MRI概述-1
- 格式:ppt
- 大小:698.50 KB
- 文档页数:42
MRI(磁共振成像)是一种非侵入性的医学影像技术,通过利用核磁共振现象来生成人体内部的高质量图像。
它已经成为临床诊断和研究中不可或缺的工具之一。
本文将介绍MRI的基本概念,包括其原理、构成、影像生成过程以及应用领域。
一、MRI的原理MRI基于核磁共振现象,该现象是指在恒定磁场中,一部分原子核在外加射频脉冲的作用下发生共振吸收和辐射能量。
具体来说,MRI使用强大的磁场将患者放置在其中,使得患者的原子核(如氢原子核)在磁场的作用下自旋预cession。
通过施加射频脉冲和观察原子核释放的信号,可以获得组织所特有的信号,从而生成图像。
二、MRI的构成MRI系统主要由磁场系统、射频系统和计算机控制系统三个部分组成。
1. 磁场系统:MRI使用超导磁体产生强大的静态磁场,通常为1.5T或3T。
磁场系统还包括脉冲梯度线圈,用于产生空间梯度磁场,以便在图像生成过程中定位和编码。
2. 射频系统:射频系统负责产生射频脉冲,用于激发患者体内的原子核,并接收原子核释放的信号。
射频线圈是射频系统的核心部件,根据不同的扫描部位和目的,可采用不同类型的线圈。
3. 计算机控制系统:计算机控制系统负责对磁场和射频系统进行控制,同时处理和重建原始数据,最终生成高质量的MRI图像。
三、MRI的影像生成过程MRI的影像生成过程包括激发、回波信号采集、数据处理和图像重建。
1. 激发:首先,通过射频脉冲激发患者体内的原子核。
不同类型的组织具有不同的共振频率,因此需要根据需要选择不同的激发参数。
2. 回波信号采集:激发后,原子核开始释放能量,产生回波信号。
射频线圈接收这些信号,并将其转换为电信号。
同时,脉冲梯度线圈产生空间梯度磁场,用于定位和编码。
3. 数据处理:采集到的原始数据包含了组织的空间分布和信号强度。
计算机对这些数据进行处理,包括去除噪声、校正估计的误差等。
4. 图像重建:最后,计算机将经过处理的数据进行图像重建,生成高质量的MRI图像。
MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。
经常为人们所利用的原子核有:1H、11B、13C、17O、19F、31P。
在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。
随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。
另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。
因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。
MRI用于影像诊断已经有20多年,作为一种无辐射、低(非)侵袭的检查设备在国内已经相当普及。
由于其需要使用很强的磁场和射频脉冲(RF),因此相应方面的影响也必须考虑,特别是近年随着3T-MR设备使用数量增加,更显示出对其安全性进行重新验证的必要性。
Ⅰ、有关静磁场和RF的安全管理MR检查时,从安全角度必须考虑静磁场、RF、梯度磁场、以及噪音的影响。
特别是近年高场强、高性能MR设备出现,要求比以往更加重视静磁场和RF对人体影响的安全管理。
1、关于静磁场的安全管理3T-MR对磁性体吸引力的增大成为安全管理上的大问题。
屏蔽技术的进步使3T-MR磁场漏泄范围与1.5TMR相比几乎没有差别,但这也使得机架开口部磁场强度急剧衰减,也就是说与1.5T时相比,机架开口部磁场梯度更陡。
对磁性体的吸引力与该磁性体质量和磁场强度、磁场梯度有很大关系,质量越大或磁场梯度变化越陡急,则对磁性体的吸引力越大,这点必须引起足够注意。
1-1、体外金属的安全管理与放射线相比,MRI中使用的强磁场相对安全,但绝不是说不会发生来自MRI 方面的事故。
据此观点,MRI属于低侵袭检查,但不能说是安全检查。
MRI安全管理中最基本的是绝对禁止持剪刀、手术刀、镊子、听诊器等磁性医疗器械进入检查室,以及将医用氧气瓶、监测装置(如心电图机、血压计、呼吸机)、输液泵等可移动医疗器械送入检查室,接送患者的担架、轮椅车如果不是MRI室专用的非磁性材料制成,也绝对不要进入。
MRI是磁共振成像(Magnetic Resonance Imaging)的缩写,是一种利用核磁共振现象获取人体组织结构和功能信息的医学影像技术。
本文将从MRI的基本原理、影像生成过程以及临床应用等方面进行介绍,希望能够为您提供全面的了解。
一、MRI的基本原理MRI的基本原理建立在核磁共振现象之上。
核磁共振是指原子核在外加磁场和射频场的作用下发生共振吸收和辐射的现象。
在MRI中,主要利用水素原子核的核磁共振特性来获取人体组织的影像信息。
当被放置在强静态磁场中时,人体组织中的水分子会产生特定的共振信号,通过对这些信号的检测和分析,可以得到高分辨率的影像信息。
二、MRI的影像生成过程1. 磁场建立:首先,患者被置于强静态磁场中,这个磁场可以使体内的水分子的原子核朝向发生变化,使其产生共振信号。
2. 射频激射:在静态磁场的作用下,通过向人体施加射频脉冲,可以激发体内的水分子原子核,使其发出特定的共振信号。
3. 信号检测:接收体内产生的共振信号,并将其转化为电信号进行处理。
4. 影像重建:通过计算机对接收到的信号进行处理和重建,生成图像。
三、MRI的临床应用1. 诊断性应用:MRI在临床上广泛应用于各种疾病的诊断,如脑部肿瘤、脊柱疾病、关节损伤等。
由于其高分辨率和无辐射的优势,MRI成为了很多病症的首选影像学检查方法。
2. 术前评估:在外科手术前,MRI可以提供准确的解剖结构信息,帮助医生进行手术方案的制定和评估,降低手术风险。
3. 研究应用:MRI在医学研究领域也有着广泛的应用,例如在神经科学、心血管疾病等方面发挥着重要作用。
四、MRI的发展趋势1. 高场强技术:随着MRI设备技术的不断进步,高场强MRI 技术的应用越来越广泛,可以提供更高分辨率的影像信息。
2. 功能性MRI:功能性磁共振成像(fMRI)可以观察大脑在特定任务下的代谢活动,对认知科学研究具有重要意义。
3. 分子成像:分子成像技术的发展,使得MRI可以在细胞水平上观察生物分子的活动和分布,对疾病的早期诊断有着重要意义。
头颅MRI-—基础知识(1)
头颅MRI-—基础知识
MRI技术是一种基于核磁共振原理的成像技术,可以在不使用辐射的情况下生成高分辨率的图像,在医学领域得到了广泛应用。
头颅MRI是
其中的一个应用,可以非常详细地获取人脑内部的构造,为神经系统
疾病的诊断和治疗提供了可靠的依据。
头颅MRI需要在一定的环境中进行,具体如下:
1. 磁场:MRI扫描需要强大的磁场支持,常用的磁场强度为1.5特斯
拉或3.0特斯拉,通常由大型的超导磁体产生。
强大的磁场使得人体
内部的原子核排列产生方向性变化,可以用于成像。
2. 放射波:在磁场的作用下,成像区域的原子核会产生共振,这时需
要通过向身体内部发射放射波的方式刺激原子核,进而产生成像信号。
3. 接收系统:发射的放射波会被人体内部物质吸收、反射和散射,最
后通过接收线圈获得成像信号,这些线圈需要在身体周围放置。
对于头颅MRI,具体需要注意以下几个方面:
1. 头部准确定位:MRI需要在特定位置上成像,头颅区域需要放置有
一个可移动的头架,定位准确,以确保成像的准确性。
2. 静止:MRI需要对静止物体成像,所以在扫描过程中需要保持静止,以免图像模糊。
3. 安全性:由于磁场很强,MRI不能随便进行,使用需要注意安全性,像患者在体内的金属物品,如植入物、牙齿和耳环等,会产生干扰,
应戴上特定的安全装置。
总之,头颅MRI是一项高精度、高分辨率的医学成像技术,除了上述
技术要求外,医生的经验和判断力也对诊断产生关键作用。
磁共振系列说明一、磁共振成像(MRI)原理。
1. 原子核的特性。
- 在磁共振成像中,我们主要利用氢原子核(质子)的特性。
氢原子核具有自旋的特性,就像地球绕着自身的轴旋转一样。
由于质子带正电荷,其自旋会产生一个小的磁场,称为磁矩。
- 在正常情况下,人体组织中的氢原子核磁矩方向是随机分布的,整体上没有净磁矩。
当把人体置于一个强大的外磁场(主磁场,通常用B0表示)中时,氢原子核的磁矩会趋向于与外磁场方向平行或反平行排列。
由于平行排列的能量稍低,所以略多于半数的氢原子核磁矩会沿外磁场方向排列,这样就会在宏观上产生一个与外磁场方向相同的净磁矩。
2. 射频脉冲的作用。
- 为了产生磁共振信号,我们需要施加射频脉冲(RF脉冲)。
射频脉冲是一种频率与氢原子核在主磁场中的进动频率相同的电磁波。
当射频脉冲作用于处于主磁场中的氢原子核时,它会将能量传递给氢原子核,使氢原子核从低能态跃迁到高能态,从而使氢原子核的磁矩偏离主磁场方向。
- 射频脉冲停止后,氢原子核会从高能态回到低能态,这个过程中会释放出吸收的能量,以射频信号的形式发射出来。
这个射频信号就是我们用来构建磁共振图像的原始信号。
3. 梯度磁场的应用。
- 梯度磁场是磁共振成像中的另一个关键要素。
它可以在主磁场的基础上产生一个线性变化的磁场。
通过在x、y、z三个方向上施加梯度磁场,可以对不同空间位置的氢原子核进行定位。
- 例如,在z方向施加梯度磁场时,不同层面的氢原子核会因为所处磁场强度不同而具有不同的进动频率。
这样就可以通过调整射频脉冲的频率来选择性地激发特定层面的氢原子核,从而实现对人体不同层面的成像。
二、磁共振设备的基本组成部分。
1. 磁体系统。
- 主磁体:主磁体是产生强大主磁场(B0)的部件。
目前常见的主磁体类型有永磁型、常导型和超导型。
永磁型磁体不需要外部电源,磁场稳定性较好,但磁场强度相对较低,一般在0.3 - 0.5T之间。
常导型磁体通过电流产生磁场,其磁场强度也不高,并且在运行过程中会产生大量热量。
影像学检查统称“拍片”?一文带你了解MRI很多朋友到医院看病时,医生会根据你的个人情况让你进行影像学检查,统称“拍片”,但至于拍MRI?拍DR?拍CT?还是照B超?医生为什么让我们进行影像学检查?下面,我向朋友们具体介绍下MRI。
MRI是什么MRI即核磁共振检查,是医学影像诊断技术中应用最广泛的方法之一,也是一项革命性的医学影像学技术,MRI能够呈现组织器官的形态结构,同时也能够呈现特定器官的功能状态和生化特征,为了避免与核医学放射成像混淆,MRI被重新命名为“磁共振成像”。
由于其独特的影像特点和强大的数据分析能力,目前已广泛应用于临床医学及基础学科的各个领域。
MRI在所有医学影像学手段中,以其卓越的软组织对比分辨率而脱颖而出,它能够精准地鉴别出肌肉、肌腱、筋膜、脂肪等多种软组织,可用于各种疾病的定性及定位诊断,尤其适合于鉴别骨与关节疾患。
MRI成像原理既然MRI是基于核磁共振原理进行成像的,那么我们必须深入探究MRI的成像原理。
人体超过百分之70的成分由水构成,水分子含有一个氧原子和两个氢原子,每个氢原子的原子核都是一个带正电的质子,这些带电的质子不断自旋,从而形成微弱的磁场,就像每个质子都是一个微小的磁针一样,我们称这种自旋质子所产生的磁场为“小核磁”。
当人们处于一种特定的环境中或生活于其中时,“小核磁”将会对其周围的物质发生影响并形成相应的分布。
一般情况下,人体内的微小磁场排列是随机的,但是当将人体置于一个强大的外部磁场中时,所有微小的磁场都会趋向于磁场方向。
这时,“小核磁”将与周围环境发生强烈碰撞、摩擦,使其表面形成一层等离子体层,即所谓的内聚区域。
当人体接收到一定频率的射频脉冲时,内部的“小核磁”会因共振而吸收能量,从而改变排列方式。
当外部射频脉冲消失时,被改变的“小核磁”会重新回到初始位置,并释放出电磁信号,这一过程被称为核磁共振。
MRI的设备组成核磁共振成像设备的组成要素涵盖多个组成部分:1.主磁体:一种能够提供外加磁场的装置,它可以分为永磁型和电磁体两种类型,而电磁体则可以进一步分为超导型和常导型。