谱中的补充分量相互交叠在一起,采样器的输出信号将发生畸变, 无法再恢复到原来的连续信号的频谱。
图(c) 采样信号频谱 s < 2 h
由此可见,要想使连续信号不失真地从采样信号中恢复过来, 则必须满足条件:
s 2h
5、采样定理(Shannon定理)
Shannon定理:如果采样器的输入信号e(t)的频谱具有有限带宽,
(3)、信号保持器的特性 a、低通滤波特性;b、相角迟后特性;c、时间迟后特性。
7.3 Z变换理论 一、Z变换定义
1、直接定义
对于离散信号序列:
e * t e nT t n T e n T e 0 ,e 1 ,
n 0
定义它的Z变换为:
E Z e nT Z n e 0 e 1 T Z 1 e 2 T Z 2
由于连续信号 e ( t )的频谱 E( j)是单一的连续频谱,其最大角频率
为 h ,如图(a)所示。而采样信号的频谱则是以采样角频率为 s周 期的无穷多个频谱之和,当 s >2 h 时,则采样频谱如图(b)所示。
图(a) 连续信号频谱
图(b) 采样信号频谱 s >2 h
当 s <2 h 时,则采样频谱如下图(c)所示。此时, 采样频
n
n
0
enT tnT enT tnT
n
n0
习惯上认为e(t)只有在开始采样以后才有意义,因此, t < 0时的信号 为零,即 :
0
enTtnT0
n
故经过采样器出来的离散信号为 :
e*tenTtnT
n 0
其中,Z为复变量,且上式为无穷级数收敛,即|z-1|<1。