2.3-2.6 金属材料的塑性变形
- 格式:ppt
- 大小:12.29 MB
- 文档页数:72
什么是金属材料的塑性金属材料的塑性是指金属在外力作用下发生塑性变形的能力。
金属材料的塑性是金属材料的重要性能之一,也是金属材料在工程中得以广泛应用的重要原因之一。
金属材料的塑性是由金属的晶格结构和金属原子之间的结合方式决定的。
金属的晶格结构是由金属原子通过离子键、金属键和共价键等方式结合而成的,这种结构决定了金属材料具有良好的塑性。
金属原子之间的结合方式使得金属材料在外力作用下可以发生滑移、滚动和变形等现象,从而使得金属材料可以在一定范围内发生塑性变形。
金属材料的塑性还与金属的晶粒大小和形状有关。
通常情况下,晶粒越小,金属材料的塑性越好。
因为在外力作用下,晶粒边界处会发生滑移,当晶粒越小时,晶粒边界越多,滑移的障碍也越多,从而使得金属材料的塑性增强。
此外,金属材料的晶粒形状也会影响金属材料的塑性,一般来说,形状规则的晶粒对金属材料的塑性有利。
在金属材料的塑性变形过程中,金属材料会发生变形硬化现象。
变形硬化是指金属材料在塑性变形过程中,由于晶粒滑移和滚动等现象所导致的金属材料的抗变形能力增强。
变形硬化可以使得金属材料在一定程度上提高抗拉强度和硬度,但也会降低金属材料的塑性。
因此,在金属材料的加工过程中,需要根据具体情况合理控制变形硬化的程度,以保证金属材料的塑性和强度之间的平衡。
金属材料的塑性是金属材料在工程中得以广泛应用的重要原因之一。
由于金属材料具有良好的塑性,可以通过压力加工、拉伸加工、挤压加工等方式对金属材料进行成型和加工,从而制备出各种形状和结构的零部件和构件。
金属材料的塑性还使得金属材料可以在受力情况下发生一定程度的变形而不破坏,这为金属材料的使用和维护提供了便利。
总之,金属材料的塑性是金属材料的重要性能之一,是由金属的晶格结构和金属原子之间的结合方式决定的。
金属材料的塑性使得金属材料在工程中得以广泛应用,并为各种工程和制造提供了便利。
通过合理控制变形硬化的程度,可以充分发挥金属材料的塑性,从而更好地满足工程和制造的需求。
塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。
金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。
金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。
一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。
塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。
此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。
因此,选择金属材料作机械零件时,必须满足一定的塑性指标。
字串2编辑本段金属材料的硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
金属材料的塑性指标
金属材料的塑性指标是指金属在受力作用下发生塑性变形的能力。
塑性指标是
评价金属材料加工性能的重要指标之一,对于金属材料的选择和加工具有重要的指导作用。
常见的金属材料的塑性指标包括屈服强度、延伸率、冷加工硬化指数等。
首先,屈服强度是金属材料在拉伸试验中开始发生塑性变形时的应力值。
屈服
强度越大,表示金属材料的抗拉性能越好,具有更高的塑性。
屈服强度是评价金属材料抗拉性能的重要参数,对于金属材料在工程结构中的应用具有重要的指导意义。
其次,延伸率是金属材料在拉伸试验中断裂前的变形量与原始标距的比值。
延
伸率越大,表示金属材料的塑性越好,具有更好的加工性能。
延伸率是评价金属材料加工性能的重要指标之一,对于金属材料的选择和加工具有重要的指导作用。
另外,冷加工硬化指数是金属材料在冷加工过程中硬化速率的指标。
冷加工硬
化指数越小,表示金属材料的塑性越好,具有更好的冷加工性能。
冷加工硬化指数是评价金属材料冷加工性能的重要参数,对于金属材料的冷加工工艺设计具有重要的指导意义。
总之,金属材料的塑性指标是评价金属材料加工性能的重要指标,对于金属材
料的选择和加工具有重要的指导作用。
通过对金属材料的屈服强度、延伸率、冷加工硬化指数等塑性指标的评价,可以有效地指导金属材料的应用和加工工艺的设计,提高金属材料的加工质量和效率,促进金属材料在工程结构中的应用。
因此,加强对金属材料塑性指标的研究和应用具有重要的意义,有助于推动金属材料领域的发展和进步。
金属塑性变形原理金属塑性变形是指金属材料经过外力作用下,由原来的固态结构发生变形,而不会恢复到原始形状的现象。
金属塑性变形是金属加工过程中的重要现象,也是金属材料学的基础知识之一。
金属塑性变形的原理是金属材料内部的晶体结构发生改变。
金属的晶体结构由原子或离子组成,其中原子或离子按照一定的方式排列,形成了晶体的结晶格,并且由晶粒间的晶界分隔开来。
在金属塑性变形过程中,加入的外力使得原子或离子离开原来的位置,发生位移,并且使得晶粒间的晶格发生变形。
在外力作用下,晶粒内的晶界也会发生位移,产生滑移。
滑移是金属塑性变形的基本机制之一。
滑移是指晶体中的原子或离子在晶胞内沿着特定的晶面或晶轴方向移动,形成滑移面和滑移方向。
滑移是一种原子密集度不变的塑性变形方式,即滑移面上的原子密集度和滑移前后相等。
滑移过程中,原子或离子之间的相互作用能量发生改变,导致滑移力的产生。
滑移力的产生使晶体产生滑移应力,使得滑移面上的原子或离子沿着滑移方向发生位移,从而引起整个晶粒的塑性变形。
除了滑移,金属材料的塑性变形还涉及扩散、再结晶等机制。
扩散是指金属内部原子或离子相互扩散,使得原子或离子重新排列,从而使晶体发生塑性变形。
再结晶是指金属材料在过度变形后,晶体结构发生重组,原晶体结构消失而形成新的晶体结构的过程。
再结晶是一种细化晶粒的方法,可以提高金属材料的塑性、延展性和硬度。
金属塑性变形的原理还与金属材料的晶体结构、晶界、晶体缺陷等因素有关。
金属材料的晶体结构与晶粒尺寸、晶粒取向有关,不同的晶体结构对塑性变形的机制有影响。
晶界是指晶粒之间的界面,晶界对金属材料的弹性和塑性性能有重要影响。
晶体缺陷包括晶体缺陷、晶界缺陷和位错等,对金属塑性变形有密切关系。
总之,金属塑性变形是金属加工中的重要现象,其原理涉及滑移、扩散、再结晶等机制。
金属塑性变形的机制与金属材料的晶体结构、晶界、晶体缺陷密切相关,对金属材料的性能和加工性能有重要影响。
金属板材的强度与变形能力关系研究在工程领域中,金属板材的强度和变形能力是非常重要的衡量指标。
金属板材广泛应用于航空航天、汽车制造、建筑结构等领域,因此对其强度与变形能力关系的研究具有重要的实际意义。
本文将深入探讨金属板材的强度与变形能力之间的关系,从不同角度进行评估和分析。
1. 强度与变形能力的概念1.1 强度:强度是指金属材料在受力作用下抵抗破坏的能力。
通常使用抗拉强度(Tensile strength)来衡量金属的强度。
1.2 变形能力:变形能力是指金属材料在受力作用下发生塑性变形的能力。
塑性变形是指金属在外力作用下能够发生可逆的形变。
2. 强度与变形能力的影响因素2.1 材料性质:材料的组成和微观结构对其强度和变形能力有重要影响。
晶粒大小、晶界、位错等微观结构参数会影响材料的塑性变形行为。
2.2 加工工艺:加工工艺对金属板材的强度和变形能力也有显著影响。
如冷加工可以提高金属材料的强度,但可能降低其变形能力。
2.3 温度:温度对金属板材的强度和变形能力有显著影响。
对于某些金属材料来说,升高温度可以提高其变形能力,但可能降低其强度。
3. 强度与变形能力的关系模型3.1 总结与回顾性内容:强度与变形能力的关系是一个复杂的问题,往往需要综合考虑材料的性质、加工工艺和温度等因素。
通常可以使用应力-应变曲线来描述金属材料的强度和变形能力的关系。
3.2 应力-应变曲线:应力-应变曲线是通过将金属板材施加不同程度的外力,测量应力和应变的关系得到的曲线。
通常包括弹性阶段、屈服阶段、硬化阶段和断裂阶段等阶段。
3.3 弹性阶段:在弹性阶段,金属板材受力后能够完全恢复到原始形状,不会发生可见的塑性变形。
弹性模量是描述金属材料强度的重要指标。
3.4 屈服阶段:在屈服阶段,金属板材受到一定程度的外力作用后发生可见的塑性变形,应变增大比应力增大更快。
屈服强度是描述金属材料变形能力的重要指标。
3.5 硬化阶段:在硬化阶段,金属板材继续受力导致进一步的塑性变形,但增大的应力比增大的应变要小。
材料的塑性指标塑性指标是材料力学性能的重要参数之一,它反映了材料在受力作用下的变形能力和抗变形能力。
塑性指标的大小直接影响着材料的加工性能和使用性能,因此对于不同类型的材料,其塑性指标的测试与评价显得尤为重要。
一、金属材料的塑性指标。
金属材料是工程中应用最广泛的一类材料,其塑性指标主要包括屈服强度、延伸率和冷加工硬化指标。
屈服强度是金属材料在受力过程中开始发生塑性变形的应力值,通常用σs表示;延伸率是金属材料在拉伸断裂前的变形量与原始标距之比,通常用δ表示;冷加工硬化指标是金属材料在冷加工过程中硬化的程度,通常用n表示。
这三个指标综合反映了金属材料的塑性变形能力和抗变形能力。
二、塑料材料的塑性指标。
塑料材料是一类非晶态材料,其塑性指标主要包括拉伸强度、断裂伸长率和热变形温度指标。
拉伸强度是塑料材料在拉伸过程中发生破坏的应力值,通常用σb表示;断裂伸长率是塑料材料在拉伸断裂前的变形量与原始标距之比,通常用δ表示;热变形温度指标是塑料材料在一定应力条件下发生热变形的温度范围,通常用Tf表示。
这三个指标综合反映了塑料材料的塑性变形能力和抗变形能力。
三、复合材料的塑性指标。
复合材料是由两种或两种以上的材料组合而成的新型材料,其塑性指标主要包括屈服强度、断裂伸长率和热变形温度指标。
屈服强度是复合材料在受力过程中开始发生塑性变形的应力值,通常用σs表示;断裂伸长率是复合材料在拉伸断裂前的变形量与原始标距之比,通常用δ表示;热变形温度指标是复合材料在一定应力条件下发生热变形的温度范围,通常用Tf表示。
这三个指标综合反映了复合材料的塑性变形能力和抗变形能力。
综上所述,材料的塑性指标是评价材料塑性变形能力和抗变形能力的重要依据,不同类型的材料有着不同的塑性指标测试方法和评价标准,通过对材料的塑性指标进行科学准确的测试和评价,可以为材料的设计选择、加工制造和使用提供重要参考依据。
【知识】金属材料的塑性变形(免费下载ppt)
塑性变形是一种不可自行恢复的变形。
工程材料及构件受载超过弹性变形范围之后将发生永久的变形,即卸除载荷后将出现不可恢复的变形,或称残余变形,这就是塑性变形。
不是任何工程材料都具有塑性变形的能力。
金属、塑料等都具有不同程度的塑性变形能力,故可称为塑性材料。
玻璃、陶瓷、石墨等脆性材料则无塑性变形能力。
工程构件设计吋一般不允许出现明显的塑性变形,否则构件将不能维持原先的形状甚至发生断裂。
为此,小编收集了一份塑性变形的105页PPT,希望对大家有用!下面是部分内容:
下载方法:
分享本文至微信群或朋友圈
关注“材料基”公众号
来源:材料基(ID:cailiaoji)编辑整理自网络资料,来源中国农业大学工学院。
欢迎分享转发至朋友圈。
如需转载请后台回复“转载”。
本文分享仅供学习交流目的使用,请勿用作其他用途。