第10讲—翼面结构(5)
- 格式:ppt
- 大小:1.34 MB
- 文档页数:37
飞机结构详细讲解机翼机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。
飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。
机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。
其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根本就没有接头。
以下是典型的梁式机翼的结构。
一、纵向骨架机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。
* 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。
翼梁一般由凸缘、腹板和支柱构成(如图所示)。
凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。
凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。
* 纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。
纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。
靠后缘的纵樯还可以悬挂襟翼和副翼。
* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。
二、横向骨架机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。
* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。
飞行器结构学1.安全系数和过载系数的关系?安全系数:f=F d/nG 过载系数:n=R bi/G安全系数随过载系数的增大而减小,反之,随过载系数的减小而增大2.结构设计的基本要求?气动要求、质量要求、使用维护要求、可靠性要求、工艺要求、经济性要求3.翼面的功用:产生升力,平衡飞机或导弹的重力4.主要外载荷?○1空气动力○2翼面结构质量力○3其他部件和外挂物传来的集中力5.翼面主要受力构件和作用?蒙皮:形成流线形的翼面外形桁条:对蒙皮起支撑作用翼梁:缘条承受由弯矩M引起的拉压轴力。
腹板承受剪力Q以及扭矩Mt引起的剪流纵墙:纵墙一般不能承受弯矩,主要用来承受和传递剪力,并与蒙皮以及其他腹板构成闭式,共同承受翼面扭转引起的剪流翼肋:维持翼剖面的形状,并将蒙皮上的局部气动载荷和桁条上的载荷传递给翼梁和蒙皮。
6.翼面的主要结构形式?翼面的主要结构形式是指结构中主承力系统的组成形式,翼面结构典型的受力形式有,蒙皮骨架式、整体壁板式、夹层结构。
7.梁式翼面结构的结构特点、受力特点和优缺点?特点:蒙皮很薄,纵向翼梁很强,纵向长桁较小且弱,有时在与翼肋相交断开,梁缘条的截面面积比长桁的大得多可近似的认为翼面弯矩的绝大部分或全部由梁缘条承担优点:结构比较简单,对接点少连接简单,适宜集中连接缺点:气动性能差,总体受力性能较差,生存性能较低8.单块式翼面结构的结构特点,受力特点和优缺点?单块式翼面结构:蒙皮较薄,与长桁且密,弱梁,翼梁缘条组成可受轴力的壁板承受绝大部分弯矩,纵向长桁布置较低密,长桁截面积与梁的横截面比较接近梁与墙与蒙皮壁板形成封闭盒段,增强翼面结构的扭转刚度优点:蒙皮在气动载荷作用下变形较小,气流质量高,材料想翼剖面外缘分散,抗弯,抗扭刚度与强度均比较高,安全可靠性比梁式结构好缺点:结构比较复杂,大开口后,需加强周围结构以补偿承弯能力,如果加口盖,需要对口盖和口框加强,以保证传力连续。
9.多腹板式翼面结构特点,受力特点和优缺点?多腹板式翼面结构特点:蒙皮厚,无长桁,多腹板,梁弱,解决了高速薄翼型翼面的强度和刚度与结构承重之间的矛盾优点:气动性能好,总体受力性能较强,结构简单,破损安全性好,生存性高缺点:不宜大开口,与机身或弹身连接点多10.什么是传力分析?(弄清楚受力元件在结构中的地位和作用)对结构的各种外载荷通过各种元件逐点、向结构支持基础传递的过程进行分析,了解各主要元件的受力情况及其传力特点11.传力分析的方法主要有?○1弄清结构所收的载荷最后应传向何处○2分清结构主要和次要的受力元件以及主要和次要的受力部分○3弄清各主要元件的连接关系和连接方式,以便正确地确定支持形式和传力方式○4从结构的外载荷作用开始,依次取出各个构件部分或元件为分离体,按它们各自的受力特性合理化简成典型的受力元件○5分析传力必须具备刚度概念12.刚度分配的依据是什么?“刚度是指元件(构件)在载荷作用下抵抗变形的能力”刚度大分配到的载荷大,刚性支持分配到的载荷大,弹性支持分配到载荷小13.板件的主要受力特点?板可以承受垂直于板平面的分布载荷,不适宜承受集中力14.杆件的主要受力特点?杆只能承受和传递沿杆轴方向的集中力和分布力,杆本身受拉能力强,受压易发生局部或总体失稳,承受能力极低15.板杆结构件的主要受力特点?适宜承受横向分布的载荷和板杆平面内的载荷。
飞机机翼各部分图解及专业术语机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。
机翼上各操纵面是左右对称分布,部分由于图片受限未标出机翼的基本概念机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。
是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。
另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。
相关名词解释:1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型2 前缘:翼型最前面的一点。
3 后缘:翼型最后面的一点。
4 翼弦:前缘与后缘的连线。
5 弦长:前后缘的距离称为弦长。
如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。
7 翼展:飞机机翼左右翼尖间的直线距离。
8 展弦比:机翼的翼展与弦长之比值。
用以表现机翼相对的展张程度。
9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。
从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。
同理,向下垂时的角度就叫下反角。
10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。
11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。
上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。
中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。
飞机机翼结构分析前言飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。
机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。
1.1机翼的功用机翼是飞机的一个重要部件,其主要功用是产生升力。
当它具有上反角时,可为飞机提供一定的横侧安定性。
除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。
机翼上常安装有起落架、发动机等其它部件。
现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。
机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。
特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。
为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。
此外机翼内常安装有操纵系统和一些小型设备和附件。
1.2翼面结构设计要求1.气动要求翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。
翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。
翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。
2.质量要求在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。
具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。
结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。
3.刚度要求随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。
物理机翼知识点总结大全在航空航天领域,机翼是飞机的重要部件,它不仅能提供升力,还能影响飞机的稳定性和操控性能。
本文将对机翼的诸多知识点进行全面总结,包括机翼的结构、气动力学原理、机翼设计及影响因素等内容,以期为读者提供全面深入的了解。
一、机翼的结构1. 机翼的基本结构机翼是飞机上最重要的部件之一,其主要结构包括翼型、翼剖面、前缘后缘、翼梁、翼肋、翼壁等。
翼型是机翼的横截面形状,其设计影响着机翼的气动性能,通常采用NACA翼型。
前缘是机翼前部的边,通常是圆滑的弧形,以减小气流的阻力。
后缘是机翼后部的边,通常是锐利的切割,以减小气流的漩涡。
2. 机翼的组成部件机翼由翼梁、翼肋、翼翼壁、前后翼轮、边缘各种部件组成,翼梁是机翼的骨架,用于承受飞行中产生的各种荷载,翼肋则用于连接翼壁和翼梁,起到支撑和定位作用。
3. 机翼的操纵系统机翼的操纵系统包括副翼、襟翼、缝翼以及襟翼。
副翼用于控制飞机在横滚轴的转向,襟翼用于控制飞机在俯仰轴的转向,缝翼和襟翼用于增加机翼的升力。
二、气动力学原理1. 升力和阻力在飞行过程中,机翼产生的升力能够支持飞机的飞行,而阻力则是机翼在空气中运动时产生的摩擦力。
升力和阻力是机翼气动力学特性的重要指标,其大小与机翼的气动外形、攻角、翼面积等因素有关。
2. 机翼的气动性能机翼的气动性能由其空气动力学特性决定,包括升力系数、阻力系数和升力阻力比等参数。
升力系数和阻力系数是描述机翼升力和阻力大小的参量,升力阻力比是衡量机翼气动性能优劣的重要指标。
3. 攻角和失速攻角是指机翼载荷方向与机体坐标系的夹角,攻角的变化会直接影响机翼的升力和阻力。
失速是机翼在攻角过大时突然丧失升力的现象,会导致飞机失去升力支撑而坠机。
三、机翼设计及影响因素1. 翼型设计翼型设计是机翼设计的核心内容之一,通常采用数学模型对翼型进行优化设计,以实现最佳的气动性能。
NACA翼型是机翼设计中经常采用的标准翼型,其曲线的参数能够有效地描述翼型的气动特性。