是,结到壳的热阻抗、芯片热源到周围空气的总热阻抗以及芯片结与PCB间的热阻抗都需要乘以发热量才能获得对应的温度差。
1.3 集电极直流电流集电极直流电流是指在可以使用的结温范围内,流过集射极的最大直流电流。
根据最大耗散功率的定义,可以由最大耗散功率算出该值。
因此,给出一个额定电流时,必须同时给出对应的结和外壳的温度。
1.4 可重复的集电极峰值电流可重复的集电极峰值电流是指在规定的脉冲条件下,可重复承受的集电极峰值电流。
1.5 RBSOA,反偏安全工作区RBSOA是指IGBT关断时的安全工作条件。
如果工作期间的最大结温不超过限制,IGBT在规定的阻断电压下可以驱使两倍的额定电流。
1.6 短路电流短路电流是指短路时间不超过10us的情况下,承受的最大电流。
需要注意的是,在双脉冲测试中,上管XXX之间如果没有短路或负偏压,就很容易引起下管开通时,上管误导通,从而导致短路。
1.7 集射极导通饱和电压集射极导通饱和电压是指在额定电流条件下给出的值。
Infineon的IGBT都具有正温度效应,适宜于并联。
该值随集电极电流的增加而增加,随着温度的升高而减小。
该值可用于计算导通损耗。
根据IGBT的传输特性,计算时,切线的点尽量靠近工作点。
对于SPWM方式,导通损耗由下式获得:M为调制因数,为输出峰值电流,为功率因数。
2.动态参数2.1 模块内部栅极电阻为了实现模块内部芯片的均流,模块内部集成了栅极电阻。
IGBT基本参数详解解读第一部分 IGBT模块静态参数1,,集射极阻断电压在可使用的结温范围内,栅极和发射极短路状况下,集射极最高电压。
手册里一般为25?下的数据,随着结温的降低,会逐渐降低。
由于模块内外部的杂散电感,IGBT在关断时最容易超过限值。
2,,最大允许功耗在25?时,IGBT开关的最大允许功率损耗,即通过结到壳的热阻所允许的最大耗散功率。
其中,为结温,为环境温度。
二极管的最大功耗可以用同样的公式获得。
在这里,顺便解释下这几个热阻,结到壳的热阻抗,乘以发热量获得结与壳的温差,芯片热源到周围空气的总热阻抗,乘以发热量获得器件温升,芯片结与PCB间的热阻抗,乘以单板散热量获得与单板的温差。
3,集电极直流电流在可以使用的结温范围流集射极的最大直流电流。
根据最大耗散功率的定义,可以由最大耗散功率算出该值。
所以给出一个额定电流,必须给出对应的结和外壳的温度。
)4,可重复的集电极峰值电流规定的脉冲条件下,可重复的集电极峰值电流。
5,RBSOA,反偏安全工作区IGBT关断时的安全工作条件。
如果工作期间的最大结温不被超过,IGBT在规定的阻断电压下可以驱使两倍的额定电流。
6, 短路电流短路时间不超过10us。
请注意,在双脉冲测试中,上管GE之间如果没有短路或负偏压,就很容易引起下管开通时,上管误导通,从而导致短路。
7, 集射极导通饱和电压在额定电流条件下给出,Infineon的IGBT都具有正温度效应,适宜于并联。
随集电极电流增加而增加,随着增加而减小。
可用于计算导通损耗。
根据IGBT的传输特性,计算时,切线的点尽量靠近工作点。
对于SPWM方式,导通损耗由下式获得,M为调制因数,为输出峰值电流,为功率因数。
第二部分 IGBT模块动态参数1,模块内部栅极电阻为了实现模块内部芯片的均流,模块内部集成了栅极电阻,该电阻值常被当成总的驱动电阻的一部分计算IGBT驱动器的峰值电流能力。
2,外部栅极电阻数据手册中往往给出的是最小推荐值,可以通过以下电路实现不同的和。
IGBT 耗散功率计算不管是正常负荷还是超负荷,IGBT安全工作必须确保结温不超过。
一关于IGBT及损耗IGBT模块由IGBT本部和续流二极管FWD组成,各自发生的损耗的合计为IGBT模块整体损耗;同时,IGBT的损耗又分为通态(稳态)损耗和交换(开关)损耗。
通态损耗可通过稳态输出特性计算;交换损耗可通过交换损耗-集电极电流特性来计算。
二IGBT(本部)耗散功率计算1、通态功耗的计算IGBT通态平均功耗是。
通态损耗近似是PWM应用时,近似通态损耗。
2、开关损耗计算开关损耗精确计算:测量开关过程中的波形,对其进行积分(积分时间是开通时间或关断时间)开通损耗:关断损耗:t的积分面积是以焦耳为单位的开关能量。
总的开关损耗是开通与关断过程所损耗能量之和,平均开关损耗是单位脉冲开关损耗与开关频率相乘后得到:实际上和可由交换损耗-集电极电流特性曲线来估算大多数IGBT都会提供交换损耗与集电极电流特性曲线,如下图:依据IGBT实际流过的电流值,查曲线得到和,即可计算平均开关损耗:3、IGBT本部总损耗是通态损耗和开关损耗之和三IGBT(FWD-二极管部)功率损耗四VVVF变频器中IGBT模块的功耗计算在SPWM调制的变频器中,IGBT的电流值及占空比经常变换,使得功耗计算很困难。
以下是估算公式:1每一个IGBT的平均通态损耗2 每一个IGBT的平均开关损耗3 每一个桥臂IGBT的总功耗4 反并联续流二极管的通态平均功耗5 每一个IGBT总功耗计算举例条件:IGBT:eupec 公司型号:FZ1200R33KF2C开关频率20kHz;功率因素0.8;SPWM变频器,400Kva,320kW。
占空比D=50%工作电流IC=600A峰值电流Icp=600*查IGBT手册=1000=900=2.5V以下是计算:则每一个IGBT通态损耗:=355W 每一个IGBT开关损耗:续流二极管损耗:=40W IGBT模块总损耗:再加上整流损耗,控制系统损耗,此计算表明变频器总损耗在80kW 左右。