插值与拟合试验
- 格式:docx
- 大小:346.60 KB
- 文档页数:20
如何使用物理实验技术进行线性插值与拟合在科学研究和工程应用中,线性插值和拟合是常用的一种技术。
它们能够通过实验数据的处理和分析,帮助我们了解事物之间的关系并预测未知值。
这篇文章将介绍如何使用物理实验技术进行线性插值和拟合,以及它们在实际应用中的意义和局限性。
一、线性插值的原理与方法在物理实验中,我们常常会遇到数据的缺失或者需要预测某个未知值的情况。
线性插值是一种通过已知数据点之间的直线来估算未知值的方法。
其基本原理是假设两个已知点之间的关系是线性的,并且用线性方程来描述这种关系。
然后我们根据已知的两个数据点,通过插入未知值对应的自变量值,计算出相应的因变量值。
线性插值的步骤如下:1. 找到已知数据点中最接近未知值的两个点,并设为(x1,y1)和(x2,y2)。
2. 计算两个点之间的斜率 k:k = (y2 - y1) / (x2 - x1)3. 根据斜率和已知点的坐标,计算未知值对应的因变量值 y0:y0 = y1 + k * (x0 - x1)这样,我们就得到了一个在已知数据点之间的线性函数,可以用于估算或预测未知值。
二、实验中的线性插值应用在线性插值的实际应用中,我们经常会用到两个主要的情况:样条插值和反函数插值。
1. 样条插值样条插值是一种通过插入多个线性插值的结果,来逼近原始数据的方法。
它的优点是能够更精确地拟合非线性关系,但需要更多的已知数据点。
在物理实验中,我们有时会遇到复杂的数据曲线,不适合仅用线性插值的方法进行处理。
这时,我们可以使用样条插值,将一段数据区间分成多个小区间,分别进行线性插值,最终得到整个数据曲线的拟合结果。
这样就能够更准确地分析实验数据和预测未知值。
2. 反函数插值在某些情况下,我们可以通过已知函数的反函数关系,进行线性插值来预测未知值。
例如,我们有一组已知数据是 x 的函数关系,而我们需要估算相应的 y 值。
如果我们能找到 x 和 y 之间的反函数关系,那么我们就可以使用线性插值来得到 y 的值。
数学建模插值与拟合实验题
1.处理2021年大学生数学建模竞赛a题:“中国人口增长预测”附件中的数据,得
到以下几个问题的拟合结果,并绘制图形
(1)将1994~2022岁婴儿的性别比设为2022,预测性别比例为2022~2022。
(2)生育率随年龄的变化而变化,试以生育年龄为自变量,生育率为因变量,对各
年的育龄妇女生育率进行拟合;
(3)根据时间分布分析城镇、城镇的生育率,以时间为自变量,以生育率为因变量,拟合城镇、城镇的生育率,并将生育率从2022预测到2022。
(4)将某年的城镇化水平pu(t)定义为当年的城镇人口数与总人口数之
Karmeshu(1992)发现,自20世纪50年代以来,随着经济发展水平的提高,发达国
家城市人口的增长速度一直快于农村地区。
但是,随着城市化水平的提高,达到100%,速度将会放缓。
城市化水平的增长曲线粗略地表现为“S”型Logistic曲线〔4〕,对中国
人口1%的调查数据进行了曲线拟合,从附录2中给出了2001~2022的数据,得到了曲线,并绘制了城市化水平从2001到2050的曲线。
2.处理2021年大学生数学建模竞赛a题:“城市表层土壤重金属污染分析”附件中
的数据,完成下列问题
(1)以城区采样点为插值节点,绘制城区地形图和等高线图;(2)绘制城区8种
重金属浓度的空间分布图。
并指出最高和最低浓度点的位置。
插值的方法可用三次插值、kriging插值、shepard插值等。
工具可用matlab,也可
用surfer软件实现。
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。
二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1) 测量值是准确的,没有误差,一般用插值。
(2) 测量值与真实值有误差,一般用曲线拟合。
MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。
最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。
[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。
插值和拟合都是函数逼近或者数值逼近的重要组成部分他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的目的,即通过"窥几斑"来达到"知全豹"。
简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
表达式也可以是分段函数,这种情况下叫作样条拟合。
而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。
插值函数又叫作基函数,如果该基函数定义在整个定义域上,叫作全域基,否则叫作分域基。
如果约束条件中只有函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。
从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。
一、概念的引入1. 插值与拟合在现实生活中的应用l 机械制造:汽车外观设计l 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)2.概念的定义l 插值:基于[a,b]区间上的n个互异点,给定函数f(x),寻找某个函数去逼近f(x)。
若要求φ(x)在xi处与f(xi)相等,这类的函数逼近问题称为插值问题,xi即是插值点l 逼近:当取值点过多时,构造通过所有点的难度非常大。
此时选择一个次数较低的函数最佳逼近这些点,一般采用最小二乘法l 光顾:曲线的拐点不能太多,条件:①二阶几何连续②不存在多余拐点③曲率变化较小l 拟合:曲线设计过程中用插值或通过逼近方法是生成的曲线光滑(切变量连续)光顾二、插值理论设函数y=f(x)在区间[a,b]上连续,在[a,b]上有互异点x0,x1,…,xn处取值y 0,y1,…,yn。
插值与拟合的实验报告心得1.引言1.1 概述插值与拟合是数值分析和数据处理领域中常见的重要技术方法,通过对已知数据点进行插值计算,得到未知点的数值估计。
插值方法可以帮助我们填补数据间的空缺、平滑曲线和预测未来趋势,因此在科学研究、工程建模和数据分析中具有广泛的应用价值。
本实验报告将对插值的基本概念进行介绍,探讨插值方法的分类和在实际应用中的意义。
同时,我们将总结实验结果,评述插值与拟合的优缺点,并提出对进一步研究的建议,希望通过本报告对插值与拟合的方法和应用有一个全面的了解。
1.2文章结构文章结构部分的内容可以包括:在本报告中,将包括以下几个部分的内容:1. 引言:介绍插值与拟合的基本概念,以及本实验的目的和意义。
2. 正文:包括插值的基本概念、插值方法的分类以及插值在实际应用中的意义。
我们将深入探讨这些内容,并解释它们在实验中的具体应用。
3. 结论:总结本次实验的结果,分析插值与拟合的优缺点,并提出对进一步研究的建议。
通过以上内容的分析和探讨,我们希望能够全面地了解插值与拟合的理论基础和实际应用,为进一步的研究和实践提供一定的参考和启发。
1.3 目的本实验的目的在于通过对插值和拟合的实验研究,探索和了解这两种数学方法在现实生活中的应用。
通过实验,我们将深入了解插值的基本概念和分类方法,以及插值在实际应用中的意义。
同时,我们还将对插值和拟合的优缺点进行分析,为进一步的研究提供建议和启示。
通过本实验,我们的目的是掌握插值与拟合方法的应用和特点,为实际问题的求解提供更多的数学工具和思路。
2.正文2.1 插值的基本概念插值是指通过已知数据点构建出一个函数,该函数经过这些数据点,并且在每个数据点上都有相应的函数值。
换句话说,插值是一种通过已知离散数据点来推断未知数据点的方法。
在数学上,插值可以用于近似未知函数的值,或者用于填补数据间的空隙。
在插值过程中,我们通常会选择一个合适的插值函数,比如多项式函数、三角函数或者样条函数等,来拟合已知的数据点。
数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。
插值方法可以分为两类:基于多项式的插值和非多项式插值。
基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。
拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。
牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。
非多项式插值方法中,最常用的是分段线性插值和样条插值。
分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。
样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。
拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。
拟合方法可以分为两类:线性拟合和非线性拟合。
线性拟合方法中,最简单的是最小二乘法。
最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。
在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。
非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。
非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。
局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。
在数值分析实验中,插值与拟合可以应用于各种实际问题。
例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。
在气象学中,通过已知的气象数据点来插值出未知点的气象信息。
在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。
需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。
如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。
因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。
插值与拟合课程设计一、课程目标知识目标:1. 理解插值与拟合的基本概念,掌握其数学表达和几何意义;2. 学会使用不同插值与拟合方法(如:拉格朗日插值、牛顿插值、最小二乘法等)解决实际问题;3. 掌握分析插值与拟合误差的方法,了解各种方法的优缺点及适用范围。
技能目标:1. 能够运用数学软件(如MATLAB、Python等)进行插值与拟合的计算和分析;2. 培养运用插值与拟合方法处理实际数据的能力,提高数学建模和问题解决技巧;3. 能够通过实例分析,设计合理的插值与拟合方案,并评估其效果。
情感态度价值观目标:1. 培养学生对数学科学的兴趣,激发他们探索未知、解决问题的热情;2. 增强团队合作意识,培养在团队中沟通、协作解决问题的能力;3. 树立正确的科学态度,认识到数学知识在实际问题中的应用价值。
课程性质:本课程属于数学学科,以高二年级学生为教学对象,结合插值与拟合理论,注重数学在实际问题中的应用。
学生特点:高二年级学生对数学知识有一定的基础,具有一定的逻辑思维能力和问题解决能力,对数学在实际问题中的应用有较强的好奇心。
教学要求:结合学生特点,注重理论与实践相结合,强调数学建模能力的培养,提高学生运用数学知识解决实际问题的能力。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 插值与拟合基本概念:- 插值的定义与几何意义;- 拟合的定义与几何意义;- 插值与拟合的联系与区别。
2. 插值方法:- 拉格朗日插值;- 牛顿插值;- 分段插值;- 线性插值与二次插值。
3. 拟合方法:- 最小二乘法;- 多项式拟合;- 非线性拟合;- 正交多项式拟合。
4. 插值与拟合的误差分析:- 插值误差估计;- 拟合误差估计;- 各种方法的误差比较。
5. 实际应用案例:- 数据插值与拟合在物理、化学、生物等领域的应用;- 数学软件在插值与拟合中的应用;- 结合实际问题设计插值与拟合方案。
插值与拟合实验总结《插值与拟合实验总结》哎呀!说起这个插值与拟合实验,那可真是让我大开眼界呀!实验一开始,老师就像个神奇的魔法师,给我们展示了各种奇妙的数据和图形。
我瞪大眼睛,心里直犯嘀咕:“这都是些啥呀?” 旁边的同桌小明也皱着眉头,小声跟我说:“这可难倒我啦,你能明白不?” 我摇摇头,感觉脑袋都要变成浆糊啦。
老师先给我们讲了插值的概念,这就好比我们要在一些分散的点之间,找到那些“失踪”的点,把它们连起来,形成一条光滑的曲线。
这难道不像我们玩拼图游戏,要把那些缺失的部分找出来,拼出完整的图案吗?我心里想着,这也太有趣了吧!接着我们就开始动手操作啦。
我紧紧握着笔,眼睛盯着屏幕,手忙脚乱地计算着。
哎呀,这数字怎么就不听我使唤呢?我急得直跺脚。
“别着急,慢慢来!”后桌的小红安慰我道。
在做拟合实验的时候,那感觉就像是要给一群调皮的孩子找到一个合适的队伍,让他们排得整整齐齐。
我们尝试着用不同的方法,去找到那个最能代表这些数据的曲线。
这过程可不轻松,一会儿这个方法不行,一会儿那个又出错。
我都快被这些数据绕晕啦!“这到底怎么才能做好呀?”我忍不住抱怨起来。
“别灰心,我们再试试别的办法。
”小组里的小刚鼓励着大家。
经过一次次的尝试和失败,我们终于有了一些成果。
当看到那漂亮的曲线完美地贴合了数据点,我高兴得差点跳起来!那种成就感,就像在沙漠里走了好久好久,终于找到了一片绿洲。
你说,这插值与拟合实验是不是像一场刺激的冒险?我们在数据的海洋里探索,有时候迷失方向,有时候又柳暗花明。
通过这次实验,我明白了做事情不能着急,要有耐心,要不断尝试。
就像我们在实验里,一次不行就再来一次,总会找到解决办法的。
而且团队合作也特别重要,大家一起出主意,互相鼓励,才能取得好结果。
所以呀,这次实验虽然充满了挑战,但真的让我学到了好多好多!。
在数值计算中,插值和拟合是两种常用的方法,用于通过已知数据点推测未知数据点的数值。
插值是一种通过已知数据点构建一个函数,以便在这些数据点之间进行预测。
而拟合是一种将一个函数与已知数据点进行匹配,以便预测未知数据点的数值。
插值的目标是通过经过已知数据点的连续函数来准确地估计未知数据点的数值。
最简单的插值方法是线性插值,它假设两个相邻数据点之间的函数值是线性变化的。
线性插值可以用于计算两个已知数据点之间的任何位置的函数值。
如果我们有更多的数据点,可以使用更高阶的插值方法,如二次插值或三次插值。
这些方法使用多项式来表示数据点之间的函数,以便更准确地预测未知数据点。
然而,插值方法并不总是最理想的选择。
在某些情况下,通过已知数据点精确地构建一个连续函数是不可能的。
这可能是因为数据点之间的差异太大,或者数据点的数量太少。
在这种情况下,拟合方法可以提供更好的预测结果。
拟合的目标是找到一个函数,使其与已知数据点的误差最小。
最常用的拟合方法是最小二乘拟合,它通过最小化数据点的残差的平方和来找到最佳拟合函数。
最小二乘拟合可以用于各种不同的函数类型,如线性拟合、多项式拟合、指数拟合等。
根据数据点的分布和特性,我们可以选择适当的拟合函数来获得最准确的预测结果。
在实际应用中,插值和拟合方法经常同时使用。
例如,在地理信息系统中,我们可能需要通过已知地点的气温数据来估计未知地点的气温。
我们可以使用插值方法来构建一个连续函数,以便在已知地点之间预测未知地点的气温。
然后,我们可以使用拟合方法来匹配这个连续函数与其他已知数据点,以提高预测的准确性。
插值和拟合方法在科学、工程、金融等各个领域都有广泛的应用。
在科学研究中,它们可以用于数据分析和预测,以帮助我们理解和解释实验结果。
在工程中,它们可以用于控制系统设计、信号处理和机器学习等领域。
在金融领域,它们可以用于市场预测和风险管理等重要任务。
总而言之,插值和拟合是数值计算中常用的方法,用于通过已知数据点推测未知数据点的数值。
实验报告
一、实验目的
感受插值效果的比较以及拟合多项式效果的比较。
二、实验题目
1.插值效果的比较
将区间[-5,5]5等分和10等分,对下列函数分别计算插值节点错误!未找到引用源。
的值,进行不同类型的插值,做出插值函数的图形并与错误!未找到引用源。
的图形进行比较:
做拉格朗日插值。
2.拟合多项式实验
分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数错误!未找到引用源。
和拟合函数的图形。
三、实验原理
拉格朗日插值和多项拟合插值的通用程序
四、实验内容及结果
五、实验结果分析
(1)实验1中通过图象,可以很明显的辨别出拉格朗日插值并不是插值点越多图象就一定越精确,会有高阶插值的振荡现象。
(2)通过三个图象的对比,发现基本都是重合在一起的。
.三次多项式五次多项式拟合的平方误差分别为1.8571e-004和4.7727e-005,可知五次多项式拟合比三次多项式拟合更加准确。
但是后面去计算一下拟合所需要的时间,会发现拟合次数越大,时间越长,所以也不一定是次数越大越好,需要把时间也考虑进去。
数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。
插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。
本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。
实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。
给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。
2. Newton插值Newton插值使用差商的概念来构造插值多项式。
首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。
然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。
实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。
假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。
实验:插值与拟合实验目的1.掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值的结果进行初步的分析。
2.掌握用MATLAB作线性最小二乘的方法。
3.通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。
实验内容选择一些函数,在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m个插值点的函数值(m要适中,如50~100)。
通过数值和图形输出,将三种插值结果与精确值进行比较。
适当增加n,再作比较,由此作初步分析。
y=exp(-x2),-2≤x≤2.取n=5,m=80用MATLAB计算插值数据比较如下:y是精确值,y1是分段线性值,y2是三次样条法插值,y3是拉格朗日插值由于对称性,只给出x>0的值程序:function y=lagr(x0,y0,x)%函数输入:n个节点以数组x0,y0输入,m个插值点以数组x输入?%函数输出:输出数组y为m个插值?n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j)); endends=p*y0(k)+s;endy(i)=s;end结果:x0=-2:0.5:2;y0=exp(-1*x0.^2);x=-2:0.05:2y=exp(-1*x.^2);y1=lagr(x0,y0,x);y2=interp1(x0,y0,x);y3=spline(x0,y0,x);[x;y;y1;y2;y3]'plot(x,y,'k--',x,y1,'r'),xlabel('x')ylabel('y/y1')title('拉格朗日插值(n=9,m=21)'),legend('原函数曲线','拉格朗日插值曲线'), pause,plot(x,y,'k--',x,y2,'r'),xlabel('x')ylabel('y/y2')title('分段线性插值(n=9,m=21)'),legend('原函数曲线','分段线性插值曲线'), pause,plot(x,y,'k--',x,y3,'r'),xlabel('x')ylabel('y/y1')title('三次样条插值(n=9,m=21)'),legend('原函数曲线','三次样条插值曲线'), x =Columns 1 through 9-2.0000 -1.9500 -1.9000 -1.8500 -1.8000 -1.7500 -1.7000 -1.6500 -1.6000Columns 10 through 18-1.5500 -1.5000 -1.4500 -1.4000 -1.3500 -1.3000 -1.2500 -1.2000 -1.1500Columns 19 through 27-1.1000 -1.0500 -1.0000 -0.9500 -0.9000 -0.8500 -0.8000 -0.7500 -0.7000Columns 28 through 36-0.6500 -0.6000 -0.5500 -0.5000 -0.4500 -0.4000 -0.3500 -0.3000 -0.2500Columns 37 through 45-0.2000 -0.1500 -0.1000 -0.0500 0 0.0500 0.1000 0.1500 0.2000Columns 46 through 540.2500 0.3000 0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500Columns 55 through 630.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000 1.0500 1.1000Columns 64 through 721.1500 1.2000 1.2500 1.3000 1.3500 1.4000 1.4500 1.5000 1.5500Columns 73 through 811.6000 1.6500 1.7000 1.7500 1.8000 1.8500 1.9000 1.95002.0000ans =-2.0000 0.0183 0.0183 0.0183 0.0183 -1.9500 0.0223 0.0048 0.0270 0.0207 -1.9000 0.0271 0.0011 0.0357 0.0243 -1.8500 0.0326 0.0044 0.0444 0.0292 -1.8000 0.0392 0.0127 0.0531 0.0355 -1.7500 0.0468 0.0243 0.0619 0.0433 -1.7000 0.0556 0.0381 0.0706 0.0525 -1.6500 0.0657 0.0535 0.0793 0.0633 -1.6000 0.0773 0.0700 0.0880 0.0757 -1.5500 0.0905 0.0873 0.0967 0.0897 -1.5000 0.1054 0.1054 0.1054 0.1054 -1.4500 0.1222 0.1244 0.1316 0.1229 -1.4000 0.1409 0.1446 0.1579 0.1421 -1.3500 0.1616 0.1660 0.1841 0.1633 -1.3000 0.1845 0.1889 0.2104 0.1863 -1.2500 0.2096 0.2136 0.2366 0.2114 -1.2000 0.2369 0.2402 0.2629 0.2384 -1.1500 0.2665 0.2689 0.2891 0.2675-1.1000 0.2982 0.2998 0.3154 0.2988 -1.0500 0.3320 0.3328 0.3416 0.3322 -1.0000 0.3679 0.3679 0.3679 0.3679 -0.9500 0.4056 0.4050 0.4090 0.4058 -0.9000 0.4449 0.4439 0.4501 0.4455 -0.8500 0.4855 0.4844 0.4912 0.4867 -0.8000 0.5273 0.5261 0.5322 0.5288 -0.7500 0.5698 0.5687 0.5733 0.5716 -0.7000 0.6126 0.6117 0.6144 0.6145 -0.6500 0.6554 0.6547 0.6555 0.6571 -0.6000 0.6977 0.6972 0.6966 0.6989 -0.5500 0.7390 0.7388 0.7377 0.7397 -0.5000 0.7788 0.7788 0.7788 0.7788 -0.4500 0.8167 0.8168 0.8009 0.8159 -0.4000 0.8521 0.8524 0.8230 0.8507 -0.3500 0.8847 0.8850 0.8452 0.8827 -0.3000 0.9139 0.9142 0.8673 0.9117 -0.2500 0.9394 0.9397 0.8894 0.9372 -0.2000 0.9608 0.9610 0.9115 0.9588 -0.1500 0.9778 0.9779 0.9336 0.9763 -0.1000 0.9900 0.9901 0.9558 0.9892 -0.0500 0.9975 0.9975 0.9779 0.99720 1.0000 1.0000 1.0000 1.0000 0.0500 0.9975 0.9975 0.9779 0.9972 0.1000 0.9900 0.9901 0.9558 0.9892 0.1500 0.9778 0.9779 0.9336 0.9763 0.2000 0.9608 0.9610 0.9115 0.9588 0.2500 0.9394 0.9397 0.8894 0.9372 0.3000 0.9139 0.9142 0.8673 0.9117 0.3500 0.8847 0.8850 0.8452 0.8827 0.4000 0.8521 0.8524 0.8230 0.8507 0.4500 0.8167 0.8168 0.8009 0.8159 0.5000 0.7788 0.7788 0.7788 0.7788 0.5500 0.7390 0.7388 0.7377 0.7397 0.6000 0.6977 0.6972 0.6966 0.6989 0.6500 0.6554 0.6547 0.6555 0.6571 0.7000 0.6126 0.6117 0.6144 0.6145 0.7500 0.5698 0.5687 0.5733 0.5716 0.8000 0.5273 0.5261 0.5322 0.5288 0.8500 0.4855 0.4844 0.4912 0.4867 0.9000 0.4449 0.4439 0.4501 0.44550.9500 0.4056 0.4050 0.4090 0.40581.0000 0.3679 0.3679 0.3679 0.3679 1.0500 0.3320 0.3328 0.3416 0.33221.1000 0.2982 0.2998 0.3154 0.2988 1.1500 0.2665 0.2689 0.2891 0.2675 1.2000 0.2369 0.2402 0.2629 0.2384 1.2500 0.2096 0.2136 0.2366 0.2114 1.3000 0.1845 0.1889 0.2104 0.1863 1.3500 0.1616 0.1660 0.1841 0.1633 1.4000 0.1409 0.1446 0.1579 0.1421 1.4500 0.1222 0.1244 0.1316 0.1229 1.5000 0.1054 0.1054 0.1054 0.1054 1.5500 0.0905 0.0873 0.0967 0.0897 1.6000 0.0773 0.0700 0.0880 0.0757 1.6500 0.0657 0.0535 0.0793 0.0633 1.7000 0.0556 0.0381 0.0706 0.0525 1.7500 0.0468 0.0243 0.0619 0.0433 1.8000 0.0392 0.0127 0.0531 0.0355 1.8500 0.0326 0.0044 0.0444 0.0292 1.9000 0.0271 0.0011 0.0357 0.02431.9500 0.0223 0.0048 0.0270 0.02072.0000 0.0183 0.0183 0.0183 0.0183上图是根据插值数据作出的曲线。