芯片stm32f103t8u6
- 格式:pdf
- 大小:1.19 MB
- 文档页数:92
2.1 器件一览表二:器件功能和配置(STM32F103xx增强型)图一.STM32F103xx增强型模块框图工作温度=-40至+105°C (结温达125°C) AF: I/O口上的其他功能3管脚定义图二.STM32F103xx增强型VFQFPN36管脚图四.STM32F103xx增强型LQFP64管脚表三. 管脚定义表三.管脚定义(续)注:1. I :输入, O:输出, S:电源, HiZ:高阻2. FT:兼容5V3. 其中部分功能仅在部分型号芯片中支持,具体信息请参考表2。
4. PC13,PC14和PC15引脚通过电源开关进行供电,因此这三个引脚作为输出引脚时有以下限制:9作为输出脚时只能工作在2MHz模式下9最大驱动负载为30pF9同一时间,三个引脚中只有一个引脚能作为输出引脚。
5. 仅在内嵌大等于64K Flash的型号中支持此类功能。
6. VFQFPN36封装的2号,3号引脚和LQFP48,LQFP64封装的5号,6号引脚在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。
软件可以重新设置这两个引脚为PD0和PD1功能脚。
但对于LQFP100封装,由于PD0和PD1为固有的功能脚,因此没有必要再由软件进行设置。
更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
PD0和PD1作为输出引脚只能工作在50MHz模式下。
7. 此类复用功能能够由软件配置到其他引脚上,详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
4存储器映像图七存储器图5电气特性请参考英文版数据手册6封装参数请参考英文版数据手册7订货代码表四. 订货代码型号闪存存储器K字节SRAM存储器K字节封装STM32F103C6T6 32 10STM32F103C8T6 64 20STM32F103CBT6 128 20LQFP48STM32F103R6T6 32 10STM32F103R8T6 64 20STM32F103RBT6 128 20LQFP64STM32F103V8T6 64 20STM32F103VBT6 128 20LQFP100STM32F103V8H6 64 20STM32F103VBH6 128 20LFBGA100STM32F103T6U6 32 6STM32F103T8U6 64 10VFQFPN367.1 后续的产品系列后续的STM32F103xx增强型系列产品将会有更广泛的型号选择,芯片将会有更大的封装尺寸并内嵌多达512KB的Flash和48KB的SRAM。
2.1 器件一览表二:器件功能和配置(STM32F103xx增强型)图一.STM32F103xx增强型模块框图工作温度=-40至+105°C (结温达125°C) AF: I/O口上的其他功能3管脚定义图二.STM32F103xx增强型VFQFPN36管脚图四.STM32F103xx增强型LQFP64管脚表三. 管脚定义表三.管脚定义(续)注:1. I :输入, O:输出, S:电源, HiZ:高阻2. FT:兼容5V3. 其中部分功能仅在部分型号芯片中支持,具体信息请参考表2。
4. PC13,PC14和PC15引脚通过电源开关进行供电,因此这三个引脚作为输出引脚时有以下限制:9作为输出脚时只能工作在2MHz模式下9最大驱动负载为30pF9同一时间,三个引脚中只有一个引脚能作为输出引脚。
5. 仅在内嵌大等于64K Flash的型号中支持此类功能。
6. VFQFPN36封装的2号,3号引脚和LQFP48,LQFP64封装的5号,6号引脚在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。
软件可以重新设置这两个引脚为PD0和PD1功能脚。
但对于LQFP100封装,由于PD0和PD1为固有的功能脚,因此没有必要再由软件进行设置。
更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
PD0和PD1作为输出引脚只能工作在50MHz模式下。
7. 此类复用功能能够由软件配置到其他引脚上,详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
4存储器映像图七存储器图5电气特性请参考英文版数据手册6封装参数请参考英文版数据手册7订货代码表四. 订货代码型号闪存存储器K字节SRAM存储器K字节封装STM32F103C6T6 32 10STM32F103C8T6 64 20STM32F103CBT6 128 20LQFP48STM32F103R6T6 32 10STM32F103R8T6 64 20STM32F103RBT6 128 20LQFP64STM32F103V8T6 64 20STM32F103VBT6 128 20LQFP100STM32F103V8H6 64 20STM32F103VBH6 128 20LFBGA100STM32F103T6U6 32 6STM32F103T8U6 64 10VFQFPN367.1 后续的产品系列后续的STM32F103xx增强型系列产品将会有更广泛的型号选择,芯片将会有更大的封装尺寸并内嵌多达512KB的Flash和48KB的SRAM。
2.1 器件一览表二:器件功能和配置(STM32F103xx增强型)图一.STM32F103xx增强型模块框图工作温度=-40至+105°C (结温达125°C) AF: I/O口上的其他功能3管脚定义图二.STM32F103xx增强型VFQFPN36管脚图四.STM32F103xx增强型LQFP64管脚表三. 管脚定义表三.管脚定义(续)注:1. I :输入, O:输出, S:电源, HiZ:高阻2. FT:兼容5V3. 其中部分功能仅在部分型号芯片中支持,具体信息请参考表2。
4. PC13,PC14和PC15引脚通过电源开关进行供电,因此这三个引脚作为输出引脚时有以下限制:9作为输出脚时只能工作在2MHz模式下9最大驱动负载为30pF9同一时间,三个引脚中只有一个引脚能作为输出引脚。
5. 仅在内嵌大等于64K Flash的型号中支持此类功能。
6. VFQFPN36封装的2号,3号引脚和LQFP48,LQFP64封装的5号,6号引脚在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。
软件可以重新设置这两个引脚为PD0和PD1功能脚。
但对于LQFP100封装,由于PD0和PD1为固有的功能脚,因此没有必要再由软件进行设置。
更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
PD0和PD1作为输出引脚只能工作在50MHz模式下。
7. 此类复用功能能够由软件配置到其他引脚上,详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。
4存储器映像图七存储器图5电气特性请参考英文版数据手册6封装参数请参考英文版数据手册7订货代码表四. 订货代码型号闪存存储器K字节SRAM存储器K字节封装STM32F103C6T6 32 10STM32F103C8T6 64 20STM32F103CBT6 128 20LQFP48STM32F103R6T6 32 10STM32F103R8T6 64 20STM32F103RBT6 128 20LQFP64STM32F103V8T6 64 20STM32F103VBT6 128 20LQFP100STM32F103V8H6 64 20STM32F103VBH6 128 20LFBGA100STM32F103T6U6 32 6STM32F103T8U6 64 10VFQFPN367.1 后续的产品系列后续的STM32F103xx增强型系列产品将会有更广泛的型号选择,芯片将会有更大的封装尺寸并内嵌多达512KB的Flash和48KB的SRAM。
微型仿生扑翼机控制器设计贺雪晨;周超英;汪超【摘要】针对微型仿生扑翼机载重量较小的特点,设计了一款微型扑翼机控制器.文章设计制作了扑翼机控制器的硬件电路,采用STM32F103T8U6作为主处理器,并设有陀螺仪、加速度计和磁力计.在此基础上将传感器的数据进行融合,采用基于四元数互补滤波的姿态解算方法求解出扑翼机的姿态角,以实际姿态角与目标姿态角的差值作为PD控制器的输入,输出量作为舵机控制量,提高扑翼机的飞行稳定性.文中所设计的控制器具有重量轻、尺寸小、与扑翼机契合度高的特点.【期刊名称】《电子设计工程》【年(卷),期】2018(026)016【总页数】5页(P72-75,80)【关键词】微型扑翼机;控制器;互补滤波;姿态解算【作者】贺雪晨;周超英;汪超【作者单位】哈尔滨工业大学深圳研究生院机电工程及自动化学院,广东深圳518055;哈尔滨工业大学深圳研究生院机电工程及自动化学院,广东深圳518055;哈尔滨工业大学深圳研究生院机电工程及自动化学院,广东深圳518055【正文语种】中文【中图分类】TN964.1仿生扑翼飞行器是一种模仿鸟类或昆虫飞行方式的新型仿生飞行器[1]。
与采用传统飞行方式的飞行器相比,仿生扑翼飞行器具有体积小、重量轻、隐蔽性好和灵活性高等优点[2],特别是在小尺度、低雷诺数条件下,相较于其他气动布局的飞行器有着难以比拟的优势,在民用和军事领域均有广泛的应用前景。
因此,近几十年来仿生扑翼飞行器的发展十分迅速,国内外的科研工作者对这一领域的研究也十分重视。
随着扑翼飞行器的小型化,势必要求其控制器做到尽量微型化。
文中设计一款微型控制器,并可解算出扑翼机的姿态角,采用PD控制器控制尾翼舵机,使扑翼机具有良好的飞行稳定性,满足微型扑翼机的控制要求。
1 硬件设计部分1.1 总体方案微型扑翼控制器可利用各传感器的数据解算出扑翼机的当前姿态,并解析接收机信号得到控制量,控制执行机构。
主要由以下几个部分组成:1)微处理器:扑翼控制器的核心单元,用来解算姿态角、解析遥控信号、控制执行机构;2)姿态传感器:包含加速度计、磁力计和陀螺仪,提供姿态解算的原始数据;3)通讯模块:遥控器通过接收机与控制器进行信息通信。