卡方检验表
- 格式:doc
- 大小:33.00 KB
- 文档页数:1
卡方检验四格表计算举例卡方检验是一种统计学方法,用于确定观察到的频数与期望频数之间的差异是否显著。
它常常应用于四格表(4×2)、二项分布(2×2)和多格表(大于4×2)等情况中。
下面以一个四格表的例子来进行卡方检验的计算。
假设我们进行了一项实验,想要研究两种不同的投放广告方式对销售额的影响。
为了测试这个假设,我们随机选择了两组参与者,每组30人。
一组参与者暴露在广告A下,另一组参与者暴露在广告B下。
我们记录了两组参与者中购买产品的人数如下:广告A广告B购买1020未购买2010根据这个表格,我们可以计算期望频数,然后计算卡方值和p值。
首先,我们需要计算每个格子的期望频数。
期望频数是根据总样本数和每个组的比例计算得到的。
总样本数为60(30+30),购买产品人数比例为(10+20)/60,未购买产品人数比例为(20+10)/60。
广告A(期望)广告B(期望)购买10(15)20(15)未购买20(15)10(15)接下来,我们计算卡方值。
卡方值的计算公式为:卡方值=∑((观察频数-期望频数)^2/期望频数)。
卡方值=((10-15)^2/15)+((20-15)^2/15)+((20-15)^2/15)+((10-15)^2/15)=5/3+5/3+5/3+5/3=20/3≈6.67最后,我们需要计算p值,用于判断卡方值的显著性。
p值表示在假设成立的情况下,观察到大于或等于当前卡方值的频数出现的概率。
p值可以通过查表或计算软件进行计算。
在这里,我们使用计算软件得到p值≈0.009,这是根据自由度为1的卡方分布得到的。
最后我们需要比较p值和显著性水平(通常为0.05)来判断原假设(两种广告方式对销售额无影响)是否成立。
由于p值(0.009)小于显著性水平(0.05),我们可以拒绝原假设,并得出结论:两种广告方式对销售额有显著影响。
以上是一个卡方检验四格表的计算举例。
根据具体的数据和研究问题,我们可以通过类似的步骤进行卡方检验的计算和解释。