17.1.2反比例图象和性质
- 格式:ppt
- 大小:573.50 KB
- 文档页数:17
17.1.2反比例函数的图象和性质(2)
问题5:练一练
1、在反比例函数y=-
x 1
a2
的图象上有三点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列各式中正确的是()
A、y3> y1> y2
B、y3> y2> y1
C、y1> y2> y3
D、y1> y3> y2
2.如图,点P是反比例函数y=
x
k 图象上的一点,PD⊥x轴于D.则△POD 的面积为.
(3)关于问题(2)的理解
是借助图象,利用函数在每个
象限内的增减性去解决问题。
(4)学生解题的过程是否
规范。
【学生活动】
学生探究讨论,尝试完
成。
【教师活动】
教师让学生独立完成问
题5练习第1、2题。
【学生活动】
学生弄懂题意,并根据题
意口答。
【媒体应用】
出示问题4,并根
据学生回答,相机展示
问题答案。
【设计意图】
加深对问题(4)
的理解和应用。
【媒体应用】
再现数形结合的方
法及反比例函数的图
象和性质。
板书设计:。
17.1.2 反比例函数的图象和性质[教学目标]知识技能:1、进一步熟悉用描点法作函数图象的主要步骤,会作反比例函数的图象;2、体会函数三种方式的相互转换,对函数进行认知上的整和;3、逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质;数学思考:通过观察反比例函数图象,分析和探究反比例函数的性质,培养学生的探究,归纳及概括能力。
在探究过程中渗透分类讨论思想和数形结合的思想。
解决问题:会画反比例函数图象,并能根据反比例函数图象探究其性质。
情感态度:1、积极参与探索活动,注意多和同伴交流看法;2、在动手做图的过程中,体会做中的乐趣,养成勤于动手,乐于探索的习惯;[教学重点和难点]重点:画反比例函数的图象,理解反比例函数的性质;难点:理解反比例函数的性质,并能灵活应用[课型和课时]1、课型:本课为新授课2、课时:本节“反比例函数的图象和性质”共2课时,本课为第1课时,待学习了函数的图象和能根据函数图象探究其性质后,在下一课时主要研究如何利用函数图象性质解决数学问题。
[授课方法]合作探究式[教学手段]多媒体课[教学过程]活动一情景导入激发兴趣复习巩固1、什么是反比例函数? 答:形如(),0ky k k x=≠为常数的函数称为反比例函数 2、作出一次函数6y x =的图象,图象是什么形状?作图的步骤是什么?答:一次函数6y x =的图象是一条直线,作图的步骤包括:列表、描点、连线。
引入课题3、由问题2,猜测:反比例函数6y x=的图象会是什么形状呢?我们可以用什么方法画这个反比例函数的图象?答:(学生自由猜测,教师引导学生对比反比例函数与一次函数的不同)活动二 类比联想 探索交流1、画出反比例函数6y x =与6y x=-的图象教师先引导学生思考,示范画出反比例函数6y x=的图象再让学生尝试画出反比例函数6y x=-的图象。
在作图过程中,启发学生类比画一次函数的图象的过程;探索反比例函数的图象作图步骤;教师在活动中应重点关注:(1)启发学生反比例函数与一次函数的作图基本步骤是一致的。
17.1.2反比例函数的图象和性质新课标人教版八年级下册第十七章《反比例函数》第一节第二课时。
教学过程说明六评价与反思:本节课主要通过活动引路,提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点。
用科学的方法解决问题,培养学生科学的态度与精神。
本节课的教学设计力求在每一个环节上都能以学生为主体,以围绕着增加学生学习的兴趣,降低思维难度,减少学生对函数学习的畏惧心理,强化主动的学习动机,为学生自信的心理品质的发展和学习的主动性培养提供良好的心理环境为出发点,让学生自己完成知识的探索,体会他们的探索是有意义、有科学性、有创造性的。
本设计有以下几个突出特点:1、.敢于使用知识的负迁移。
在教学中普遍认为,知识的负迁移对学生起到负面的作用,因此,在教学中都想方设法避开这些错误的负面,一旦出现也是围追堵截,消灭在萌芽状态。
而实际上,巧妙地利用负面资源,变废为宝,不失良策,甚至能起到事半功倍的效果。
2、提供足够的感性材料,为理性认识蓄足底蕴。
为了更好地发现反比例函数的性质,组织了三次画图活动,在画图、评析、纠正、调整等活动中反复历练了画图的方法,学生有了丰富的感性素材,可谓“厚积薄发”。
3、教师、学生的合理定位。
教师始终把自己放在了策划者、引导者、促进者的位置,注重了学法的指导,“授人以鱼,不如授人以渔”,方法是高于知识的,它能驾驭知识。
同时把学生推向前台,使学生以研究者和探索者的身份穿梭于课堂,充分突出了主体的地位,角色的更新提升了学生的参与意识,在成功中获得自信,可谓德智双赢。
板书设计:17.1.2反比例函数的图象和性质画图象画y=6x-1的图象(1)列表(2)描点(3)连线性质:1、形状2、位置3、增减性体会练习。
17.1.2 反比例函数的图象和性质(1) 教学内容:教材P41-43教学目标:1、会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法教学重点:理解并掌握反比例函数的图象和性质教学难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。
反比例函数xky(k ≠0)自变量的取值范围是x ≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。
连线时要告诉学生用平滑的曲线连接,不能用折线连接。
教学时,老师要带着学生一起画,注意引导,及时纠错。
在探究反比例函数的性质时,可结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。
这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的;反之,双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。
学习准备:1、举出反比例函数实例2、用描点法画图象的步骤是:列表、描点、连线。
教学过程:一、回顾与思考根据上节课的学习,说说你记忆中的反比例函数,反比例函数定义式及常见的变式。
二、探究研讨:问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=kx(k为常数且k≠0)的图象是什么样呢?【活动1】尝试用描点法来画出反比例函数的图象(教师引导,师生共同完成)画出反比例函数y=6x 和y=-6x的图象.解:列表(注意:①列表时自变量取值要均匀和对称;②x≠0;③选整数较好计算和描点。
)描点:以表中各对应值为坐标,在直角坐标系中描出各点。
连线:用平滑的曲线把所描的点依次连接起来。
x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6xy=-6x探究:(分组讨论并展示归纳)反比例函数y=6x 和y=-6x的图象有什么共同特征?它们之间有什么关系?把y=6x 和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称?它可能与坐标轴相交吗?【活动2】在平面直角坐标系中画出反比例函数y=3x 和y=-3x的图象.(本活动先由学生自主完成并派两位同学板演,然后小组交流,最后由各小组代表分别用展台展示。
第三届全国中小学“教学中的互联网搜索”优秀教案评选
教案设计
图像的画法:
三象限,
四象限,
)师生共同探讨:如何画出反比例函数教师示范画出反比例。
)动手画图(单号同学)画反比例函数(双号同学)画反比例函数【学生动手画图】 以刚才反比例函数
x y 6
为例。
在教师引导下,学生借鉴画反比例函数的图象的经验,自主画出反比例函数的图象,教师巡视指导。
作图完成后,学生展示作品,并说出该函数图象的特征,教师适时点评。
教师展示学生所画图象
)首先展示学生所画正确的函数图象)展示部分学生作图错误图象
【师生互动】教师展示,学生观察图象,思考,反思怎
样才能画得更好。
图中不应用折线段连接,而应用平滑的曲线连
接;
图中的趋势不对,因为根据分式的性质,分式值要为
0,而分母不能为,但该分式的分子是个确定不等于零的
关注反比例系数“
【师生互动】
教师演示课件,赋予不同的值,教师借助计算机,利用
反比例函数(时,、号相同,以(,
的增大而减小;时,、
,
的增大而增大。
同时,从解析式
,
轴、
(、。
17.1.2反比例函数的图象和性质(1)(人教版八年级下)一、教学目标知识与技能:1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法过程与方法:结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容注意让学生体会数形结合的思想方法。
情感态度与价值观以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。
二、重点、难点1.重点:理解并掌握反比例函数的图象和性质2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质 3.难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。
反比例函数x ky(k ≠0)自变量的取值范围是x ≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。
连线时要告诉学生用平滑的曲线连接,不能用折线连接。
教学时,老师要带着学生一起画,注意引导,及时纠错。
在探究反比例函数的性质时,可结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。
这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的;反之,双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。
三、教学媒体多媒体投影、《数学画板》软件。
四、教学设计第一步:课堂引入教师活动: 1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 学生活动:思考所展示的问题,复习旧知。
方法:利用描点作图;步骤:①列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。