精选七年级数学上册第3章整式的加减3-4整式的加减4整式的加减同步练习2新版华东师大版
- 格式:doc
- 大小:51.50 KB
- 文档页数:4
北师大版七上 第3章 第4节 第2课时 整式的加减一、选择题(共5小题)1. 下列各式从左到右的变形中,正确的是 ( )A. −(3x +2)=−3x +2B. −(−2x −7)=−2x +7C. −(3x −2)=−3x +2D. −(−2x −7)=2x −72. 下列各式中,去括号正确的是 ( )A. a +(2b −3c +d )=a −2b +3c −dB. a −(2b −3c +d )=a −2b −3c +dC. a −(2b −3c +d )=a −2b +3c −dD. a −(2b −3c +d )=a −2b +3c +d3. 下列去括号的结果正确的是 ( )A. x 2−3(x −y +z )=x 2−3x +3y +zB. 3x −[5x −(2x −1)]=3x −5x −2x +1C. a +(−3x +2y −1)=a −3x +2y −1D. −(2x −y )+(z −1)=−2x −y +z −14. 代数式 −{−[x −(y −z )]} 去括号的结果是 ( ) A. x +y +z B. x −y +z C. −x +y −z D. x −y −z5. 下列各式化简正确的是 ( )A. a −(2a −b +c )=−a −b +cB. (a +b )−(−b +c )=a +2b +cC. 3a −[5b −(2c −a )]=2a −5b +2cD. a −(b +c )−d =a −b +c −d二、填空题(共7小题)6. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都 ; (2)括号前是“−”号,把括号和它前面的“−”号去掉后,原括号里各项的符号都要 .7. 去括号:(1)+(a −b )= ;(2)−(a +b )= ;(3)−3(2a −3b )= ;(4)−[−(m −n )]= .8. −6x +7y −3 的相反数是 .9. a −b +c 的相反数是 .10. 化简 (x +14)−(2x −12) 的结果是 .11. 把3+[3a−2(a−1)]化简,得.12. 若x2+ax−2y+7−(bx2−2x+9y−1)的值与x的取值无关,则a+b=.三、解答题(共5小题)13. 化简:m);(1)−4(1−14(2)2(2a−3b)+4(3a+5b);(3)(a−b−1)−3(c−d+2);(4)a−[b−2a−(a+b)].14. 化简下列各式:(1)2(4x−0.5);(2)3a−(a+5b);(3)5xy2−[3xy2−(4xy2−2x2y)]+2x2y−xy2;).(4)−3(x2−2x−4)+2(−x2+5x−1215. 一支钢笔的价格是(2a+3b)元,一本练习本的价格是(4a−b)元,一支钢笔比一本练习本贵多少元?16. 已知某艘游轮在顺水中行驶的速度是(a+b)km/h,逆水中行驶的速度是(2a−b)km/h,游轮顺水行驶3h,逆水行驶2h,共行驶了多少千米?17. 先化简,再求值:3x2+x2−(2x2−2x)+(3x−x2),其中x=−2.答案1. C2. C3. C4. B5. C6. 不改变,改变7. a−b,−a−b,−6a+9b,m−n8. 6x−7y+39. −a+b−c10. −x+3411. a+512. −113. (1)原式=−4+m.(2)原式=4a−6b+12a+20b=16a+14b.(3)原式=a−b−1−3c+3d−6=a−b−3c+3d−7.(4)原式=a−b+2a+a+b=4a.14. (1)原式=8x−1.(2)原式=3a−a−5b=2a−5b.(3)原式=5xy2−3xy2+4xy2−2x2y+2x2y−xy2 =5xy2.(4)原式=−3x 2+6x+12−2x2+10x−1=−5x2+16x+11.15. 根据题意,得(2a+3b)−(4a−b)=2a+3b−4a+b=4b−2a.因此,一支钢笔比一本练习本贵(4b−2a)元.16. 由题意,得3(a+b)+2(2a−b)=3a+3b+4a−2b=7a+b.因此,游轮共行驶了(7a+b)km.17. 原式=3x 2+x 2−2x 2+2x +3x −x 2=(3x 2+x 2−2x 2−x 2)+(2x +3x )=x 2+5x.将 x =−2 代入上式,得 原式=(−2)2+5×(−2)=4−10=−6.。
第三章3.-3.同步测试题一、选择题1.下列各式中,与3x 2y 3是同类项的是() A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是() A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是()A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是()A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为() A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是()A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是() A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于() A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有() A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是()A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则() A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么() A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是()A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被()A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:_______.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=_______. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是_______.18.合并同类项:4a 2+6a 2-a 2=_______.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =_______. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba.21.合并下列多项式中的同类项:(1)2x +5+3x -7;(2)5x 2-7xy +3x 2+6xy -4x 2.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;(4)15x n +6x n +1-4x n -7x n +1+x n +1.22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由.24.已知-3x2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值.参考答案一、选择题1.下列各式中,与3x 2y 3是同类项的是(C ) A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是(C ) A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是(C )A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是(C )A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为(C ) A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是(D )A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是(B ) A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于(C ) A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有(B ) A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是(D )A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则(B ) A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么(D ) A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是(D )A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被(C )A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:答案不唯一,如:x 3y 4.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=1. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是-x 2y .18.合并同类项:4a 2+6a 2-a 2=9a 2.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =2. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba. 解:(1)、(2)、(5)都符合同类项的定义,都是同类项;(3)2a 2b 与3ab 2虽然所含的字母相同,但相同字母的指数都不相同,所以它们不是同类项;(4)12xyz 与2xy 所含的字母不相同,故它们不是同类项. 21.合并下列多项式中的同类项:(1)2x +5+3x -7;解:原式=(2+3)x +5-7=5x -2.(2)5x 2-7xy +3x 2+6xy -4x 2.解:原式=(5+3-4)x 2+(-7+6)xy=4x 2-xy.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;解:原式=a 3+(-a 2b +a 2b)+(ab 2-ab 2)+b 3=a 3+b 3.(4)15x n +6x n +1-4x n -7xn +1+x n +1. 解:原式=(15-4)x n +(6-7+1)xn +1=11x n . 22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.解:原式=(3+8)(a -b)2+(-7+6)(a -b)=11(a -b)2-(a -b).23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由. 解:由题意,得m =2,n =1.所以2x m -n +1y 3=2x 2y 3,4x 2y m +n =4x 2y 3. 因为它们都含有字母x ,y ,且x 的指数都是2,y 的指数都是3,所以它们是同类项.24.已知-3x 2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值. 解:由题意,得m =1,n =1.所以(1-m)2 020·(n -3378)2 020=(1-1)2 020×(1-3378)2 020=0.。
4 整式的加减01 基础题知识点1 整式的加减1.计算(6a2-5a+3)-(5a2+2a-1)的结果是( )A.a2-3a+4 B.a2-3a+2C.a2-7a+2 D.a2-7a+42.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-33.用2a+5b减去4a-4b的一半,结果是( )A.4a-b B.b-aC.a-9b D.7b4.减去-2x等于-3x2+2x+1的多项式是( )A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-15.化简:(x2+y2)-3(x2-2y2)=____________.6.计算:(1)(-x2+5x+4)+(5x-4+2x2);(2)(3a2-ab+7)-(5ab-4a2+7).7.化简求值:(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-2.8.给出三个多项式:X=2a2+3ab+b2,Y=3a2+3ab,Z=a2+ab,请你任选两个进行加法或减法运算.知识点2 整式加减的应用9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是( )A.12a+16b B.6a+8bC.3a+8b D.6a+4b10.一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下____________.11.已知某三角形的一条边长为m+n,另一条边长比这条边长大m-3,第三条边长等于2n-m,求这个三角形的周长.12.某校有A ,B ,C 三个课外活动小组,A 小组有学生(x +2y)名,B 小组学生人数是A 小组学生人数的3倍,C 小组比A 小组多3名学生,问A ,B ,C 三个课外活动小组共有多少名学生?02 中档题13.若A =5a 2-4a +3,B =3a 2-4a +2,则A 与B 的大小关系是( ) A .A =B B .A >BC .A <BD .以上都可能成立14.一家商店以每包a 元的价格进了30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b2元的价格卖出这两种茶叶,则卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚15.某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为____________元;当a =2万元,b =5 000元时,第一季度的总销售额为________元. 16.化简求值:(1)(ab -3a 2)-2b 2-5ab -(a 2-2ab),其中a =1,b =-2;(2)2(3b 2-a 3b )-3(2b 2-a 2b -a 3b )-4a 2b ,其中a =-12,b =8;(3)4x 2-3(x 2+2xy -y +2)+(-x 2+6xy -y ),其中x =2 015,y =-1.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,求这三名同学的年龄之和.03 综合题18.有理数a 、b 、c 在数轴上的位置如图所示.化简:|b|+b +2-|c|+|a -1|+|c -a|.参考答案基础题1.D 2.A 3.D 4.C 5.-2x 2+7y 2 6.(1)原式=-x 2+5x +4+5x -4+2x 2=x 2+10x. (2)原式=3a 2-ab +7-5ab +4a 2-7=7a 2-6ab. 7.原式=-7a 3+3a 2+6a -3.当a =-2时,原式=53. 8.答案不唯一.如:X -Z =(2a2+3ab +b 2)-(a 2+ab)=a 2+2ab +b 2.Y -X =(3a 2+3ab)-(2a 2+3ab +b 2)=a 2-b 2. 9.B 10.3a +2b 11.(m +n)+(m -3)+(m +n)+(2n -m)=2m +4n -3. 12.B 小组学生人数为3(x +2y)名,C 小组学生人数为[(x +2y)+3]名.(x +2y)+3(x +2y)+(x +2y)+3=5(x +2y)+3=5x +10y +3(名).答:A ,B ,C 三个课外活动小组共有(5x +10y +3)名学生. 中档题13.B 14.D 15.(2.9a +1.9b) 67 500 16.(1)原式=-4a 2-2b 2-2ab.当a =1,b =-2时,原式=-8. (2)原式=a 3b -a 2b.当a =-12,b =8时,原式=-3. (3)原式=4x 2-3x 2-6xy +3y -6-x 2+6xy -y =2y -6.当y =-1时,原式=-8. 17.m +(2m -4)+[12(2m -4)+1]=m +2m -4+m -2+1=4m -5(岁).答:这三名同学的年龄之和是(4m -5)岁. 综合题18.由数轴可知b <0,有|b|=-b ;c >0,有|c|=c ;a >1,有a -1>0,|a -1|=a -1;c >a ,有c -a >0,|c -a|=c -a ,所以,原式=-b +b +2-c +a -1+c -a =(-b +b)+(a -a)+(-c +c)+(2-1)=1.第2课时 列一元一次不等式组解决实际问题1.能够根据具体问题中的数量关系,列出一元一次不等式组解决简单的问题.2.通过例题的讲解,让学生初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,培养应用意识.重点用一元一次不等式组的知识去解决实际问题. 难点审题,根据具体信息列出不等式组.一、创设情境,问题引入 已知两个语句:①式子2x -1的值在1(含1)与3(含3)之间; ②式子2x -1的值不小于1且不大于3. 请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)? (2)把两个语句分别用数学式子表示出来. 二、探索问题,引入新知分析:(1)注意分析“在1(含1)与3(含3)之间”及“不小于1且不大于3”的意思即可;(2)根据题意可得不等式组⎩⎪⎨⎪⎧2x -1≥1,2x -1≤3.解:(1)一样;(2)①式子2x -1的值在1(含1)与3(含3)之间可得1≤2x-1≤3;②式子2x -1的值不小于1且不大于3可得⎩⎪⎨⎪⎧2x -1≥1,2x -1≤3,这样就由实际问题抽象出一元一次不等式组.【例1】 丽丽今年16岁,爷爷今年虽不满70岁,他的年龄(x 岁)比丽丽的年龄的4倍还多,试写出符合爷爷年龄的不等式组.分析:根据爷爷今年虽不满70岁,他的年龄(x 岁)比丽丽的年龄的4倍还多,分别得出不等式组成方程组即可.解:根据题意可得:⎩⎪⎨⎪⎧x>16×4,x<70.【例2】 为节约用电,某学校于本学期初制定了详细的用电计划.如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;如果实际每天比计划节约2度电,那么本学期用电量将会不超过2200度电.若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?分析:根据题意列出关系式,关系式为:①110×(计划+2)>2530;②110×(计划-2)≤2200,再根据不等式列不等式组,解不等式组即可求解.解:设学校计划每天用电x 度,依题意可得:⎩⎪⎨⎪⎧110(x +2)>2530,110(x -2)≤2200.解不等式①得x +2>23,即x >21,解不等式②得x -2≤20,即x≤22,∴不等式组的解集21<x≤22.答:学校的每天用电度数应控制在21~22度.【例3】 某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2160本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书50本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?分析:(1)设组建中型两类图书室x 个、小型两类图书室(30-x)个,由于组建中、小型两类图书室共30个,已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书50本,种植类图书60本,因此可以列出不等式组⎩⎪⎨⎪⎧80x +50(30-x )≤2160,50x +60(30-x )≤1600,解不等式组然后去整数即可求解. (2)根据(1)求出的数,分别计算出每种方案的费用即可.解:(1)设组建中型两类图书室x 个,小型两类图书室(30-x)个.由题意,得⎩⎪⎨⎪⎧80x +50(30-x )≤2160,50x +60(30-x )≤1600,化简得⎩⎪⎨⎪⎧30x≤660,x ≥20,解这个不等式组,得20≤x≤22.由于x 只能取整数,∴x 的取值是20,21,22.当x =20时,30-x =10;当x =21时,30-x =9;当x =22时,30-x =8.故有三种组建方案:方案一,中型图书室20个,小型图书室10个;方案二,中型图书室21个,小型图书室9个;方案三,中型图书室22个,小型图书室8个.(2)方案一的费用是:2000×20+1500×10=55000(元);方案二的费用是:2000×21+1500×9=55500(元);方案三的费用是:2000×22+1500×8=56000(元);故方案一费用最低,最低费用是55000元点评:解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题.结论:列一元一次不等式(组)解应用题的一般步骤:(1)审:审题,分析题目中已知是什么,求什么,明确各数量之间的关系. (2)设:设适当的未知数.(3)代:用代数式表示题中的直接量和间接量. (4)列:依据不等关系列不等式(组). (5)解:求出不等式(组)的解集. (6)答:写出符合题意的答案. 三、巩固练习1.一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?2.为积极响应政府提出的“绿色发展,低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?3.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,有哪几种方案可供选择?(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?4.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业完成练习册中本课时练习.本节课以生活实际中的问题为导引,让学生自主探究,亲身经历将实际问题抽象成数学模型并进行解释与应用的过程——这种过程和体验正是“新课标”所倡导的基本理念之一.通过本课时的学习,学生能够对不等式组的解法和不等式组的运用有一定的理解和掌握,能够体会数学知识在现实生活中的运用.第2课时去括号1.掌握去括号法则;会根据法则进行去括号的运算.2.会进行整式的加减运算.重点掌握去括号法则.难点会进行整式的加减运算.一、复习导入问题1:什么叫同类项?问题2:若149x m y4和34x5y2n是同类项,则m=________,n=________,它们的和为________.指名学生回答,教师点评.二、探究新知1.去括号法则课件出示:(1)13+2×(7-5); (2)13-2×(7-5).教师:谁能用两种方法分别解这两题?学生回答,教师进一步提出:运用分配律可以去括号.教师:若将数换成代数式,又会怎么样呢?课件出示:(1)9a+2(6a-a);(2)9a-2(6a-a).教师:仿照刚才的两种方法,分别化简这两道题.学生完成后汇报答案,教师点评,引导学生思考:(1)我们是怎么得到多项式去括号的方法的?(2)这两道题中的第(1)小题与第(2)小题的去括号有何不同?(3)你能总结去括号的法则吗?学生讨论后回答,教师讲评并课件出示:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.为了便于记忆,教师引导学生共同完成下面的顺口溜:去括号,看符号:是“+”号,不变号;是“-”号,要变号.课件出示练习:化简:a+(5a-3b)-(a-2b).学生独立完成并汇报答案.2.整式的加减课件出示问题:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这两个数的和.教师:再写几个两位数重复上面的过程.这些和有没有规律?如果有规律,这个规律对任意一个两位数都成立吗?如果用字母表示两位数,结果会怎样?学生小组讨论完毕后,派代表回答,教师点评.课件出示问题:(1)任意写一个三位数;(2)交换它的百位数字与个位数字,又得到一个三位数;(3)两个数相减.教师:两个数相减后的结果有什么规律?这个规律对任意一个三位数都成立吗?如果用字母表示三位数,结果会怎样?学生小组讨论完毕后,派代表回答,教师点评,进一步引导学生总结归纳:整式的加减实质上就是去括号后合并同类项,运算的结果是一个单项式或一个多项式.三、举例分析例1(课件出示教材第94页例3)学生独立完成后汇报答案,教师点评.例2(课件出示教材第96页例4)学生独立完成后汇报答案,教师点评,进一步引导学生得出:进行整式加减运算时,如果遇到括号要先去括号,再合并同类项.四、练习巩固1.教材第94页“随堂练习”第1,2题.2.教材第96页“随堂练习”.五、小结1.去括号的法则是什么?2.整式加减运算的实质及步骤是什么?六、课后作业1.教材第94~95页习题3.6第1,2题.2.教材第97页习题3.7第2题.本节课的内容是去括号,是本章的一个重点知识,是以后学习解方程、解不等式的基础.去括号看似容易,实际上是最容易出错的地方.课堂中,用自然数去括号的计算导入代数式去括号的问题.随后,让学生通过比较归纳得出去括号时符号的变化规律,将新知识转化为已经学过的知识,从而构建新的知识体系,在此基础上要求学生用自己的语言叙述这个规律,有利于提高学生数学语言的表达能力.。
第三章整式的加减一.选择题1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数2.下列代数式中符合书写要求的是()A.ab2×4B.C.D.6xy2÷33.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.254.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.45.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式8.下列说法中,正确的是()A.单项式xy2的系数是x B.单项式﹣5x2的次数为﹣5C.多项式x2+2x+18是二次三项式D.多项式x2+y2﹣1的常数项是19.下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.最高次数是5B.最高次项是﹣3a2bC.是二次三项式D.二次项系数是010.化简:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]的结果是()A.2b2﹣a2B.﹣a2C.a2D.a2﹣2b2二.填空题11.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.12.如图,用含a、b的代数式表示图中阴影部分的面积.13.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.14.当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.15.把多项式2x2+3x3﹣x+5x4﹣1按字母x降幂排列是.16.若a2m b3和﹣7a2b3是同类项,则m值为.17.合并同类项﹣ab+7ab﹣9ab=.18.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.三.解答题19.已知多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,求(﹣m)3+2n 的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.22.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.23.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.24.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣4.25.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.26.数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).27.已知A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关.(1)求m、n的值;(2)求式子﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.28.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.29.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+▇=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣3,求所挡的二次三项式的值.30.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.31.已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣.(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当|a+|与b2互为相反数时,求(1)中式子的值.32.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.33.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.34.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.35.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?36.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题1.【解答】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.2.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.3.【解答】解:∵x﹣2y=3,∴2(x﹣2y)2+4y﹣2x+1=2(x﹣2y)2﹣2(x﹣2y)+1=2×32﹣2×3+1=18﹣6+1=13.故选:B.4.【解答】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.5.【解答】解集:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:把x=﹣3,y=7代入y=ax5+bx3+cx﹣5得:﹣35a﹣33b﹣3c﹣5=7,即﹣(35a+33b+3c)=12把x=3代入ax5+bx3+cx﹣5得:35a+33b+3c﹣5=﹣12﹣5=﹣17.故选C.7.【解答】解:A、﹣的系数为﹣,错误;B、32x3y的次数是4,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.8.【解答】解:A、单项式xy2的系数是,原说法错误,故此选项不符合题意;B、单项式﹣5x2的次数为2,原说法错误,故此选项不符合题意;C、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意;D、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意,故选:C.9.【解答】解:A、多项式﹣3a2b+ab﹣2次数是3,故此选项错误;B、最高次项是﹣3a2b,故此选项正确;C、是三次三项式,故此选项错误;D、二次项系数是1,故此选项错误;故选:B.10.【解答】解:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]=﹣(a2﹣b2)﹣(﹣b2)=﹣a2+b2+b2=2b2﹣a2故选:A.二.填空题11.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.12.【解答】解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.13.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.14.【解答】解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.15.【解答】解:多项式2x2+3x3﹣x+5x4﹣1的各项是2x2,3x3,﹣x,5x4,﹣1,按x降幂排列为5x4+3x3+2x2﹣x﹣1.故答案为:5x4+3x3+2x2﹣x﹣1.16.【解答】解:∵a2m b3和﹣7a2b3是同类项,∴2m=2,解得m=1.故答案为:1.17.【解答】解:原式=(﹣1+7﹣9)ab=﹣3ab.故答案为﹣3ab.18.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.三.解答题19.【解答】解:∵多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,∴m+1+2=6,2n+5﹣m=6,解得:m=3,n=2,则(﹣m)3+2n=﹣27+4=﹣23.20.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.21.【解答】解:∵多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,该多项式不含二次项,∴a﹣2=0,2b+1=0,解得:a=2,b=﹣,∴3a+2b=3×2+2×(﹣)=5.22.【解答】解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.故答案为:﹣3.23.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab (2)∵|3a+1|+(2﹣3b)2=0,∴3a+1=0,2﹣3b=0,解得a=﹣,b=,∴A﹣2B=a2﹣8ab=﹣8×(﹣)×=+=24.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣4时,原式=﹣3﹣8=﹣11.25.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.26.【解答】解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;(2)∵甲、乙、丁三位同学的多项式是“友好多项式”,∴分两种情况:①(2x2﹣3x﹣2)﹣(3x2﹣x+1)或(3x2﹣x+1)﹣(2x2﹣3x﹣2),(2x2﹣3x﹣2)﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3(3x2﹣x+1)﹣(2x2﹣3x﹣2)=3x2﹣x+1﹣2x2+3x+2=x2+2x+3,②(3x2﹣x+1)+(2x2﹣3x﹣2),=5x2﹣4x﹣1;∴丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1.27.【解答】解:(1)∵A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关,∴2A﹣B=2(x2﹣mx+2)﹣(nx2+2x﹣1)=2x2﹣2mx+4﹣nx2﹣2x+1=(2﹣n)x2﹣(2m+2)x+5,∴2﹣n=0,2m+2=0,解得:n=2,m=﹣1;(2)﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]=﹣3m2n+6mn2﹣m2n﹣2mn2+4m2n+5mn2=9mn2,当n=2,m=﹣1时,原式=9×(﹣1)×22=﹣36.28.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.29.【解答】解:(1)由题意,可得所挡的二次三项式为:(x2﹣5x+1)﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣3时,x2﹣8x+4=(﹣3)2﹣8×(﹣3)+4=9+24+4=37.30.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.31.【解答】解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵|a+|与b2互为相反数,∴|a+|+b2=0,则a=﹣,b=0,6a2+3b2﹣10ab+11=6×+11=.32.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1233.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或﹣5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.34.【解答】解:∵B=2x2+3x﹣4,A+2B=5x2+8x﹣10,∴A=5x2+8x﹣10﹣2(2x2+3x﹣4)=5x2+8x﹣10﹣4x2﹣6x+8=x2+2x﹣2,∴A﹣2B=x2+2x﹣2﹣2(2x2+3x﹣4)=x2+2x﹣2﹣4x2﹣6x+8=﹣3x2﹣4x+6.35.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.36.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。
化简求值一.选择题(共8小题)1.已知A=2a2﹣3a,B=2a2﹣a﹣1,当a=﹣4时,A﹣B=()A.8 B.9 C.﹣9 D.﹣72.已知x2﹣3xy=9,xy﹣y2=4,则代数式y2﹣x2值为()A.﹣7 B.1 C.7 D.﹣13.已知a+2b=3,则代数式2(2a﹣3b)﹣3(a﹣3b)﹣b的值为()A.﹣3 B.3 C.﹣6 D.64.若x+y=3,xy=1,则﹣5x﹣5y+3xy的值为()A.﹣12 B.﹣14 C.12 D.185.已知,那么﹣(3﹣x+y)的结果为()A.B.C.D.6.已知A=3a2+b2﹣c2,B=﹣2a2﹣b2+3c2,且A+B+C=0,则C=()A.a2+2C2B.﹣a2﹣2c2C.5a2+2b﹣4c2D.﹣5a2﹣2b2+4c27.已知x﹣y=3,那么代数式3(x﹣y)2﹣2(x﹣y)﹣2(x﹣y)2+x﹣y的值是()A. 3 B.27 C.6 D.98.当(b≠0)时,(8a﹣7b)﹣(4a﹣5b)等于()A.0 B.b C.2b D.4b二.填空题(共7小题)9.若x﹣y=﹣1,xy=2,则xy﹣x+y= _________ .10.如果m、n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+1994=_________ .11.若x﹣y看成一个整体,则化简(x﹣y)2﹣3(x﹣y)﹣4(x﹣y)2+5(x+y)的结果是_________ .12.如果a<0,ab<0,则化简|a﹣b|+1﹣(a﹣b+3)的结果是_________ ,若a﹣b=﹣1,则其值为_________ .13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为_________ .14.已知a+b=﹣7,ab=10,则代数式(3ab+6a+4b)﹣(2a﹣2ab)的值为_________ .15.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为_________ .三.解答题(共7小题)16.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.17.先化简,再求值:4(x﹣y)﹣2(3x+y)+1,其中.18.已知a﹣2=0,求代数式3a﹣6+a2﹣4a+5的值.19.先化简,再求值:(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.20.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.21.以知|m+n﹣2|+|mn+3|2=0,求﹣3的值.22.化简求值:若a=﹣3,b=4,c=﹣,求7a2bc﹣{8a2cb﹣}的值.第三章整式加减.2化简求值参考答案与试题解析一.选择题(共8小题)1.已知A=2a2﹣3a,B=2a2﹣a﹣1,当a=﹣4时,A﹣B=()A.8 B.9 C.﹣9 D.﹣7考点:-整式的加减—化简求值.分析:-根据整式的加减,可化简整式,根据代数求值,可得答案.解答:-解:A﹣B=2a2﹣3a﹣(2a2﹣a﹣1)=2a2﹣3a﹣2a2+a+1=﹣2a+1,把a=﹣4代入原式,得﹣2a+1=﹣2×(﹣4)+1=9,故选:B.点评:-本题考查了整式的化简求值,先化简再求值,注意减法时要先添括号.2.已知x2﹣3xy=9,xy﹣y2=4,则代数式y2﹣x2值为()A.﹣7 B.1 C.7 D.﹣1考点:-整式的加减—化简求值.专题:-计算题.分析:-已知等式变形后,相加即可求出原式的值.解答:-解:x2﹣3xy=9①,xy﹣y2=4②,①+②×3得:x2﹣3xy+3xy﹣3y2=21,整理得:y2﹣x2=﹣7.故选A.点评:-此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.3.已知a+2b=3,则代数式2(2a﹣3b)﹣3(a﹣3b)﹣b的值为()A.﹣3 B.3 C.﹣6 D.6考点:-整式的加减—化简求值.专题:-计算题.分析:-原式去括号合并,将已知等式代入计算即可求出值.解答:-解:∵a+2b=3,∴原式=4a﹣6b﹣3a+9b﹣b=a+2b=3,故选B.点评:-此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.若x+y=3,xy=1,则﹣5x﹣5y+3xy的值为()A.﹣12 B.﹣14 C.12 D.18考点:-整式的加减—化简求值.分析:-本题可对﹣5x﹣5y+3xy进行转换,可转换为﹣5(x+y)+3xy,题中已知x+y=3,xy=1,代入即可.解答:-解:由分析可得:﹣5x﹣5y+3xy=﹣5(x+y)+3xy,已知x+y=3,xy=1,代入可得﹣5x﹣5y+3xy=﹣12.故答案为:A.点评:-本题考查整式的加减及化简求值,看清题中所给条件.5.已知,那么﹣(3﹣x+y)的结果为()A.B.C.D.考点:-整式的加减—化简求值.分析:-把﹣(3﹣x+y)去括号,再把代入即可.解答:-解:原式=﹣3+x﹣y,∵,∴上式=﹣,故选A.点评:-本题考查了整式的化简求值,是基础题型.6.已知A=3a2+b2﹣c2,B=﹣2a2﹣b2+3c2,且A+B+C=0,则C=()A.a2+2C2B.﹣a2﹣2c2C.5a2+2b﹣4c2D.﹣5a2﹣2b2+4c2考点:-整式的加减—化简求值.分析:-由A+B+C=0知,C=﹣(A+B),然后把A,B的值代入即可.解答:-解:∵A+B+C=0,∴C=﹣(A+B)=﹣(3a2+b2﹣c2﹣2a2﹣b2+3c2)=﹣(a2+2c2)=﹣a2﹣2c2,故选B.点评:-本题考查了整式的加减,主要是去括号原则的运用.7.已知x﹣y=3,那么代数式3(x﹣y)2﹣2(x﹣y)﹣2(x﹣y)2+x﹣y的值是()A. 3 B.27 C.6 D.9考点:-整式的加减—化简求值.专题:-计算题.分析:-将x﹣y=3代入原式计算即可得到结果.解答:-解:将x﹣y=3代入得:原式=3(x﹣y)2﹣2(x﹣y)﹣2(x﹣y)2+x﹣y=27﹣6﹣18+3=6.故选C.点评:-此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.当(b≠0)时,(8a﹣7b)﹣(4a﹣5b)等于()A.0 B.b C.2b D.4b考点:-整式的加减—化简求值.专题:-计算题.分析:-所求式子利用去括号法则去括号后,合并得到最简结果,将已知的等式代入计算即可求出值.解答:-解:∵a=,∴(8a﹣7b)﹣(4a﹣5b)=8a﹣7b﹣4a+5b=4a﹣2b=4×﹣2b=2b﹣2b=0.故选A.点评:-此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.二.填空题(共7小题)9.若x﹣y=﹣1,xy=2,则xy﹣x+y= 3 .考点:-整式的加减—化简求值.分析:-根据x﹣y=﹣1,xy=2,将xy﹣x+y变形后可得出结果.解答:-解:xy﹣x+y=xy﹣(x﹣y),将x﹣y=﹣1,xy=2代入得:xy﹣x+y=xy﹣(x﹣y)=3.点评:-本题考查整式的加减,属于基础题,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.10.如果m、n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+1994= 2008 .考点:-整式的加减—化简求值.分析:-主要利用根与系数的关系得出m+n=2,把所求的代数式变形得出关于m+n的形式,整体代入即可求值.解答:-解:根据题意可知m,n是x2﹣2x﹣1=0两个不相等的实数根.则m+n=2,又m2﹣2m=1,n2﹣2n=12m2+4n2﹣4n+1994=2(2m+1)+4(2n+1)﹣4n+1994=4m+2+8n+4﹣4n+1994=4(m+n)+2000=4×2+2000=2008.点评:-主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于n,m的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.11.若x﹣y看成一个整体,则化简(x﹣y)2﹣3(x﹣y)﹣4(x﹣y)2+5(x+y)的结果是﹣3(x﹣y)2+2(x﹣y).考点:-整式的加减—化简求值.分析:-根据合并同类项的法则,可化简整式.解答:-解:原式=+=(x﹣y)2+(﹣3+5)(x+y)=﹣3(x﹣y)2+2(x﹣y).故答案为:﹣3(x﹣y)2+2(x,y).点评:-本题考查了整式的化简求值,利用了合并同类项,把(x﹣y)2、(x﹣y)当作整体是解题的关键.12.如果a<0,ab<0,则化简|a﹣b|+1﹣(a﹣b+3)的结果是﹣2a+2b﹣2 ,若a﹣b=﹣1,则其值为0 .考点:-整式的加减—化简求值.分析:-由a<0,ab<0,得出b>0,进一步根据绝对值的意义和去括号的法则化简合并得出答案即可.解答:-解:∵a<0,ab<0,∴b>0,∴|a﹣b|+1﹣(a﹣b+3)=﹣a+b+1﹣a+b﹣3=﹣2a+2b﹣2;若a﹣b=﹣1,则原式=﹣2(a﹣b)﹣2=2﹣2=0.故答案为:﹣2a+2b﹣2;0.点评:-此题考查整式的加减混合运算与化简求值,注意题目已知条件的理解和运用.13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为﹣1 .考点:-整式的加减—化简求值.分析:-运用整式的加减运算顺序,先去括号,再合并同类项.解答时把已知条件代入即可.解答:-解:原式=b+c﹣a+d=c+d﹣a+b=(c+d)﹣(a﹣b)=2﹣3=﹣1.点评:-本题考查整式的加减运算,解此题的关键是注意整体思想的应用.14.已知a+b=﹣7,ab=10,则代数式(3ab+6a+4b)﹣(2a﹣2ab)的值为22 .考点:-整式的加减—化简求值.分析:-先去括号,再合并同类项,最后代入求出即可.解答:-解:(3ab+6a+4b)﹣(2a﹣2ab)=3ab+6a+4b﹣2a+2ab=5ab+4a+4b=5ab+4(a+b)当a+b=﹣7,ab=10时,原式=5×10+4×(﹣7)=22,故答案为:22.点评:-本题考查了整式的加减和求值,用了整体代入思想,即分别把a+b和ab当作一个整体来代入.15.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为 2 .考点:-整式的加减—化简求值.分析:-由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.解答:-解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.点评:-本题考查整式的加减,整体思想的运用是解决本题的关键.三.解答题(共7小题)16.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:-整式的加减—化简求值.分析:-本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:-解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:-本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.17.先化简,再求值:4(x﹣y)﹣2(3x+y)+1,其中.考点:-整式的加减—化简求值.分析:-先去括号,再合并同类项,最后代入求值.解答:-解:原式=4x﹣4y﹣6x﹣2y+1,=﹣2x﹣6y+1,当x=1,y=﹣时,原式=﹣2×1﹣6×(﹣)+1=﹣2+2+1=1.点评:-去括号时,当括号前面是负号,括号内各项都要变号;合并同类项时把系数相加减,字母与字母的指数不变.18.已知a﹣2=0,求代数式3a﹣6+a2﹣4a+5的值.考点:-整式的加减—化简求值.专题:-计算题.分析:-先求出a的值,再将a=2代入即可解答.解答:-解:解法一:3a﹣6+a2﹣4a+5=a2﹣a﹣1.由a﹣2=0得a=2,原式=22﹣2﹣1=1.解法二:3a﹣6+a2﹣4a+5=3(a﹣2)+(a﹣2)2+1,因为a﹣2=0,原式=3×0+02+1=1.若有其它方法酌情给分.点评:-本题考查的是代数式求值、整体代入思想的知识.19.先化简,再求值:(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:-整式的加减—化简求值.分析:-本题应先将括号去掉,然后合并同类项,将方程化为最简式,最后把a、b的值代入计算即可.解答:-解:原式=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,当a=2,b=时,原式=24.点评:-本题考查了整式的运算,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.20.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:-整式的加减—化简求值.分析:-(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:-解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:-本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.21.以知|m+n﹣2|+|mn+3|2=0,求﹣3的值.22.考点:-整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:-计算题.分析:-利用非负数的性质求出m+n与mn的值,代入原式计算即可得到结果.解答:-解:∵|m+n﹣2|+|mn+3|2=0,∴m+n=2,mn=﹣3,则原式=(﹣3+2)﹣3×(4+9)=﹣1﹣39=﹣40.点评:-此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.化简求值:若a=﹣3,b=4,c=﹣,求7a2bc﹣{8a2cb﹣}的值.23.考点:-整式的加减—化简求值.分析:-本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a,b,c的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:-解:原式=7a2bc﹣8a2cb+=﹣a2bc+a2bc+ab﹣2a2bc=﹣2a2bc+ab当a=﹣3,b=4,c=﹣时,原式==.点评:-化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.。
3.4
4.整式的加减
一、选择题
1.计算2a -3(a -b )的结果是( )
A .-a -3b
B .a -3b
C .a +3b
D .-a +3b
2.当a =-1,b =1时,(a 3-b 3)-(a 3-3a 2b +3ab 2-b 3)的值是( )
A .0
B .6
C .-6
D .9
3.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )
A .-5x -1
B .5x +1
C .-13x -1
D .13x +1
4.若一个长方形的周长为4m ,其中一条边长为m -n ,则与其相邻的一条边长为( )
A .2m +2n
B .3m +n
C .m +n
D .m +3n
5.若|x +3|+(y -12)2=0,则整式4x +(3x -5y )-2(7x -32
y )的值为( ) A .-22 B .-20 C .20 D .22
6.如果M =2x 2-x +5,N =x 2-x +4,那么M 与N 的大小关系是( )
A .M >N
B .M =N
C .M <N
D .无法确定
二、填空题
7.单项式2x 2y ,-3xy 2,-0.5x 2y ,-5xy 2的和是________.
8.计算:-2(xy 2-y 2)+(3xy 2-x 2y )-2y 2=________.
9.已知多项式2x 2-4xy -y 2与-4kxy +5的差中不含xy 项,则k 的值是________.
10.一个长方形的一边长是2a +3b ,与其相邻的一边的长是a +b ,则这个长方形的周长是________.
11.将4个数排列成2行、2列,两边各加一条竖线记为⎪⎪⎪⎪⎪⎪a b cd ,定义⎪⎪⎪⎪
⎪⎪a b cd =ad -bc ,叫做二阶行列式,则⎪⎪⎪⎪
⎪⎪-53x 2
+52 x 2-3=________. 三、解答题
12.计算:(3m 2-2m -1)-2(m 2-m -2).
13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如图K -35-1.
图K -35-1
求老师所捂的二次三项式.
14.先化简,再求值:
(1)13
(9ab 2-3)+a 2b +3-2(ab 2+1),其中a =-2,b =3;
(2)12x -2(x -13y 2)+(-32x +13y 2),其中x =-2,y =23
.
15.一根铁丝正好可以围成一个长是2a +3b ,宽是a +b 的长方形框,把铁丝剪开,其中一部分可围成一个长是a ,宽是b (均不计算接缝)的长方形框,求剩余部分的铁丝长.
16.已知A =3m 2-m +1,B =2m 2-m -7,且A -2B +C =0,求C .
17.已知x -2y =-3,xy =2,求3(2x -y )-2(4x -3y -xy )-(xy -y )的值.
18.一列火车上原有(6a-2b)人,中途有一半人下车,又有若干人上车,现在车上共有乘客(10a -6b)人,则有多少人上车?当a=200,b=100时,有多少人上车?
19.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x
=1
2
,y=-1.”
(1)甲同学将哪一个字母的值抄错了,计算的结果也是正确的?
(2)造成甲同学歪打正着的原因是什么?
20 某同学在做一道数学题:“已知两个多项式A,B,其中B=4x2-5x+6,试求A-B”时,把
“A-B”看成了“A+B”,结果求出的答案是-7x2+10x-12,请你帮他求出“A-B”的正确答案.
1.D
2.B
3.A
4.C
5.C,.
6. A.
7.1.5x2y-8xy28.xy2-x2y。