椭圆的焦半径函数
- 格式:doc
- 大小:82.00 KB
- 文档页数:3
圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF 0ex a +,=2PF 0ex a -,记忆方式:长加短减(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF 0ey a +,=2PF 0ey a -,记忆方式:长加短减2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF a ex +0,=2PF a ex -0,②当点P 在左支上时,=1PF a ex --0,=2PF a ex +-0,记忆方式:长加短减(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF a ey +0,=2PF a ey -0,②当点P 在下支上时,=1PF a ey --0,=2PF a ey +-0,记忆方式:长加短减(3)若弦AB 过左焦点,则=AB a x x e 2)(21-+-;若弦AB 过右焦点,则=AB ax x e 2)(21-+3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF 20p x +(2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF 20p x +-(3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF 20p y +(4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 20p y +-例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6解法1:(基本不等式)由题意知621=+MF MF ,所以21MF MF ⋅9)2(221=+≤MF MF 当且仅当321==MF MF 时等号成立,所以21MF MF ⋅的最大值为9,故选C 解法2:(焦半径公式)设点),(00y x M ,则由题意知355,2,3=====a c e c b a ,所以9959)353)(353(200021≤-=-+=⋅x x x MF MF ,当且仅当00=x 时等号成立所以21MF MF ⋅的最大值为9,故选C例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为解析:设点),(00y x M ,则由题意知211F F MF =,所以⇒=+c ex a 203832600=⇒=+x x 所以点M 的坐标为)15,3(例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x 解析:由题意知3,6,24,2====e c b a ,222300002=⇒=-=-=x x x a ex PF 例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为解法1:51651645tan 0221=⇒⨯===∆P P F PF y y b S ,即点P 到x 轴的距离为516解法2:设点),(00y x P ,不妨设点P 在右支上,则由21PF PF ⊥得2212221F F PF PF =+25269100)335()335(202020=⇒=-++⇒x x x ,所以25256)14(322020=-=x y 5160=⇒y 即点P 到x 轴的距离为516例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47解析:设点),(),,(2211y x B y x A ,线段AB 的中点),(00y x M ,则25341412121=+⇒=+++=+x x x x BF AF ,从而452210=+=x x x ,故选C 例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=解法1:设点),(00y x M ,则255200p x p x MF -=⇒=+=,即),25(0y pM -,MF 的中点为)2,25(0y B ,以MF 为直径的圆过点)2,0(,所以MF AB 21=,所以4425)22(425020=⇒=-+y y ,又点M 在抛物线上,所以2)25(216=⇒-=p p p 或8所以抛物线的方程是x y 42=或x y 162=,故选C解法2:设点),(00y x M ,因为以焦半径为直径的圆与y 轴相切,所以MF 的中点的纵坐标为2,所以40=y ,所以p p x 82160==,所以2528=⇒=+=p pp MF 或8所以抛物线的方程是x y 42=或x y 162=,故选C 注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF θcos 2c a b -;=BF θcos 2c a b +;焦点弦长=AB θ2222cos 2c a ab -;(2)设过椭圆)0(12222>>=+b a b x a y 的焦点F 的弦AB 的倾斜角为θ,则=AF θsin 2c a b -;=BF θsin 2c a b +;焦点弦长=AB θ2222sin 2c a ab -;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF θcos 2c a b -;=BF θcos 2c a b +;=AB α2222cos 2c a ab -,弦AB 在双曲线一支上时,焦点弦最短为通径(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF a c b -θcos 2;=BF ac b +θcos 2;=AB 2222cos 2a c ab -α,弦AB 交双曲线两支上时,焦点弦最短为实轴长a23.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF θcos 1-p ;=BF θcos 1+p;=AB θ2sin 2p (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF θsin 1-p ;=BF θsin 1+p ;=AB θ2cos 2p例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF 解法1:(设线韦达定理)略解法2:(点差法)略解法3:(角度形式的焦半径公式)设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以θθθ2cos 412cos 23cos 23-=++-=+=BF AF AB θθθθ2cos 43cos 2cos 2cos -=-=+-==BF AF BFAF AF NF MF ,所以=AB MF 41例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ解析:设AB 的倾斜角为θ,则θθcos 23cos 2-=-=c a b AF ,θθcos 23cos 2+=+=c a b BF 所以=λ3411=+BF AF例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为解析:设直线AC 的倾斜角为θ,则θθθ222222cos 334cos 3232cos 2-=-⨯⨯=-=c a ab AC θθ202sin 334)90(cos 334-=+-=BD 所以)sin 3)(cos 3(242122θθ--=⋅=BD AC S ABCD 2596)2sin 3cos 3(24222=-+-≥θθ,所以四边形ABCD 的面积的最小值为2596例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 解析:设θ=∠AFO ,则a b a c a c b a c b AF 2cos 222=+⋅=+=θ所以222sin b a AF a ==θ,又c b=θsin ,所以c b b a =22⇒=-⇒=⇒232234)1(2e e c a b 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程解析:设AB 的倾斜角为θ,则77216cos 25942cos 222222=-⨯⨯=-=θθa c ab AB 53cos ±=⇒θ所以34tan ±=θ,所以直线AB :)5(34+±=x y 即02034=+-y x 或02034=++y x例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为解析:设AB 的倾斜角为θ,则θθ22sin 4sin 2==p AB ,所以θθ202cos 4)90(sin 2=+=p DE 所以16)11(4)cos )(sin cos 1sin 1(4)cos 1sin 1(42222222=+⨯≥++=+=+θθθθθθDE AB 当且仅当4πθ=时等号成立,所以16)(min =+DE AB 三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e 11+-λλ;=e 21k+11+-λλ(2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则11sin +-=λλθe ;=e 211k +11+-λλ例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为解析:32121260cos 0=⇒+-=e e 例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为解析:设BD 的倾斜角为θ,则311212cos =+-=θe ,又e a c ==θcos ,所以33312=⇒=e e 例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2解析:33cos 211313cos 2311cos =⇒=+-=⇒+-=θθλλθe ,所以2tan ==θk例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为解析:由题意知a b ab MF 44222=⇒==--------------------------------------①由N F MF N F MN 11145=⇒=,所以531414cos =+-=θe ,又2422cos 121-=-==a c a c MF F F θ,所以532=-⋅a c a c -------------------------------------------------------------------------②联立①②得72,7==b a ,所以椭圆的方程为1284922=+y x。
椭圆焦半径公式倾斜角推导椭圆是一个平面上的闭合曲线,它由两个焦点和一条连接焦点的线段定义。
在椭圆的焦点和焦半径的概念中,焦半径是从椭圆上一点到两个焦点的距离之和的一半。
在本文中,我们将推导出椭圆焦半径的公式,并介绍倾斜角的概念。
首先,我们假设有一个椭圆,椭圆的长半轴为a,短半轴为b,焦距为c。
我们要计算椭圆上一点P到两个焦点F1和F2的焦半径r的值。
我们知道焦点到椭圆上一点的距离等于焦半径的一半,所以我们可以得到以下的等式:PF1+PF2=2r然后我们可以利用勾股定理求出PF1和PF2的值。
假设点P的坐标为(x,y),焦点F1的坐标为(c,0),焦点F2的坐标为(-c,0)。
根据勾股定理,我们有:PF1²=(x-c)²+y²PF2²=(x+c)²+y²将上述的等式带入到PF1+PF2=2r中,我们可以得到:(x-c)²+y²+(x+c)²+y²=4r²化简上述等式,我们得到:2x² + 2y² + 2c² - 4cx = 4r²我们知道椭圆的方程是x²/a²+y²/b²=1,由此我们可以得到c²=a²-b²。
将这个等式带入到上面的公式中,我们有:2x² + 2y² + 2(a² - b²) - 4cx = 4r²化简上述等式,我们得到:x²/a²+y²/b²-1+(a²-b²)/c²-2x(2c)/c²=2r²/c²我们知道因为椭圆上的点P满足椭圆的方程,所以x²/a²+y²/b²=1、将这个等式带入到上面的公式中,我们有:1-1+(a²-b²)/c²-2x(2c)/c²=2r²/c²化简上述等式,我们得到:r²=(a²-b²)/4-x²/c²对比上面的等式,我们可以得到椭圆焦半径的公式:r=√((a²-b²)/4-x²/c²)这就是椭圆焦半径的公式。
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线为l,左右焦点分别为F1、F2,抛物线C2以F2为焦点,l为准线,点P是C1、C2的一个公共点,则F1F2/PF1-PF1/PF2=设点P的横坐标为m,则由焦半径公式,PF1=a+em,PF2=a-em,因为点P又在以F2为焦点,l为准线的抛物线上,l的方程为x=-a²/c;所以,P到l的距离d=m-(-a²/c)=m+a²/c抛物线满足:抛物线上的点到焦点的距离=到准线的距离;所以d=PF2即:m+a²/c=a-em得:m=a²(c-a)/c(a+c)所以,em=a(c-a)/(a+c)所以,PF1=a+em=2ac/(a+c),PF2=2a²/(a+c)所以,F1F2/PF1=(a+c)/a,PF1/PF2=c/a;F1F2/PF1-PF1/PF2=(a+c)/a-c/a=1;椭圆的焦半径公式设M(xo,y0)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和r2分别是点M与点F1(-c,0),F2(c,0)的距离,那么(左焦半径)r1=a+ex0,(右焦半径)r2=a -ex0,其中e是离心率。
推导:r1/∣MN1∣= r2/∣MN2∣=e可得:r1= e∣MN1∣= e(a^2/ c+x0)= a+ex0,r2= e∣MN2∣= e(a^2/ c-x0)= a-ex0。
同理:∣MF1∣= a+ex0,∣MF2∣= a-ex0。
编辑本段双曲线的焦半径公式双曲线的焦半径及其应用:1:定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径。
2.已知双曲线标准方程x^2/a^2-y^2/b^2=1点P(x,y)在左支上│PF1│=-(ex+a) ;│PF2│=-(ex-a)点P(x,y)在右支上│PF1│=ex+a ;│PF2│=ex-a编辑本段抛物线的焦半径公式抛物线r=x+p/2</CA>通径:圆锥曲线(除圆)中,过焦点并垂直于轴的弦双曲线和椭圆的通径是2b^2/a焦准距为a^2/c-c抛物线的通径是2p抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2.。
椭圆焦半径公式及应用面面观在椭圆曲线中,焦半径是一个非常重要的几何量,与其有关的问题是各类考试的热点,故值得我们深入研究。
一、椭圆焦半径公式P 是椭圆x a y b2222+=1()a b >>0上一点,E 、F 是左、右焦点,e 是椭圆的离心率,则(1)||PE a ex P =+,(2)||PF a ex P =-。
P 是椭圆y a x ba b 222210+=>>()上一点,E 、F 是上、下焦点,e 是椭圆的离心率,则(3)PE a ey PF a ey P P =-=+,()||4。
以上结论由椭圆的第二定义及第一定义和椭圆的方程易得。
(一)用椭圆方程求椭圆的焦点半径公式数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.例1 已知点P (x ,y )是椭圆12222=+by a x 上任意一点,F 1(-c,0)和F 2(c,0)是椭圆的两个焦点.求证:|PF 1|=a+x a c ;|PF 2|=a -x ac . 【分析】 可用距离公式先将|PF 1|和|PF 2|分别表示出来.然后利用椭圆的方程“消y ”即可.【解答】 由两点间距离公式,可知 |PF 1|=22)(y c x ++ (1) 从椭圆方程12222=+b y a x 解出 )(22222x a a b y -= (2)代(2)于(1)并化简,得|PF 1|=x ac a +(-a ≤x ≤a) 同理有 |PF 2|=x a c a - (-a ≤x ≤a)【说明】 通过例1,得出了椭圆的焦半径公式r 1=a+ex r 2=a-ex (e=a c ) 从公式看到,椭圆的焦半径的长度是点P (x,y )横坐标的一次函数. r 1是x 的增函数,r 2是x 的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y 轴,关于原点).(二)、用椭圆的定义求椭圆的焦点半径用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可.例2. P (x,y)是平面上的一点,P 到两定点F 1(-c ,0),F 2(c ,0)的距离的和为2a (a>c>0).试用x ,y 的解析式来表示r 1=|PF 1|和r 2=|PF 2|.【分析】 问题是求r 1=f (x )和r 2=g (x ).先可视x 为参数列出关于r 1和r 2的方程组,然后从中得出r 1和r 2.【解答】 依题意,有方程组⎪⎪⎩⎪⎪⎨⎧+-=++==+③)(②)(① 22222222121 y c x r y c x r a r r ②-③得④ 42221cx r r =-代①于④并整理得r 1-r 2=x ac 2 ⑤ 联立①,⑤得 ⎪⎪⎩⎪⎪⎨⎧-=+=x a c a r x a c a r 21 【说明】 椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c 而无b ,其基础性显然.二、 焦半径公式与准线的关系用椭圆的第二定义,也很容易推出椭圆的焦半径公式.如图右,点P (x ,y )是以F 1(-c,0)为焦点,以l 1:x=-ca 2为准线的椭圆上任意一点.PD ⊥l 1于D.按椭圆 的第二定义,则有ex a ca x e PD e PF e PD PF +=+==⇒=)(||||||||2即r 1=a+ex,同理有r 2=a-ex.对中学生来讲,椭圆的这个第二定义有很大的“人为性”.准线ca x 2±=缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.例3. P (x ,y )是以F 1(-c ,0),F 2(c ,0)为焦点,以距离之和为2a 的椭圆上任意一点.直线l 为x=-ca 2,PD 1⊥l 交l 于D 1. 求证:e PD PF =||||11. 【解答】 由椭圆的焦半径公式 |PF 1|=a+ex.对|PD 1|用距离公式 |PD 1|=x-)(2c a -=x+ca 2. 故有e ca x c a x e c a x ex a PD PF =++=++=22211)(||||. 【说明】 此性质即是:该椭圆上任意一点,到定点F 1(-c,0)(F 2(c,0))与定直线l 1:x=-c a 2(l 2:x=ca 2)的距离之比为定值e (0<e<1).三、用椭圆的焦半径公式证明椭圆的方程现行教材在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.例4. 设点P (x ,y )适合方程12222=+b y a x .求证:点P (x ,y )到两定点F 1(-c,0)和F 2(c ,0)的距离之和为2a (c 2=a 2-b 2).【分析】 这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.【解答】 P (x ,y )到F 1(-c,0)的距离设作r 1=|PF 1|.由椭圆的焦点半径公式可知r 1=a+ex ①同理还有r 2=a-ex ②①+② 得 r 1+r 2=2a即 |PF 1|+|PF 2|=2a.即P (x ,y )到两定点F 1(-c ,0)和F 2(c,0)的距离之和为2a.【说明】 椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.四、椭圆焦半径公式的变式P 是椭圆x a y ba b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。
焦半径公式椭圆
当抛物线方程为 y^2=2px(p\ue0) (开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距),利用抛物线第二定义求。
至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。
如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
圆锥曲线上任意一点m与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
圆锥曲线上一点到焦点的距离,不是定值。
焦半径:曲线上任意一点与焦点的连线段焦点弦,过一个焦点的弦通径。
过焦点并垂直于轴的弦圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
有关结论
a(x1,y1),b(x2,y2),a,b在抛物线y1=2px上,则有:
② 焦点弦长:|ab| = x1+x2+p = 2p/[(sinθ)1]=(x1+x2)/2+p。
③ (1/|fa|)+(1/|fb|)= 2/p;(其中长的一条长度为p/(1-cosθ),短的一条长度为p/(1+cosθ))。
④若oa横向ob则ab过定点m(2p,0)。
椭圆双曲线焦半径概述椭圆和双曲线是数学中的两个重要曲线类型,它们在几何学、物理学、工程学等领域中经常被应用。
本文将详细讨论椭圆和双曲线的焦半径,介绍焦半径的定义、计算方法以及在实际问题中的应用。
什么是焦半径焦半径是指椭圆或双曲线中心到焦点的距离。
椭圆和双曲线具有两个焦点,焦半径是从中心到其中一个焦点的距离。
对于椭圆和双曲线而言,焦半径是一个固定值,与曲线本身的形状和大小有关。
椭圆焦半径的计算椭圆的焦半径可以通过下列公式进行计算:c =√a 2−b 2其中,a 表示椭圆的长半轴的长度,b 表示椭圆的短半轴的长度,c 表示焦半径的长度。
在椭圆的轴向标准方程中,焦半径也可以通过半轴长度计算:c =√a 2e 2−a 2 其中,e 表示椭圆的离心率,e =c a 。
双曲线焦半径的计算双曲线的焦半径可以通过下列公式进行计算:c =√a 2+b 2其中,a 表示双曲线的长半轴的长度,b 表示双曲线的短半轴的长度,c 表示焦半径的长度。
在双曲线的轴向标准方程中,焦半径也可以通过半轴长度计算:c=√a2+a2e2。
其中,e表示双曲线的离心率,e=ca椭圆焦半径的应用椭圆焦半径在许多实际问题中有着广泛的应用。
以下是一些具体的应用场景:1. 卫星轨道设计在卫星轨道设计中,椭圆焦半径是确定轨道形状和卫星运动轨迹的重要参数。
通过合理选择焦半径的大小,可以实现卫星的稳定运行和准确定位。
2. 天体运动模拟椭圆焦半径用于模拟天体的运动轨迹。
例如,行星绕太阳的轨道可以近似为椭圆,通过计算焦半径,可以准确预测行星的位置和运动状态。
3. 椭圆积分计算在数学和物理学中,椭圆积分是一类重要的特殊函数。
椭圆焦半径在椭圆积分的计算中起到关键作用,通过焦半径的值可以确定积分的收敛性和计算精度。
双曲线焦半径的应用双曲线焦半径在实际问题中也有着广泛的应用。
以下是一些具体的应用场景:1. 双曲线天线设计在通信领域中,双曲线抛物天线是一种常用的天线类型。
圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF ,=2PF ,记忆方式:2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF ,=2PF ,②当点P 在左支上时,=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF ,=2PF ,②当点P 在下支上时,=1PF ,=2PF ,记忆方式:(3)若弦AB 过左焦点,则=AB ;若弦AB 过右焦点,则=AB 3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF (2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF (3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF (4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;(2)设过椭圆)0(12222>>=+b a bx a y 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF ;=BF ;=AB ,弦AB 在双曲线一支上时,焦点弦最短为(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF ;=BF ;=AB ,弦AB 交双曲线两支上时,焦点弦最短为3.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF ;=BF ;=AB (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF ;=BF ;=AB 例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e ;=e (2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θsin e ;=e 例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为。
坐标表示的焦半径公式(可以直接使用,可编辑实用优秀文档,欢迎下载)一.坐标表示的焦半径公式1、椭圆(一类)由代入整理得,同理,可以假想点P在y轴右边,且x>0 帮助,显然总有符合椭圆定义。
公式常见应用:(1)椭圆上点到焦点最远距离a+c,最近距离a-c(2)椭圆上三点A,B,C,若成等差数列,则到同一个焦点的焦半径也成等差数列。
(3)定义直线为椭圆的左右准线。
由焦半径公式,椭圆上任意一点P(x,y) 到对应焦点和对应准线的距离之比总等于离心率e.2. 双曲线由代入整理得,由双曲线上点,若点P在右支上,同理,.总有.若点P在左支上,同理,.总有.公示的应用:(1)若双曲线上同一支上的三点A,B,C,有成等差数列,则它们到同一个焦点的焦半径也成等差数列。
(2)定义直线为双曲线的左右准线。
由焦半径公式,双曲线上任意一点P(x,y) 到对应焦点和对应准线的距离之比总等于离心率e.3.抛物线公式的应用:抛物线上三点A,B,C,若,则。
二.圆锥曲线统一定义及方向角表示的焦半径公式1、统一定义:平面上到定点F与定直线l 距离之比等于常数e的点轨迹。
若0<e<1,轨迹为椭圆。
若e=1,则轨迹为抛物线。
若e>1,则轨迹为双曲线。
2.方向角焦半径公式(1)方向角定义如图:将Fx当始边,FM当终边所成角定义为点M的方向角。
方向角范围将焦准距离统一表示为P。
对于椭圆,双曲线(要求记忆)(2)公式:e:离心率,对于椭圆,双曲线,.(3)公式的应用:焦点弦长公式说明:(1)焦点弦长公式中,方向角以平方形式出现,不影响计算,可将方向角改为焦点弦和对称轴夹角:.(2)有对称性改为夹角,公式对椭圆,双曲线的左右焦点弦都成立。
(3)对于双曲线当所决定的焦点弦与渐近线平行,在实际上不存在。
若较小,使时,此时公式应表为,此时焦点弦的两个端点分在两支上。
(4)对于抛物线,∵e=1 ,.为焦点弦与对称轴夹角。
(5)通径:垂直对称轴的焦点弦称通径,在,令得通径的统一表示2eP.对于椭圆,双曲线: ;对于抛物线: 2eP=2P.(6)以上结论容易推广到二类圆锥曲线,比如焦点弦与对称轴夹角,则有.三.相交弦长公式将直线y=Kx+d 代入椭圆存在相交弦在中,由求根公式,在具体问题,只要已知直线斜率和求得的代入后方程可直接写出相交弦长表达式,完全可以略去中间过程。
1椭圆的焦半径公式及其拓展1. 焦半径:连结椭圆上一点与对应焦点的线段的长度,叫做椭圆的焦半径。
2. 焦半径公式:(1)),(00y x P 是椭圆)0(12222>>=+b a by a x 上一点,)0,(),0,(21c F c F -是左、右焦点,e 是椭圆的离心率,则0201,ex a PF ex a PF -=+=.(2)),(00y x P 是椭圆)0(12222>>=+b a bx a y 上一点,),0(),,0(21c F c F -是上、下焦点,e 是椭圆的离心率,则0201,-ey a PF ey a PF +==.推导过程:(以x 型椭圆方程为例进行推导)方法一:利用椭圆的标准方程推导 由两点间距离公式,可知20201)(y c x PF ++=, 根据椭圆方程)0(12222>>=+b a b y a x ,解得)(22222x a ab y -= 故)(2022220x a a b y -= 将上式代入20201)(y c x PF ++= 可得:)(0001a x a ex a x ac a PF ≤≤-+=+= 同理可得:)(--0002a x a ex a x a c a PF ≤≤-== 方法二:利用椭圆的第二定义2椭圆的左准线方程为:ca x 2-=,设点),(00y x P 到左准线的距离为PD 由椭圆的第二定义:)(002011a x a ex a c a x e PD e PF e PD PF ≤≤-+=⎪⎪⎭⎫ ⎝⎛+==⇒= 同理可得:)(-002a x a ex a PF ≤≤-=五、典型例题例1:在椭圆18422=+y x 上有一个点P ,满足P 到一个焦点的距离是到另一个焦点距离的3倍,则点P 的坐标为________.【推荐理由】可以直观对比出运用焦半径公式的优越性,且同时考查了椭圆的对称性,学生容易漏情况,是易错题.解法一:根据椭圆方程:18422=+y x 可知,椭圆焦点为)2,0()2,0(-和 设),(n m P ,则有18422=+n m 且2222)2(3)2(n m n m ++=+-或2222)2-(3)2(n m n m +=++ 解两次二次方程可得:)2,2()2,2(±-±P P 或解法二:设椭圆度上下焦点分别为21,F F ,点),(n m P 由椭圆方程可知:22,2,22===e c a3利用焦半径公式:,2222,22-2221n PF n PF +== 由题意可得:212133PF PF PF PF ==或解一元一次方程可得:2±=n 所以)2,2()2,2(±-±P P 或【思路点拨】1.椭圆上的点到焦点的距离即是焦半径的概念,很直接联系到焦半径公式;2.本题明确到P 上、下焦点的距离哪个大,故要分类讨论,或者根据椭圆的对称性直接得到结果,需要考虑全面,否则容易漏解,这是本题的易错点.【点评】本题的两种解法对比可以看出,对比利用距离公式,利用焦半径达到了降次的作用,大大化简了计算过程,可以让学生简洁高效地求解。
椭圆双曲线焦半径椭圆双曲线焦半径椭圆和双曲线是二次曲线的两种基本类型,它们在数学和物理中都有广泛的应用。
在研究这些曲线时,焦半径是一个重要的参数。
本文将详细介绍椭圆和双曲线的焦半径。
一、椭圆的焦半径1. 椭圆的定义椭圆是平面上到两个固定点(称为焦点)距离之和等于常数2a的所有点构成的集合。
这两个固定点称为椭圆的焦点,连结两个焦点并且长度为2a的直线称为长轴,垂直于长轴并且通过中心点(长轴和短轴交叉点)的直线称为短轴。
2. 椭圆的方程对于一个以原点为中心、长轴与x轴平行、短轴与y轴平行、焦距为2c、长轴长度为2a、短轴长度为2b(b<a)的椭圆,其方程可以表示为:(x^2/a^2) + (y^2/b^2) = 13. 椭圆的焦半径对于一个椭圆,其焦半径可以表示为:c = √(a^2 - b^2)其中,c表示焦距的一半。
二、双曲线的焦半径1. 双曲线的定义双曲线是平面上到两个固定点(称为焦点)距离之差等于常数2a的所有点构成的集合。
这两个固定点称为双曲线的焦点,连结两个焦点并且长度为2a的直线称为实轴,垂直于实轴并且通过中心点(实轴和虚轴交叉点)的直线称为虚轴。
2. 双曲线的方程对于一个以原点为中心、实轴与x轴平行、虚轴与y轴平行、焦距为2c、常数为2a(a>c)的双曲线,其方程可以表示为:(x^2/a^2) - (y^2/b^2) = 13. 双曲线的焦半径对于一个双曲线,其焦半径可以表示为:c = √(a^2 + b^2)其中,c表示焦距的一半。
三、椭圆和双曲线的应用椭圆和双曲线在数学和物理中都有广泛的应用。
例如,椭圆可以用来描述行星和卫星的轨道,双曲线可以用来描述光学中的折射和反射现象。
总结椭圆和双曲线是二次曲线的两种基本类型,它们在数学和物理中都有广泛的应用。
焦半径是一个重要的参数,它可以帮助我们更好地理解这些曲线的性质和应用。
椭圆的焦半径函数
【寻根】 椭圆的根在哪里?自然想到椭圆的定义:到两定点F 1,F 2(|F 1F 2|=2c )距离之和为定值2a (2a>2c )的动点轨迹(图形).
这里,从椭圆的“根上”找到了两个参数c 和a .
第一个参数c ,就确定了椭圆的位置;再加上另一个参数a ,就确定了椭圆的形状和大小.比较它们的“身份”来,c 比a 更“显贵”. 遗憾的是,在椭圆的方程122
22
=+b y a x 里,却看不到c 的踪影,故有人开玩笑地说:椭圆方程有“忘
本”之嫌.
为了“正本”,我们回到椭圆的焦点处,寻找c ,并寻找关于c 的“题根”.
一、 用椭圆方程求椭圆的焦点半径公式
数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.
【例1】 已知点P (x ,y )是椭圆122
22=+b
y a x 上任意一点,F 1(-c ,0)和F 2(c ,0)是椭圆的两个焦点.求证:|PF 1|=a+
x a c ;|PF 2|=a -x a
c . 【分析】 可用距离公式先将|PF 1|和|PF 2|分别表示出来.然后利用椭圆的方程“消y ”即可.
【解答】 由两点间距离公式,可知 |PF 1|=22)(y c x ++ (1) 从椭圆方程122
22
=+b
y a x 解出 )(2222
2x a a b y -= (2)
代(2)于(1)并化简,得
|PF 1|=x a
c a +
(-a ≤x ≤a ) 同理有 |PF 2|=x a
c a - (-a ≤x ≤a ) 【说明】 通过例1,得出了椭圆的焦半径公式
r 1=a+ex r 2=a-ex (e =a c ) 从公式看到,椭圆的焦半径的长度是点P (x,y )横坐标的一次函数. r 1是x 的增函数,r 2是x 的减函数,它们都有最大值a+c ,最小值a-c .从焦半径公式,还可得椭圆的对称性质(关于x,y 轴,关于原
点).
二、用椭圆的定义求椭圆的焦点半径
用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来.
椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可.
【例2】 P (x,y )是平面上的一点,P 到两定点F 1(-c ,0),F 2(c ,0)的距离的和为2a (a>c >0).试用x ,y 的解析式来表示r 1=|PF 1|和r 2=|PF 2|.
【分析】 问题是求r 1=f (x )和r 2=g (x ).先可视x 为参数列出关于r 1和r 2的方程组,然后从中得出r 1和r 2.
【解答】 依题意,有方程组
⎪⎪⎩⎪⎪⎨⎧+-=++==+③)(②)(① 22222222121
y c x r
y c x r a r r ②-③得④ 42221cx r r =-
代①于④并整理得r 1-r 2=x a
c 2 ⑤ 联立①,⑤得 ⎪⎪⎩
⎪⎪⎨⎧-=+=x a c a r x a c a r 21
【说明】 椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c 而无b ,其基础性显然.
三、 焦半径公式与准线的关系
用椭圆的第二定义,也很容易推出椭圆的焦半径公式.
如图右,点P (x ,y )是以F 1(-c,0)为焦点,以l 1: x=-c
a 2
为准线的椭圆上任意一点.PD ⊥l 1于D.按椭圆 的第二定义,则有
ex a c
a x e PD e PF e PD PF +=+==⇒=)(||||||||2
即r 1=a+ex ,同理有r 2=a-ex.
对中学生来讲,椭圆的这个第二定义有很大的“人为性”.准线c
a x 2
±=缺乏定义的“客观性”.因此,把椭圆的第二定义视作椭圆的一条性质定理更符合逻辑性.
【例3】 P (x ,y )是以F 1(-c ,0),F 2(c ,0)为焦点,以距离之和为2a 的椭圆上任意一点.直线l
为x=-c
a 2
,PD 1⊥l 交l 于D 1
.
求证:e PD PF =|
|||11. 【解答】 由椭圆的焦半径公式 |PF 1|=a +ex .
对|PD 1|用距离公式 |PD 1|=x-)(2c a -=x+c
a 2
. 故有e c
a x c a x e c a x ex a PD PF =++=++=22
211)(||||. 【说明】 此性质即是:该椭圆上任意一点,到定点F 1(-c,0)(F 2(c,0))与定直线l 1:x =-c a 2(l 2:x=c a 2
)的距离之比为定值e (0<e<1).
四、用椭圆的焦半径公式证明椭圆的方程
现行教材在椭圆部分,只完成了“从曲线到方程”的单向推导,实际上这只完成了任务的一半.而另一半,从“方程到曲线”,却留给了学生(关于这一点,被许多学生所忽略了可逆推导过程并不简单,特别是逆过程中的两次求平方根).
其实,有了焦半径公式,“证明椭圆方程为所求”的过程显得很简明.
【例4】 设点P (x ,y )适合方程122
22
=+b y a x .求证:点P (x ,y )到两定点F 1(-c,0)和F 2(c ,
0)的距离之和为2a (c 2=a 2-b 2).
【分析】 这题目是为了完成“从方程到曲线”的这一逆向过程.利用例2导出的焦点半径公式,很快可推出结果.
【解答】 P (x ,y )到F 1(-c ,0)的距离设作r 1=|PF 1|.由椭圆的焦点半径公式可知
r 1=a+ex ①
同理还有
r 2=a-ex ②
①+② 得 r 1+r 2=2a
即 |PF 1|+|PF 2|=2a .
即P (x ,y )到两定点F 1(-c ,0)和F 2(c,0)的距离之和为2a.
【说明】 椭圆方程是二元二次方程,而椭圆的焦半径公式是一元一次函数.因此,围绕着椭圆焦半径的问题,运用焦半径公式比运用椭圆方程要显得简便.。