北京四中2009~2010学年度第一学期初一数学期中考试(含答案
- 格式:doc
- 大小:471.00 KB
- 文档页数:6
北京四中2009—2010学年度第二学期期中考试七年级年级数学试卷(考试时间100分钟,试卷满分100分)一、选择题(每题3分,共30分)(1)点P (-2,4)所在的象限为( ).(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)以下列各组长度的线段为边,能构成三角形的是( ).(A )6cm 、8cm 、15cm (B )7cm 、5cm 、12cm(C )4cm 、6cm 、5cm (D )8cm 、4cm 、3cm(3)在方程组⎩⎨⎧+==-1z 3y 1y x 2、⎩⎨⎧=-=1x y 32x 、⎩⎨⎧=-=+5y x 30y x 、⎩⎨⎧=+=3y 2x 1xy 、⎪⎩⎪⎨⎧=+=+1y x 1y 1x 1、⎩⎨⎧==1y 1x 中,是二元一次方程组的有( )。
(A )2个 (B )3个 (C )4个 (D )5个(4)点P (m -1,m+4)在平面直角坐标系的y 轴上,则点P 的坐标是( ). (A )(-5,0) (B )(0,-5) (C )(5,0) (D )(0,5)(5)已知△ABC 的三个内角,∠A 、∠B 、∠C 满足关系式∠B+∠C =21∠A ,则此三角形( ).(A )一定是直角三角形(B )—定有一个内角为45° (C )一定是钝角三角形 (D )一定是锐角三角形(6)已知⎩⎨⎧-==⎩⎨⎧==3y 2x 2y 1x 和都满足方程y=kx -b ,则k 、b 的值分别为( ). (A )-5,-5 (B )-5,-7 (C )5,3 (D )5,7(7)下列说法正确的是( ).(A )经过一点有一条直线与已知直线平行.(B )经过一点有无数条直线与已知直线平行.(C )经过一点有且只有一条直线与已知直线平行.(D )经过直线外一点有且只有一条直线与已知直线平行.(8)如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ).(A )90° (B )135°(C )270° (D )315°(第8题) (第9题)(9)如图,AB//CD ,∠1=105°,∠EAB =65°,则∠E 的度数是( ) (A )30° (B )40° (C )50° (D )60°(10)如图所示,每个小方格都是边长为1的正方形,点A ,B 是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C ,使△ABC 的面积为1个平方单位的三角形的个数是( )。
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A. ℃B. ℃C. ℃D. ℃2.地球与太阳之间的距离约为149600000千米,将149600000用科学记数法表示应为()A. B. C. D.3.下列式子中,正确的是()A. B. C. D.4.下列式子的变形中,正确的是()A. 由得B. 由得C. 由得D. 由得5.下列各式中运算正确的是()A. B. C. D.6.若|x+2|+(y-3)2=0,则x y=()A. B. C. 6 D. 87.今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x岁,可列方程为()A. B. C.D.8.已知代数式-2.5x a+b y a-1与3x2y是同类项,则a-b的值为()A. 2B. 0C.D. 19.表示x、y两数的点在x轴上的位置如图所示,则|x-1|+|y-x|等于()A. B. C. D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A. M或RB. N或PC. M或ND. P或R二、填空题(本大题共8小题,共16.0分)11.的倒数是______.12.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是______元.13.若关于x的一元一次方程ax+3x=2的解是x=1,则a=______.14.化简:3(m-n)-(m-n)+2(m-n)的结果是______.15.当x=______时,代数式的值为2.16.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为______.17.定义计算“△”,对于两个有理数a,b,有a△b=ab-(a+b),例如:-3△2=-3×2-(-3+2)=-6+1=-5,则[(-1)△(m-1)]△4=______.18.有一列式子,按一定规律排列成-2a2,4a5,-8a10,16a17,-32a26,…,第n个式子为______(n为正整数).三、计算题(本大题共2小题,共16.0分)19.解方程:(1)4x-1.5x=-0.5x-9(2)2x-(x+10)=6x(3).20.周日,出租车司机小张作为志愿者在东西向的公路上免费接送游客.规定向东为正,向西为负,出租车的行程依次如下(单位:千米):+10,-3,+4,-2,+13,-8,-7,-5,-2(1)最后一名游客送到目的地时,小张距出车地点的距离是多少?(2)小张离开出车点最远处是多少千米?(3)若汽车耗油量为0.1升/千米,这天汽车共耗油多少升?四、解答题(本大题共5小题,共38.0分)21.计算:(1)23-17-(-7)+(-16)(2)(3)(-+)÷(-)(4)-72+2×(-3)2+(-6)÷(-)3.22.化简:(1)3x2-y2-3x2-5y+x2-5y+y2(2).23.先化简,再求值:,其中a=-1,b=-3,c=1.24.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r米,广场的长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积.(计算结果保留π)25.请按要求计算(1)若规定=a1b2-a2b1,计算=______;(2)若=-4,求x的值.答案和解析1.【答案】D【解析】解:∵2-(-8)=10,∴这天的最高气温比最低气温高10℃.故选:D.这天的最高气温比最低气温高多少,即是求最高气温与最低气温的差.本题考查了有理数的意义和实际应用,运算过程中应注意有理数的减法法则.2.【答案】C【解析】解:149600000=1.496×108.故选C.根据科学记数法表示数的方法得到149600000=1.496×108.本题考查了科学记数法-表示较大的数:用a×10n形式表示数的方法叫科学记数法.也考查了乘方的意义.3.【答案】C【解析】解:A、0>-,故本选项错误;B、>-,故本选项错误;C、>,故本选项正确;D、-4<-3,故本选项错误.故选C.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.此题考查了有理数大小比较,关键是熟悉正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.4.【答案】B【解析】解:A、由6+x=10利用等式的性质1,可以得到x=10-6,故选项错误;B、依据等式性质1,即可得到,故选项正确;C、由8x=4-3x等式的性质1,可以得到8x+3x=4,故选项错误;D、由2(x-1)=3得2x-2=3,故选项错误.故选B.根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.5.【答案】D【解析】解:A、4m-m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3-3a3=-a3,所以C选项错误;D、xy-2xy=-xy,所以D选项正确.故选:D.根据合并同类项得到4m-m=3m,2a3-3a3=-a3,xy-2xy=-xy,于是可对A、C、D 进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.6.【答案】A【解析】解:∵|x+2|+(y-3)2=0,∴x+2=0,y-3=0,解得:x=-2,y=3,故x y=(-2)3=-8.故选:A.直接利用偶次方以及绝对值的性质得出x,y的值,进而求出答案.此题主要考查了代数式求值,得出x,y的值是解题关键.7.【答案】B【解析】解:设妹妹今年x岁,根据题意得2x-4=3(x-4).故选B.若设妹妹今年x岁,根据今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,可列出方程.本题考查了由实际问题抽象出一元一次方程,关键知道年龄差是不变的,所以根据倍数关系可列出方程.8.【答案】A【解析】解:由同类项的定义可知a+b=2,a-1=1,解得:a=2,b=0.则a-b=2-0=2.故选:A.依据同类项的定义列出关于a、b的方程组,从而可求得a、b的值.本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.9.【答案】B【解析】解:∵从数轴可知:x<0<y,且|x|>|y|,∴|x-1|+|y-x|=1-x+y-x=1+y-2x,故选B.根据数轴得出x<0<y,且|x|>|y|,去掉绝对值符号,再合并同类项即可.本题考查了整式的加减的应用,能正确去掉绝对值符号是解此题的关键.10.【答案】A【解析】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.11.【答案】-3【解析】解:因为(-)×(-3)=1,所以的倒数是-3.根据倒数的定义.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.【答案】2a+10【解析】解:根据题意得:本月的收入为:2a+10(元).故答案为:2a+10.由已知,本月的收入比上月的2倍即2a,还多10元即再加上10元,就是本月的收入.此题考查了学生根据意义列代数式的掌握,关键是分析理解题意.13.【答案】-1【解析】解:把x=1代入方程ax+3x=2得a+3=2,解得a=-1.故答案为:-1.把x=1代入方程ax+3x=2得到关于a的一元一次方程a+3=2,然后解此方程即可.本题考查了一元一次方程的解:使一元一次方程左右两边成立的未知数的值叫一元一次方程的解.14.【答案】4m-4n【解析】解:3(m-n)-(m-n)+2(m-n)=3m-3n-m+n+2m-2n=4m-4n.故答案为:4m-4n.先去括号,然后合并同类项即可.此题考查的知识点是整式的混合运算-化简求值,关键是去括号、合并同类项进行化简.15.【答案】1【解析】解:根据题意得:=2,解得:x=1.故答案是:1.根据题意得:=2,解方程即可求解.本题比较简单,只是考查一元一次方程的解法.16.【答案】11【解析】解:由题意知,2x2+3y+7=8∴2x2+3y=1∴6x2+9y+8=3(2x2+3y)+8=3×1+8=11.先对已知进行变形,所求代数式化成已知的形式,再利用整体代入法求解.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3y的值,然后利用“整体代入法”求代数式的值.17.【答案】-6m+5【解析】解:∵a△b=ab-(a+b),∴[(-1)△(m-1)]△4=[(-1)×(m-1)-(-1+m-1)]△4=(3-2m)△4=[(3-2m)×4-(3-2m+4)]=[12-8m-7+2m]=-6m+5.故答案为:-6m+5.根据a△b=ab-(a+b)把[(-1)△(m-1)]△4化为关于m的式子,再合并同类项即可.本题考查的是整式的加减,熟知整式加减的过程就是合并同类项的过程是解答此题的关键.18.【答案】【解析】解:由-2a2,4a5,-8a10,16a17,-32a26,得出规律系数是(-2)的n次方,次数是n2+1,第n个式子为,故答案为:.根据观察,可发现规律:系数是(-2)的n次方,次数是n2+1,可得答案.本题考查了单项式,观察式子发现规律是解题关键.19.【答案】解:(1)移项合并得:3x=-9,解得:x=-3;(2)去括号得:2x-x-10=6x,移项合并得:5x=-10,解得:x=-2;(3)去分母得:2x+4-6x+3=6,移项合并得:4x=1,解得:x=0.25.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.【答案】解:(1)0+10-3+4-2+13-8-7-5-2,=10+4+13-3-2-8-7-5-2,=27-27,=0,所有,小张距出车地点0米,即回到出车地点;(2)小张离开出车地点的距离依次为:10、7、11、9、22、14、7、2、0(米),所以小张离开出车地点最远是22米;(3)0.1×(10+3+4+2+13+8+7+5+2)=5.4(升),汽车共耗油5.4升.【解析】(1)把所有行程相加,根据有理数的加法运算法则计算后即可判断;(2)分别求出离开出车点的距离,然后判断出最远距离即可;(3)求出所有行程的绝对值的和,然后乘以0.1,进行计算即可得解.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21.【答案】解:(1)23-17-(-7)+(-16)=23-17+7-16=30-33=-3;(2)=(×)×(×)=1×=;(3)(-+)÷(-)=(-+)×(-36)=-×36+×36-×36=-8+9-2=-1;(4)-72+2×(-3)2+(-6)÷(-)3=-49+2×9+6÷=-49+18+48=17.【解析】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.(1)先化简,再计算加减法;(2)将除法变为乘法,再根据乘法交换律和结合律简便计算;(3)将除法变为乘法,再根据乘法分配律计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.【答案】解:(1)3x2-y2-3x2-5y+x2-5y+y2=x2-10y.(2)=x2-y-x2-y=.【解析】结合整式加减法的运算法则进行求解即可.本题考查了整式的加减,解答本题的关键在于熟练掌握整式加减法的运算法则.23.【答案】解:解法1:原式===-2a2b+3a2c解法2:原式===-2a2b+3a2c当a=-1,b=-3,c=1时,原式=-2×(-1)2×(-3)+3×(-1)2×1=9.【解析】先去小括号、再去中括号、合并同类项,把a=-1,b=-3,c=1代入进行计算即可.本题考查的是整式的化简求值,熟知整式混合运算的法则是解答此题的关键.24.【答案】解:(1)广场空地的面积为:(ab-2πr2)平方米;(2)当a=500,b=200,r=20时,ab-2πr2=(100000-800π)平方米.【解析】(1)空地的面积=长方形的面积-2个半径为r的圆的面积;(2)把相应数值代入(1)中式子求值即可.本题主要考查了列代数式,关键是得到四个角的花坛的面积正好为一个圆的面积.25.【答案】1【解析】解:(1)=3×3-4×2=1,故答案为:1;(2)由=-4,得:4(2x-3)-2(x+2)=-4,解得:x=2.(1)套用公式计算可得;(2)由题意得出4(2x-3)-2(x+2)=-4,解之可得.本题主要考查解一元一次方程的能力和新定义的理解,根据规定得出关于x 的方程是解题的关键.。
2009-2010学年上学期期中考试七年级数学试卷(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题3分,共24分;每题只有一个选项正确) 1、 5-的绝对值等于( A )A .5B . 5-C . 15D . 15- 2、在数轴上,原点及原点向右的点所表示的数是( C )A .负数B . 正数C . 非负数D . 非正数3、n 是一个正整数,则10n 表示的是( B )A .10个n 相乘所得的结果B . n 个10相乘所得的结果C . 10后面有n 个0的数D . 是一个n 位整数4、下列说法中正确的是( D )A .213x π的系数是13B . 22xy 的系数是2C . 25x -的系数是5D . 23x 的系数是35、到2008年底,昆明市的污水处理能力可达到每天168000吨,将168000吨用科学计数法表示为( B )吨.A .416.810⨯B . 51.6810⨯C . 316810⨯D . 60.16810⨯6、下列各式中,与2x y 是同类项的是( C )A .2xyB . 2xyC . 2x y -D . 223x y7、零上13℃记作+13℃,零下2℃记作( D )A .2B . 2-C . 2℃D . 2-℃8、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球,7个篮球共需要( A )元.A .47m n +B . 28mnC . 74m n +D . 11mn二、填空题(本大题共12个小题,每小题2分,共24分)9、 35的相反数是 35- ;14的倒数是 4 10、计算:○1 2(2)-= 4 ;○2 22-= 4- 11、计算:○1 -12 +12=0 ; ○2 11+ 16 =2712、列式表示:○1 p 的3倍的13是 P ;○2 甲数x 的13与乙数y 的12的差可以表示为1132x y - 13、多项式215214ab ab b -+-的次数是 3 ,项数是 4 14、若x 、y 互为相反数,a 、b 互为倒数,24n =,则2()ab x y n +-=14- 15、绝对值不大于2008的所有整数的和为 016、53m x y +与3x y 是同类项,则m = -217、若a 、b 、c 、d 为有理数,现规定一种新的运算为:a bc d =ad bc -,则6221= 2 18、把()a b +看作一个整体,合并同类项6()4()a b a b +-+=2()a b +19、当k = -1 时,关于x 、y 的多项式223(1)x k xy y -++不含xy 的项.20、若2(1)20a b -++=,那么a = 1 ,b = -2三、解答题(本大题共7个题,共52分;要求写出必要的解题过程和步骤)21、计算下面各题(本题共4个小题,每小题4分,共16分)(1)、 3(5)(28)7⨯-+-÷解:原式=15(4)-+-=(154)-+=19-(2)、 116(5)232---+-- 解:原式=1165232-++- =111232-+- =1122-=11.5(3)、 32(2)4(3)153⨯--⨯-+÷解:原式=2(8)(12)5⨯---+=16125-++=1(4)、 3571()491236--+÷ 解:原式=357()364912--+⨯ =3573636364912-⨯-⨯+⨯ =395473-⨯-⨯+⨯=272021--+=26-22、化简或先化简再求值(第(1)题4分,第(2)题5分,共9分)(1)、 3(2)2(32)x y y x ---解:原式=(63)(64)x y y x ---=6364x y y x --+=(64)(36)x x y y ++--=109x y -(2)、 [(31)(4)]x x x ++--,其中1x =解: [(31)(4)x x x ++-- =(314)x x x ++-+=314x x x ++-+=(3)(14)x x x +++-=53x -23、 把下列各数填在相应的大括号中(本题5分)8 、17- 、227 、3.1415 、0 、35- 、9- 、2009 、122- 、0.3- 、5 整数集合: { 8 、17-、 0、9-、2009 、5 }正整数集合:{ 8 、 9-、 2009 、 5 }分数集合: {227、3.1415 、35-、122- 、-0.3 } 负数集合: { 17-、 35-、 122-、 0.3- } 有理数集合:{8 、17- 、227 、3.1415 、0 、35- 、9- 、2009 、122- 、0.3- 、5}24、(本题5分) 已知b a ax y -是关于字母x 、y 的一个五次单项式,且系数为4,求()()a b a b a +-+的值解:∵b a ax y -是关于字母x 、y 的五次单项式且系数为4∴5a b += ,4a -=∴4a =- ,9b =∴()()a b a b a +-+=(49)(49)4-+⨯---=5(13)4⨯--=69-25、(本题6分)某一出租车司机一天下午以红河一中为出发地在东、西方向营运,若向东走记为正,向西走记为负,行车路程(单位:km )依先后次序记录如下:+9 ,3- ,5-, +4 ,8- ,+6 ,3- ,6- ,4- ,+10(1)将最后一名乘客送到目的地时,出租车离红河一中有多远?在红河一中的什么方向?(2)若每千米的价格为2.5元,请联系实际计算司机一个下午的营业额是多少?.解:(1)向东走记为正,向西走记为负则有(+9)+(3-)+(5-)+(+4)+(8-)+(+6)+(3-)+(6-)+(4-)+(+10)=0所以将最后一名乘客送到目的地时,出租车在红河一中。
北京四中2022-2022学年度第一学期期中初一数学试卷(考试时间为100分钟,试卷满分为100分)班级__________ 学号___________ 姓名___________ 分数____________一、选择题(每题3分,共36分)1.在下列各数:(2)--,2(2)--,|2|--,2(2)-,2(2)--中,负数的个数为( B )个 个 个 个2.下列命题中,正确的是( C )①相反数等于本身的数只有0; ②倒数等于本身的数只有1; ③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;A.只有③B. ①和②C.只有①D. ③和④3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( D )A.437℃B.183℃C.-437℃D.-183℃4.据测我国每天因土地沙漠化造成的经济损失约亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( B )A.115.47510⨯元B.105.47510⨯元 C.110.54710⨯元 D.85.47510⨯元 5.两数相加,其和小于其中一个加数而大于另一个加数,那么( C )A.这两个加数的符号都是正的B.这两个加数的符号都是负的C.这两个加数的符号不能相同D.这两个加数的符号不能确定6.有理数、、在数轴上的对应点如下图所示,下列式子中正确的是( C )A.ac dc <B.||a c a c +=-C.||b c b c -=-D.a c b +>7.代数式,271x -+,25x -,1213,235x -中,单项式共有( C )个 个 个 个8.小刚做了一道数学题:“已知两个多项式为、,求A B +的值,”他误将“A B +”看成了“A B -”,结果求出的答案是,若已知32B x y =-,那么原来的A B +的值应该是( D )。
北京市2009~2010学年度初一第一学期期中考试(1)数学试卷本试卷共25道小题,总分为120分,考试时间为120分钟.答案用蓝色、黑色钢笔或圆珠笔书写,不能用计算器.1 2 3 4 5 67.在(-1)3,(-1)2,-22,(-3)2这四个数中,最大的数与最小的数的和等于( ) A .6 B .8 C .-5D .58.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A .20 B .119 C .120D .31991011121314上表示-1的点重合,当圆柱体滚动一周时A 点恰好落在了 表示2的点的位置。
则这个圆柱体的侧面积是__________。
-1 0 1 2 315.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.① 小狗先是站在地面上看;② 然后抬起了前腿看;③ 唉,还是站到凳子上 看吧;④ 最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序, 把下面四幅图片按对应字母正确排序为____________________.161718.(本小题满分8分)将下列几何体分类,并说明自己的理由.(1)正方体(2)圆柱(3)长方体(4)球(5)圆锥(6)三棱锥19.(本小题满分8分)某地用探空气球探测的气象观测资料表明,高度每增加1千米,气温大约就降低6℃,若该地区地面温度为21℃,高空某处温度为-39℃,求此处距离地面的的高度约为多少千米?20.(本小题满分8分)已知:x=-2,y=3,求4x2+3xy-x2-2xy-9的值21.(本小题满分10分)出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?(2)若汽车耗油量为0.05升/千米,这天下午小王的汽车共耗油多少升?2223(2)利用(1)的结果完成下表:(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?24.(本题满分12分)“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。
北京市北京四中七年级上册数学期末试卷(含答案)一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元 2.已知max {}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14- B .116 C .14 D .123.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 4.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°5.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒 6.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .4 7.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯ B .56.04810⨯ C .66.04810⨯ D .60.604810⨯ 8.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+=9.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( ) A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+110.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=611.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查12.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.多项式2x3﹣x2y2﹣1是_____次_____项式.16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;19.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.20.五边形从某一个顶点出发可以引_____条对角线.21.计算7a2b﹣5ba2=_____.22.若2a +1与212a +互为相反数,则a =_____. 23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.28.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.30.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长.(2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒,①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.(3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB .(1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元.故选D .【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】利用max {}2,,x x x 的定义分情况讨论即可求解. 【详解】解:当max{}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x =22x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C .此题主要考查了新定义,正确理解题意分类讨论是解题关键.3.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.4.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.5.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.6.B解析:B【解析】【分析】根据线段中点的性质,可得AC 的长.【详解】解:由线段中点的性质,得AC =12AB =2. 故选B .【点睛】本题考查了两点间的距离,利用了线段中点的性质.7.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.8.B解析:B【解析】【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.9.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.10.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.11.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.12.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x 2y 2,次数为4,一共有3个项,所以多项式2x 3﹣x 2y 2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.20.2【解析】【分析】从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.21.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.23.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x +【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.27.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.29.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.30.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.31.(1) AB=15,BC=20;(2) 点N移动15秒时,点N追上点M;(3) BC-AB的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB与BC的长即可,(2)不变,理由为:经过t秒后,A、B、C三点所对应的数分别是-24-t,-10+3t,10+7t,表示出BC,AB,求出BC-AB即可做出判断,(3)经过t秒后,表示P、Q两点所对应的数,根据题意列出关于t的方程,求出方程的解得到t的值,分三种情况考虑,分别求出满足题意t的值即可.【详解】解:(1)AB=15,BC=20,(2)设点N移动x秒时,点N追上点M,由题意得:。
D C B A 321-1-2-3数 学 试 卷(时间100分钟 满分120分)班级:________ 分层班级:_________ 姓名:______一.选择题(每题2分,共20分)1.15-的绝对值是( ).A.15-B.15C.5D.5-2.北京某天的最高气温是8℃,最低气温是-2℃,则这天的温差是( ). A .10℃ B .-10℃ C .6℃ D .-6℃ 3.下列各式中一定为负数..的是( ). A .(2)-- B .2-- C .3(2)-- D .2(3)-. 4.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为( ).A .15×1010B .0.15×1012C .1.5×1011D .1.5×1012 5.下列代数式中,多项式共有( ).22311,,3,,23,,4x b a b c x x abc a x-------+- . A .1个 B .2个 C .3个 D .4个6.数轴上有A 、B 、C 、D 四个点,其中绝对值相等的数所对应的点是( ). A .点A 与点D B .点A 与点C C .点B 与点C D .点B 与点D 7.下列各式中去括号正确的是( ).A .22(22)22x x y x x y --+=--+B .n m mn n m mn -+--=-+--1)()1(C .5)5(-=+--ab abD .y x y x y x x 22)2()35(+-=-+-- 8.若多项式223y x +的值为1,则多项式2469y x +-的值是( ). A .2 B .17 C .-7 D .79. 下列解方程去分母正确的是( ).A .由2113xx -=-,得x x 3312-=-. B .由142322-=---x x ,得423)2(2-=---x x .C .由y y y y ---=+613321,得y y y y 613233-+-=+.D .由44153x y +-=,得451512+=-y y . 10.下列数轴上的点A 都表示实数a ,其中,一定满足2a >的是( ).A. ①③B. ②③C. ①④D. ②④二.填空题(每题2分,共20分)11.比较大小:(8)-+ 3)2(-;(填“>”,“=”,或“<”).12.在一次立定跳远测试中,合格的标准是2.00 m ,小明跳出了2.12 m ,记为+0.12 m ;小敏跳出了1.95 m ,记为__________ m . 13.把0.0158精确到0.001是_____________. 14.单项式yz x 232-的系数是_______,次数是_________. 15.写出一个系数是2017,且只含x 、y 两个字母的三次单项式是 . 16.设0,0a b <> ,且a b >,用“<”号把,,,a a b b --连接起来为 . 17.已知03)2(2=++-b a ,则+a b = .18.减去3m -后,等于231m m -+-的代数式是 . 19.右边的框图表示解方程320425x x +=-的流程, 第3步的依据是____ ______.20.按一定规律排列的一列数依次为:-2,5,-10,17,-26,…,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是 .三.解答题21.有理数运算(每题4分,共20分): (1) ()()13121718+-++- (2) )31()21(74)32(21-+-++-+(3) 11(6)767⎛⎫⨯-÷-⨯ ⎪⎝⎭(4) ()311233-+-+-÷(5) 220172123(1)()30.523⎛⎫-+-÷--⨯- ⎪⎝⎭22.解关于x 的方程(每题4分,共8分):(1)()43257x x x +-=- (2)2531162x x -+-= 解: 解:23.整式加减(每题4分共8分):(1)22226547a b ab ab a b +-- (2)2222252(2)42a b a b ab a b ab ⎡⎤-----⎣⎦24.先化简,再求值(每题4分,共8分): (1)222222532()(53)a b a b a b ++---,其中11,2a b =-=. 解:(2)已知2a b -=,1ab =-,求(45)(235)a b ab a b ab ----+的值. 解:25.(5分)对于有理数a ,b ,规定一种新运算:b ab b a +=*.(1)计算:=*-4)3( ; (2)若方程634=*-)(x ,求x 的值; (3)计算:[]235*-*)(的值.26.(5分)从1开始,连续的奇数相加,和的情况如下:(1)从1开始,n 个连续的奇数相加,请写出其求和公式; (2)计算:2523211917151311+++++++. (3)已知()202512531=-++++n ,求整数n 的值.27.(6分)如图,点A ,B ,C 是数轴上三点,点C 表示的数为6,BC =4,BAOC 6AB =12.(1)写出数轴上点A ,B 表示的数:_______,________;(2)动点P ,Q 同时从A ,C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动,点Q 以每秒2个单位长度的速度沿数向左匀速运动,设运动时间为t (t >0)秒.① 求数轴上点P ,Q 表示的数(用含t 的式子表示); ② t 为何值时,点P ,Q 相距6个单位长度.附加题(每题4分)28.设记号*表示求a ,b 算术平均数的运算,即,则下列等式中对于任意实数a ,b ,c 都成立的是( ). ① ② ③ ④A .①②③B .①②④C .①③④D .②④29.有n 个数,第一个数记为1a ,第二个数记为2a ,…,第n 个数记为n a . 若11-=a ,且从第二个数起每个数都等于“1与它前一个数的倒数的差”. (1)写出2a ,3a 的值:_______,_______;(2)根据(1)的计算结果,请猜想并写出2017a 的值:________.30.循环小数 写成最简分数时,分子和分母的和是150,写出这个循环小数: ______________.31.已知 是关于未知数 的一元一次方程,求代数式的值.32.小明在黑板上写有若干个有理数.若他第一次擦去个,从第二次起,每次都比前一次多擦去1个,则6次刚好擦完;若他每次都擦去个,则9次刚好擦完.请你求出小明在黑板上共写了多少个有理数.。
七年级期中联考数学学科试卷考试时间:90分钟一、选择题(每题3分,共12题,满分36分,请从A 、B 、C 、D 选项中选出一个最佳选项并填涂在答题卡的相应位置上) 1、 -3的相反数是( ★ )A 、-3B 、3C 、31 D 、 31- 2、观察下图,左边的图形绕着给定的直线旋转一周后可能形成的几何体是( ★ ).3、位于深圳侧海岸线的大亚湾核电站常年供应着深圳与香港两地的生活生产用电,据了解每年的总装机容量达16780000千瓦,用科学记数法表示总装机容量是 ( ★ ) A 、4101678⨯千瓦 B 、710678.1⨯千瓦 C 、61078.16⨯千瓦 D 、8101678.0⨯千瓦 4、在数轴上距离原点两个单位长度的点所表示的数是 ( ★ )A 、 -2B 、 2C 、-2或2D 、不能确定 5、某地区一月份的平均气温为-19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( ★ )A 、17℃B 、21℃C 、-17℃D 、-21℃ 6、下列计算正确的是( ★ )A 、(1)0+-=2-(-1)B 、37+-=2-2C 、8=3-(-2) D 、11()1122-+--=-127、下列各图形经过折叠不能围成一个正方体的是( ★ ).A 、B 、C 、D 、8、下列说法中错误的个数是( ★ )(1)绝对值是它本身的数有二个,它们是0和1; (2)一个有理数的绝对值必为正数; (3)2的相反数的绝对值是2;(4)任何有理数的绝对值都不是负数;A 、0B 、1C 、2D 、39、已知032=-++b a ,则ba 的值是( ★ )A 、-8B 、8C 、6D 、-6 10、如果a a =,则( ★ )A 、 a 是正数B 、 a 是负数C 、 a 是零D 、 a 是非负数 11、一列火车长m 米,以每秒n 米的速度通过一个长为p 米的桥洞,用代数式表示它通过桥洞所需的时间为( ★ ) A 、n m p +秒 B 、np秒 C 、n m p -秒 D 、n mn p +秒 12、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ★ )A 、26n +B 、86n +C 、44n +D 、8n二、填空题(每题3分,共4题,满分12分,请将答案填写在答题卡的规定位置)13、单项式43232y x 的次数是_ 请在答题卡作答________14、现有四个有理数3,4,6-,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式 请在答题卡作答 15、若代数式532++x x 的值是7,则代数式2932-+x x 的值是 请在答题卡作答 16、点A 、B 、C 的位置在数轴上表示为a 、b 、c ,且c a =,则化简:b c b a c a -++-+=_请在答题卡作答三、解答题(17题每小题4分共8分,18题每小题4分共8分,19题 8分,20题6分,21题5分,22题7分,23题10分,共52分) 17、计算:(每题4分,满分8分)(1) 33)6(1726--+- (2) 23)23(942-⨯÷- 请将答案填写在答题卡的对应位置18、计算:(每题4分,满分8分) (1) 321-×)325.0(-÷191 (2) )12116545()36(--⨯- 请将答案填写在答题卡的对应位置19、(本题满分8分) (1)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图. (4分)请将答案填写在答题卡的对应位置主视图 左视图.(2)用小立方块搭成的几何体,主视图和俯视图如下,它最多需要 个小立方块,最少需要 个小立方块.(4分)主视图 俯视图请将答案填写在答题卡的对应位置20、(本题满分6分)为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为 :+2,-3,+2,+1,-2,-1,-2.(单位:千米);(1) 此时,这辆城管的汽车司机如何向队长描述他的位置?(2) 如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油 0.2升)请将答案填写在答题卡的对应位置21、(本题满分5分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,计算()32)(cd mb a m -+-的值。
北京四中初一上期中数学试卷一、选择题(每小题所给4个选项中只有一个符合要求,每题3分,共30分)1.甲、乙、丙三地海拔高度分别为20米,15-米,10-米,那么最高的地方比最低的地方高( ). A .10米 B .25米 C .35米 D .5米2.在国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460000000帕的钢材,将460000000用科学记数法表示为( ). A .84.610⨯B .94.610⨯C .90.4610⨯D .74610⨯3.下列说法正确的是( ). ①0是绝对值最小的有理数; ②相反数大于本身的数是负数; ③一个有理数不是正数就是负数; ④两个数比较,绝对值大的反而小. A .①② B .①③C .①②③D .①②③④4.若2(2)30a b -++=,则2014()a b +的值是( ).A .0B .1C .1-D .20145.已知622x y 和313m n x y -是同类项,则29517m mn --的值是( ).A .1-B .2-C .3-D .4-6.关于x 的方程2152x kx x -+=-的解是1-,则k 的值为( ).A .4-B .6-C .8-D .107.下列等式变形正确的是( ). A .如果12s ab =,那么2s b a= B .如果162x =,那么3x =C .如果33x y -=-,那么0x y -=D .如果mx my =,那么x y =8.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ). A .240元 B .250元C .280元D .300元9.a ,b 在数轴上的位置如图,化简a a b b a -++-=( ).A .2b a -B .a -C .23b a -D .3a -10.已知443212345(21)x a x a x a x a x a -=++++,则123451a a a a a -+-+-的值为( ).A .0B .13-C .82-D .80二、填空题(每题2分,共16分)11.213-的倒数是__________.12.比较大小:[]05().7-+-__________34--.13.用四舍五入法,对1.549取近似数(精确到十分位)是__________.14.单项式256x y-的系数是__________.15.多项式231245xy x y --是__________次三项式.16.已知3a =,2b =,且0ab <,则a b -=__________.17.定义新运算“※”:对于任意有理数a 、b ,都有22a b a b =+※.例如23423422=⨯+=※,那么当m 为有理数时,(2)m m =※※__________.18.一部分同学围在一起做“传数”游戏,我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是:同学1心里先想好一个数,将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减12后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减12后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏,这三个同学的“传数”之和为17,则同学1心里先想好的数是__________.(2)若有n 个同学(n 为大于1的偶数)做“传数”游戏,这n 个同学的“传数”之和为20n ,则同学1心里先想好的数是__________.三、计算(每题4分,共16分)19.(8)102(1)-+++-.20.5431.5()12154-⨯-÷-.同学3同学2同学121.1111()()123218-+-÷-.22.4211(10.5)(1)2(3)3⎡⎤---⨯-⨯--⎣⎦.四、解方程(每题4分,共8分)23.2(4)3(51)2x x x +-+=-. 24.12223x x x -+-=-.五、化简(每题4分,共8分)25.222243244a b ab a b ++--.26.22225(3)3(5)a b ab ab a b --+.六、先化简再求值(每题5分,共10分)27.求22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦的值,其中1a =-,3b =-,1c =.28.已知5a b -=,1ab =-,求(4)(232)(223)a b ab a b ab a b ab -++++---++的值.七、列方程解应用题(每题6分,共12分)29.北京某旅行社APEC 期间组织甲、乙两个旅游团分别到西安、苏州旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?30.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于064月1日开始全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制.下面是该县医疗机构住院病人累计分段报销表:医疗费报销比例(%)500元以下(含500元) 20 500元(不含)至2000元部分 30 2000元(不含)至5000元部分 35 5000元(不含)至10000元部分40 10000元以上部分45(例:某住院病人花去医疗费900元,报销金额为50020%40030%220⨯+⨯=元) (1)农民刘老汉在4月份因脑中风住院花去医疗费2200元,他可以报销多少元?(2)刘老汉在6月份脑中风复发再次住院,这次报销医疗费4880.25元,刘老汉这次住院花去医疗费多少元?八、附加题(每题4分,共20分,计入总分)31.如图所示,在1000个“〇”中依次填入一列数字1a ,2a ,3a ,…1000a 使得其中任意四个相邻“〇”中所填数字之和都等于10-,已知9992a x =-,251a x =-,可得x 的值为__________;501a =__________.32.设234922221335579799S =++++⨯⨯⨯⨯,248122235799T =++++,则S T -=( ). A .49299B .492199-C .492199-D .492199+33.方程1221x x +--=的解为__________.34.解关于x 的方程:2(2)44a x b x ab b -=-+.35.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了20分钟,货车追上了客车.问小轿车追上客车,需要多长时间?-7…………北京四中初一上期中数学试卷答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 CAABABCAAD二、填空题(每题2分,共16分)题号 11 1213 14 15 16 17 18 答案 35- >1.556- 四5±242m +3;13三、计算(每题4分,共16分)19.解:(8)102(1)-+++- (81)(102)=-+++ 912=-+ 3=.20.解:5431.5()12154-⨯-÷- 134()923=--⨯- 129=-+179=.21.解:1111()()123218-+-÷-146()(18)121212=-+-⨯-3()(18)12=-⨯-92=.22.解:4211(10.5)(1)2(3)3⎡⎤---⨯-⨯--⎣⎦ 141()(7)23=--⨯-⨯-1413=--173=-.四、解方程(每题4分,共8分)23.解:2(4)3(51)2x x x +-+=-, 去括号,得281532x x x +--=-, 移项,得215283x x x -+=-+, 整理,得123x -=-,系数化为1,得14x =. ∴原方程的解为14x =.24.解:12223x x x -+-=-, 去分母,得63(1)122(2)x x x --=-+,去括号,得6331224x x x -+=--, 移项,得6321243x x x -+=--, 整理,得55x =, 系数化为1,得1x =. ∴原方程的解为1x =.五、化简(每题4分,共8分)25.解:222243244a b ab a b ++--22(44)(34)2a b ab =-+-+ 22b ab =-+.26.解:22225(3)3(5)a b ab ab a b --+ 2222155315a b ab ab a b =---22(1515)(53)a b ab =--+ 28ab =-.六、先化简再求值(每题5分,共10分)27.解:22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦222213(34)322a b a b abc a c a c abc =---+--22221334322a b a b abc a c a c abc =--+-+-2213()(33)(41)22a b abc a c =--+-+-2223a b a c =-+.∵1a =-,3b =-,1c =,∴原式222(1)(3)3(1)19=-⨯-⨯-+⨯-⨯=.28.解:(4)(232)(223)a b ab a b ab a b ab -++++---++4232223a b ab a b ab a b ab =---++-+-- (122)(432)(123)a b ab =-+++-+-+--- 336a b ab =-- 3()6a b ab =--.∵5a b -=,1ab =-, ∴原式35621=⨯+=.七、列方程解应用题(每题6分,共12分)29.解:设甲旅游团有x 人,则乙旅游团由(55x -)人. 依题意得,2(55)5x x =--, 解得35x =, 5520x -=.答:甲旅游团有35人,则乙旅游团由20人.30.解:(1)农民刘老汉在4月份因脑中风住院花去医疗费2200元, 报销金额为50020%150030%20035%620⨯+⨯+⨯=(元). 答:他可以报销620元. (2)当医疗费为10000元时,报销金额为50020%150030%300035%500040%3600⨯+⨯+⨯+⨯=(元). ∵4880.253600>, ∴医疗费大于10000元,设医疗费为x 元,依题意得45%(10000)4880.253600x -=-, 解得12845x =.答:刘老汉这次住院花去医疗费12845元.八、附加题(每题4分,共20分,计入总分)31.【答案】2;1【解析】由题意可知,“〇”中的数字以周期4T =循环,∴39992a a x ==-,1251a a x ==-, ∴271010x x --+-+=-,解得2x =,∴501111a a x ==-=.故答案为2;1.33.【答案】B【解析】234922221335579799S =++++⨯⨯⨯⨯22484812222221335579799=-+-+-++-. ∴224848248122222212221()33557979935799S T -=-+-+-++--++++ 223484922222221335579799=-+-+-++-492199=-.故选B .33.【答案】43x =或4x = 【解析】令10x +=,得1x =-;令20x -=,得2x =.当1x <-时,原方程化为1241x x --+-=,解得6x =,舍去; 当12x -≤≤时,原方程化为1241x x ++-=,解得43x =. 当2x >时,原方程化为1241x x +-+=,解得4x =. 综上,原方程的解为43x =或4x =.故答案为43x =或4x =.34.解:2(2)44a x b x ab b -=-+ 去括号,得2244ax ab x ab b -=-+, 整理,得2(24)4a x b -=,当2a ≠时,2424b x a =-;当2a =且0b =时,x 为任意实数;当2a =且0b ≠时,方程无解.35.解:设小轿车与货车之间的距离为s ,则货车与客车之间的距离为s ,小轿车与客车之间的距离为2s .设小轿车,货车,客车的速度分别为v 轿,v 货,v 客. 依题意,得1()6v v s -=轿货,1()2v v s -=货客,则()8v v s -=轿客, ∴21()4s v v =-轿客.答:小轿车追上客车,需要15分钟.北京四中初一上期中数学试卷部分答案解析一、选择题(每题3分,共30分)1.【答案】C【解析】最高的地方比最低的地方高20(15)35--=米.故选C .2.【答案】A【解析】460000000用科学记数法表示为84.610⨯.故选A .3.【答案】A【解析】③一个有理数不是正数就是负数,也可能是0; ④两个负数比较,绝对值大的反而小. ①和②正确.故选A .4.【答案】B【解析】由题意得,2a =,3b =-,∴20142014()(1)1a b +=-=.故选B .5.【答案】A【解析】由题意得,36m =,2n =,∴2m n ==,∴295173620171m mn --=--=-.故选A .6.【答案】B【解析】∵关于x 的方程2152x kx x -+=-的解是1-, ∴2152k -++=--,解得6k =-.故选B .7.【答案】C【解析】如果12s ab =,那么2sb a=;如果162x =,那么12x =;如果mx my =,那么x y =或0m =.故选C .8.【答案】A【解析】设进价为x ,则33080%10%x x ⨯-=,解得240x =.故选A .9.【答案】A【解析】由图可知,0a <,0b >,且a b >,∴2a a b b a a a b b a b a -++-=-+++-=-.故选A .10.【答案】D【解析】令1x =-,得1234581a a a a a -+-+=, ∴12345180a a a a a -+-+-=.故选D .11 二、填空题(每题2分,共16分)11.【答案】35- 【解析】213-的倒数是35-.故答案为35-.12.【答案】>【解析】[]0.753()4-+-=,3344--=-,∴[]0.753()4>----+.故答案为>.13.【答案】1.5【解析】1.549 1.5≈.故答案为1.5.14.【答案】56- 【解析】单项式256x y-的系数是56-.故答案为56-.15.【答案】四 【解析】多项式231245xy x y --是四次三项式.故答案为四.16.【答案】5± 【解析】∵3a =,2b =,且0ab <,∴3a =,2b =-,或3a =-,2b =,∴5a b -=±.故答案为5±.17.【答案】242m +【解析】2222(2)22)22242m m m m m m m =+=++=+※※※(.故答案为242m +.18.【答案】3;13【解析】(1)设同学1心里想的数为x ,则传给同学2的数为21x +, 传给同学3的数为x ,再传给同学1的数为21x +.由题意,得212117x x x ++++=,解得3x =.即同学1心里先想好的数是3.(2)由(1)可知,相邻两个同学的“传数”之和为21x x ++, ∵有n 个同学(n 为大于1的偶数)做“传数”游戏,∴这n 个同学的“传数”之和为(21)2n x x ++, ∴(21)220n x x n ++=,解得13x =.即同学1心里先想好的数是13.故答案为3;13.。
数 学 试 卷
(时间:100分钟 满分:110分) 姓名: 班级: 学号:
一、选择题:(本题共36分,每小题3分.)
1. 甲‚乙两地的海拔高度分别为200米, -150米,那么甲地比乙地高出( ) .
A .200米
B .50米
C .300米
D .350米
2. 若2514y x 和2331y x m -是同类项,则式子3m -8的值是( ).
A .3-
B .4-
C .5-
D .6-
3. 己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ).
A .a b >
B .0ab <
C .0b a ->
D .0a b +>
4. 2009年10月5日,为期10天的第七届中国花卉博览会圆满闭幕。
展会期间,花博会主展馆及室外展区、国际鲜花港与和谐广场三大功能展区组团游客数量达到180万人次.请你将180万人次用科学记数法表示为( )人次.
A .51.810⨯
B .70.1810⨯
C .61.810⨯
D .51810⨯
5. 五个有理数的积为负数,则五个数中负数的个数是( ).
A .1
B .3
C .5
D .1或3或5
6. 已知a =4,b 是13
-的倒数,且a <b ,则a +b 等于( ). A .-7 B .7或-1 C .-7或1 D .1
7. 给出下列结论:
①近似数58.0310⨯精确到百分位; ②-a 一定是个负数;
③若a a -=,则0a ≥; ④0a a a <∴--=-.
其中正确的个数是( ).
A .0个
B .1个
C .2个
D .3个
8. 下列说法正确的是 ( )
A .a 5-a 4bc 是五次多项式
B .25m n 和22nm -是同类项
C .如果两个数的绝对值相等,那么这两个数相等
D .单项式2π的系数是2
9. 若10m -<<,则m 、2m 、
1m 的大小关系是( ) A .21m m m << B .21m m m
<< C .21m m m << D .21m m m
<<
10. 给出下列等式:
①22439
-=; ②22(32)32-⨯=-⨯; ③234432
⎛⎫÷-⨯=- ⎪⎝⎭; ④32325353-=-; ⑤()222323a a a a --=-+; ⑥112244
a a a +=. 其中等式成立的个数是( )
A .0个
B .1个
C .2个
D .3个
11. 计算()()2008200722-+-所得结果为( ).
A .20072
B .()20072-
C .20072-
D .-2
12. 已知数a 、b 、c 在数轴上的位置如图所示,化简a b a b b c +++--的结
果是( ).
A .23a b c +-
B .3b c -
C .b c +
D .c b -
二、填空题(本题共20分,每题2分) 13. 数轴上与原点距离是3个单位长度的点所表示的数是__________.
14. 单项式223xy -的系数是 ,次数是 .多项式
2453ab a b --是 次 项式.
15. 比较大小:31- 5
2-; ()1--_______1--. 16. 某个零件的直径φ为0.200.15300mm +
-,则合格零件的直径φ的范围
是 .
17. 若23(2)0m n ++-=,则2007()m n +的值等于 .
18. 方程0.1258x -=的解为 ;方程473x x +=--的解为 .
19. 若关于x 的方程mx +2=2(m -x )的解是12
x =,则m = . 20. 若x 2+3x 的值为2,则3x 2+9x -6的值为_____________.
21. ,,,a b c d 为有理数,现规定一种运算:a c b d
=ad bc -,那么当2(1)x - 45=18时x 的值是 .
c
0 b
a
22. 观察下图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中
白色三角形有 个 .
三、解答题
23. (3分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连
接起来.
3.5 ,-3 ,0 ,212 ,2
3-.
24. (每小题3分)计算下列各题:
(1)()()()()959149-+--+--; (2)()25.05832-÷⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-;
(3)⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-1812131121; (4)()()()232234233⎡⎤-+-⨯-+--÷⎣⎦.
第1个第2个第3个
25. (3分)下面解答过程是否正确?如果正确,请指明每一步的依据;如果不
正确,请改正. 计算:112263973⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭
. 解:原式111212639637633
⎛⎫⎛⎫⎛⎫=-÷--÷+-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11118731.718421269
-+-=-+-==-
26. (每小题3分)化简:
(1)222244234b a ab b a --++; (2))5(3)3(52222b a ab ab b a +--.
27. (3分)先化简再求值:22112(4)822a ab a ab ab ⎡⎤---+-⎢⎥⎣⎦
,其中1=a ,b =31.
28. (3分)李明在计算一个多项式减去5422+-x x 时,误认为加上此式,计算
出错误结果为122-+-x x ,试求出正确答案.
29. (4分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足
的千克数记作负数,称后的纪录如下:
5.1 3- 2 5.0- 1 2- 2- 5.2-
回答下列问题:
(1)这8筐白菜中,最接近25千克的那筐白菜为 千克;
(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?
30. (4分)一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,
继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.
(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千
米,请你在数轴上表示出小明、小红、小刚家的位置;
(2)小明家与小刚家相距多远?
(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?
31. (3分)如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、
B 、
C 、
D 对应的数分别为整数a 、b 、c 、d ,且d -2a =4.试问:数轴上的原点在哪一点上?
32. (3分)已知,a 、b 互为相反数,c 、d 互为倒数,()()312x a a b =---,
222d y c d d c c ⎛⎫=+-+- ⎪⎝⎭,求23236x y x y -+-的值.
四、附加题(本题共10分,每题2分,附加题分数计入总分)
33. 当m =_________时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的
解相同.
34. 定义:a 是不为1的有理数,我们把11a
-称为a 的差倒数.... 如:2的差倒数是1112
=--,1-的差倒数是111(1)2=--. 已知113
a =-, (1)2a 是1a 的差倒数,则=2a ;
(2)3a 是2a 的差倒数,则=3a ;
(3)4a 是3a 的差倒数,则=4a ,
……,依此类推,则=2009a .
35. 观察下面所给的一列数:0,6,-6,18,-30,66,…,则第10个数是 .
36. 已知a 、b 、c 都不等于0,则|
|||||||abc abc c c b b a a +++的值为 . 37. 方程125x x -++=的解是 .
A B C D
M N。