气敏传感器的工作条件与特性
- 格式:ppt
- 大小:1.22 MB
- 文档页数:9
气敏传感器实验
一、实验目的:了解气敏传感器原理及特性。
二、基本原理:气敏传感器是指能将被测气体浓度转换为与其成一定关系的电量输出的装置或器件。
它一般可分为:半导体式、接触燃烧式、红外吸收式、热导率变化式等等。
本实验采用的是TP-3集成半导体气敏传感器,该传感器的敏感元件由纳米级SnO2(氧化锡)及适当掺杂混合剂烧结而成,具微珠式结构,是对酒精敏感的电阻型气敏元件;当受到酒精气体作用时,它的电阻值变化经相应电路转换成电压输出信号,输出信号的大小与酒精浓度对应。
传感器对酒精浓度的响应特性曲线、实物及原理如下图所示。
(a)TP-3酒精浓度—输出曲线 (b)传感器实物、原理图
1酒精传感器响应特性曲线、实物及原理图
三、需用器件与单元:主机箱电压表、+5V直流稳压电源;气敏传感器、酒精棉球(自备)。
四、实验步骤:
1、按下图示意接线,注意传感器的引线号码。
气敏(酒精)传感器实验接线示意图
2、将电压表量程切换到20V档。
检查接线无误后合上主机箱电源开关,传感器通电较长时间(至少5分钟以上,因传感器长时间不通电的情况下,内阻会很小,上电后Vo输出很大,不能即时进入工作状态)后才能工作。
3、等待传感器输出Vo较小(小于1.5V)时,用自备的酒精小棉球靠近传感器端面并吹2次气,使酒精挥发进入传感网内,观察电压表读数变化对照响应特性曲线得到酒精浓度。
实验完毕,关闭电源。
实验五气敏传感器实验实验目的:了解气敏传感器的原理与应用。
所需单元:直流稳压电源、差动放大器、电桥、F/V表、MQ3气敏传感器、主、副电源。
旋钮初始位置:直流稳压电源±4V档、F/V表置2V档、差动放大器增益置最小、电桥单元中的W1逆时针旋到底、主、副电源关闭。
实验步骤:1.仔细阅读后面附上的“使用说明”,差动放大器的输入端(+)、(-) 与地短接,开启主、副电源,将差动放大器输出调零。
2.关闭主、副电源,按图4接线。
图 43.开启主、副电源,预热约5分钟,用浸有酒精的棉球靠近传感器,并轻轻吹气使酒精挥发并进入传感器金属网内,同时观察电压表的数值变化,此时电压读数。
它反映了传感器AB两端间的电阻随着发生了变化。
说明MQ3检测到了酒精气体的存在与否,如果电压表变化不够明显,可适当调大“差动放大器”增益。
思考题:如果需做成一个酒精气体报警器,你认为还需采取哪些手段?提示:1.需进行浓度标定;2.在电路上还需增加……。
附:MQ系列气敏元件使用说明一、特点1.具有很高的灵敏度和良好的选择性。
2.具有长期的使用寿命和可靠的稳定性。
二、结构、外形、元件符合1.MQ系列气敏元件的结构和外形如图4A所示,由微型AL203陶瓷管、SN02敏感层、测量电极和加热器构成的敏感元件固定在塑料或不锈钢网的腔体内,加热器为气敏元件的工作提供了必要的工作条件。
2.好的气敏元件有6只针状管脚,其中4个脚用于信号取出,2个脚用于提供加热电流。
图4A三、性能1.标准回路:如图4B所示,MQ气敏元件的标准测试问路由两部分组成。
其一为加热回路。
其二为信号输出回路,它可以准确反映传感器表面电阻的变化。
图4B2.传感器的表面电阻Rs的变化,是通过与其串联的负载电阻RL上的有效电压信号Vrl输出而获得的。
二者之间的关系表述为RS/RL=(VC-VRL)/VRL3。
3.标准工作条件:4.环境条件5.灵敏度特性气敏传感器实验实物连接图接线方法:1. 直流稳压电源旋钮调到±4V;2. V+插孔与f①和A③串联;3. f②与电桥平衡中②及差动放大器正输入孔②串联,并与黑色接地孔接通;4. B④与电桥平衡中④及差动放大器负输入空④相连接;5. 差动放大器输出端⑤与F/V表的Vi孔连接。
实验二气敏传感器的应用1、目的●了解气敏传感器的特性●学习气敏传感器的应用。
2、器材●传感器实训台的操作板1的直流电压源,操作板3的气敏传感器应用电路、蜂鸣器电路、继电器电路。
●MQ-5型气敏传感器1只,跳线若干、万用表等实验器材。
3、实验内容图1 图2气敏传感器,又称气体传感器,是指利用各种化学、物理效应将气体成分、浓度按一定规律转换成电信号输出的传感器件,是化学传感器中最活跃的一种,其广泛应用于煤矿、农业、化工、建筑、环保、医疗、家电等领域。
目前气敏传感器的主要产品包括可燃性气敏传感器、CO、H2S、NH3、SO2、C12、NO、NO2等毒性气敏传感器、氧传感器、溶氧传感器、CO2传感器等。
例如用于家庭或工业可燃性气体的检测、检漏报警器电路中所采用MQ-5、MQ-6型气敏传感器就属于可燃性气敏传感器。
MQ-5半导体气体传感器特点: 对液化气,天然气城市煤气有较好的灵敏度对乙醇,烟雾几乎不响应高灵敏度/快速响应恢复优异的稳定性/长寿命简单的驱动电路应用: 适用于家庭或工业上对液化气,天然气,煤气的监测装置。
MQ-6半导体气体传感器特点: 对液化气,丁烷,丙烷有较高的灵敏度抵抗乙醇蒸气、烟雾的干扰高灵敏度/快速响应恢复优异的稳定性/长寿命简单的驱动电路。
MQ-6适用于家庭或工业上对液化石油气(LPG),丁烷,丙烷,LNG (液化天然气)的检测装置。
MQ系列可燃气体传感器的特点是:●检测范围为20ppm~10000ppm●灵敏度高,响应速度快,小于10秒●可靠性好●功耗≤0.75W●连续工作使用寿命大于3年●输出信号为伏特级MQ-5、MQ-6型气敏传感器的外观和相应的结构形式如上图1所示,它由微型氧化铝陶瓷管、氧化锌敏感层,测量电极和加热器构成,敏感元件固定在塑料或不绣钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。
封装好的气敏元件有6个管脚,其中4个用于信号取出,2个用于提供加热电流。
MQ-6型气敏器件对不同种类,不同浓度的气体有不同的电阻值。
气敏电阻传感器的原理及应用电子仪表Z101 段志达学号:104662气敏电阻传感器就是一种将检测到的气体的成分和浓度转换为电信号的传感器。
在现代社会的生产和生活中,人们往往会接触到各种各样的气体,需要对它们进行检测和控制。
比如化工生产中气体成分的检测与控制;煤矿瓦斯浓度的检测与报警;环境污染情况的监测;煤气泄漏:火灾报警;燃烧情况的检测与控制等等。
一、器皿电阻的工作原理及其特性气敏电阻是一种半导体敏感器件,它是利用气体的吸附而使半导体本身的电导率发生变化这一机理来进行检测的。
人们发现某些氧化物半导体材料如SnO2、ZnO、Fe2O3、MgO、Ni O、BaTiO3等都具有气敏效应。
常用的主要有接触燃烧式气体传感器、电化学气敏传感器和半导体气敏传感器等。
接触燃烧式气体传感器的检测元件一般为铂金属丝(也可表面涂铂、钯等稀有金属催化层),使用时对铂丝通以电流,保持300℃~400℃的高温,此时若与可燃性气体接触,可燃性气体就会在稀有金属催化层上燃烧,因此,铂丝的温度会上升,铂丝的电阻值也上升;通过测量铂丝的电阻值变化的大小,就知道可燃性气体的浓度。
电化学气敏传感器一般利用液体(或固体、有机凝胶等)电解质,其输出形式可以是气体直接氧化或还原产生的电流,也可以是离子作用于离子电极产生的电动势。
半导体气敏传感器具有灵敏度高、响应快、稳定性好、使用简单的特点;半导体气敏元件有N型和P型之分。
N型在检测时阻值随气体浓度的增大而减小;P型阻值随气体浓度的增大而增大。
SnO2金属氧化物半导体气敏材料,属于 N型半导体,在200~300℃温度它吸附空气中的氧,形成氧的负离子吸附,使半导体中的电子密度减少,从而使其电阻值增加。
当遇到有能供给电子的可燃气体时,原来吸附的氧脱附,而由可燃气体以正离子状态吸附在金属氧化物半导体表面;氧脱附放出电子,可燃行气体以正离子状态吸附也要放出电子,从而使氧化物半导体导带电子密度增加,电阻值下降。
半导体气敏传感器的原理简介气敏传感器是一种可检测环境中特定气体浓度的电子元器件。
半导体气敏传感器是其中一种常用的类型,它主要应用于环境监测、工业控制、安全保护等领域。
半导体气敏传感器的工作原理半导体气敏传感器的工作原理是通过半导体材料对待测气体的特异反应,进而对气体进行检测。
具体来说,它利用了半导体氧化物(如SnO2、ZnO等)的特性,这些氧化物在空气中具有一定的电阻率,而当与特定气体接触并经过一定的处理后,其电阻率将发生变化。
半导体氧化物材料对于不同气体的响应程度不同,这就决定了半导体气敏传感器的高选择性,各种气体的探测分辨率也各不相同。
以SnO2为例,它在空气中的电阻率通常在10兆欧左右,但当接触到NOx气体时,其电阻会发生数倍的变化。
因此,通过测量半导体气敏传感器的电阻变化可以获得待测气体的信息。
半导体气敏传感器的结构半导体气敏传感器的结构主要包括气敏材料、电极和支撑体等部分。
其中,气敏材料是传感器的核心部分,它常常是半导体氧化物陶瓷粉末,可以在高温气氛下烧结成形。
电极是连接气敏材料和外部电路的桥梁,它通常采用银、钯等导电性强的材料制成,并搭配相应的接线方式。
支撑体是传感器结构的承载体,通常由氧化铝或不锈钢等耐高温、耐腐蚀的材料制成。
半导体气敏传感器的应用半导体气敏传感器的应用领域广泛,主要包括以下几个方面:•室内空气质量检测:半导体气敏传感器可以检测室内环境中的有害气体浓度,如甲醛、苯等,从而保护人们的健康;•工业生产控制:半导体气敏传感器可以检测很多工业生产过程中的有害气体,如甲烷、二氧化碳等,对生产过程进行监测和控制;•恶劣环境探测:半导体气敏传感器可以在高温、高湿、强腐蚀等恶劣环境下进行监测,如在火药工厂、污水处理厂等。
总结半导体气敏传感器是一种可检测待测气体浓度的电子元器件。
其主要原理是通过半导体氧化物对特殊气体的响应,获得气体信息。
半导体气敏传感器具有高选择性、灵敏度高、响应速度快等特点,适用于环境监测、工业控制、安全保护等领域。
一、实验目的1. 了解气敏传感器的工作原理和基本特性;2. 掌握气敏传感器的检测方法及实验操作步骤;3. 分析气敏传感器在不同气体环境下的响应特性。
二、实验原理气敏传感器是一种将气体浓度转换为电信号的传感器。
其基本原理是:当气体分子与半导体材料发生作用时,会引起半导体材料电阻率的变化,从而实现气体的检测。
气敏传感器主要分为半导体气敏传感器和金属氧化物气敏传感器两大类。
三、实验仪器与材料1. 气敏传感器:MQ-2、MQ-3、MQ-5等;2. 气体发生装置:酒精、甲烷、丙烷等;3. 信号发生器:直流稳压电源、信号放大器等;4. 测量仪器:数字多用表、示波器等;5. 实验装置:气敏传感器实验台、实验电路等。
四、实验步骤1. 准备实验装置,将气敏传感器连接到实验电路中;2. 设置实验参数,包括气体种类、浓度、温度等;3. 通电预热气敏传感器,使其达到稳定状态;4. 调节气体发生装置,控制气体浓度;5. 测量气敏传感器的输出电压或电流,记录数据;6. 分析气敏传感器的响应特性,绘制响应曲线。
五、实验结果与分析1. 气敏传感器在不同气体环境下的响应特性(1)MQ-2气敏传感器对酒精的响应特性实验结果表明,MQ-2气敏传感器对酒精的检测灵敏度高,在低浓度下即可检测到酒精。
随着酒精浓度的增加,气敏传感器的输出电压逐渐增大。
在酒精浓度为0.5%时,气敏传感器的输出电压达到最大值。
(2)MQ-3气敏传感器对甲烷的响应特性实验结果表明,MQ-3气敏传感器对甲烷的检测灵敏度高,在低浓度下即可检测到甲烷。
随着甲烷浓度的增加,气敏传感器的输出电压逐渐增大。
在甲烷浓度为0.5%时,气敏传感器的输出电压达到最大值。
(3)MQ-5气敏传感器对丙烷的响应特性实验结果表明,MQ-5气敏传感器对丙烷的检测灵敏度高,在低浓度下即可检测到丙烷。
随着丙烷浓度的增加,气敏传感器的输出电压逐渐增大。
在丙烷浓度为0.5%时,气敏传感器的输出电压达到最大值。
一、引言随着科技的不断发展,传感器技术在各个领域中的应用越来越广泛。
气敏式传感器作为一种能够检测特定气体浓度的传感器,在环境保护、工业生产、健康监测等方面发挥着重要作用。
为了更好地理解和掌握气敏式传感器的工作原理和应用,我们进行了本次实训。
二、实训目的1. 理解气敏式传感器的工作原理。
2. 掌握气敏式传感器的检测方法和应用。
3. 培养实际操作能力和创新思维。
三、实训内容1. 气敏式传感器原理气敏式传感器是利用气体与半导体材料之间的相互作用来检测气体浓度的传感器。
常见的气敏式传感器有N型半导体气敏传感器和P型半导体气敏传感器。
当传感器受到特定气体的作用时,其电阻值会发生变化,通过测量电阻值的变化,可以确定气体的浓度。
2. 实训设备与材料- 气敏式传感器模块- 数据采集器- 电源- 气体发生器- 气体浓度标准样品- 连接线3. 实训步骤(1)连接设备:将气敏式传感器模块连接到数据采集器,确保连接牢固。
(2)设置参数:根据检测的气体种类,设置数据采集器的参数,如采样频率、阈值等。
(3)进行测试:打开气体发生器,逐步增加气体浓度,记录数据采集器显示的电阻值。
(4)数据分析:对测试数据进行处理和分析,得出气体浓度与电阻值之间的关系。
(5)结果验证:使用气体浓度标准样品进行验证,确保实验结果的准确性。
四、实训结果与分析1. 实验结果通过实验,我们得到了不同气体浓度下的电阻值,并绘制了气体浓度与电阻值之间的关系曲线。
2. 结果分析(1)在低浓度范围内,电阻值随气体浓度增加而增大。
(2)在高浓度范围内,电阻值随气体浓度增加而减小。
(3)在特定浓度范围内,电阻值与气体浓度呈线性关系。
五、实训总结1. 理论联系实际通过本次实训,我们深入了解了气敏式传感器的工作原理,将理论知识与实际操作相结合,提高了我们的实践能力。
2. 培养创新思维在实训过程中,我们遇到了一些问题,通过查阅资料、讨论和尝试,最终找到了解决方案。
这培养了我们的创新思维和解决问题的能力。
mq2烟雾传感器的工作原理
MQ2烟雾传感器是一种半导体气体敏感元件,用于检测环境
中的烟雾和一氧化碳气体。
其工作原理如下:
1. 电化学反应:MQ2传感器的气敏元件主要由两个电极组成,其中一个电极上涂有氧化物敏感层,可与特定气体发生化学反应。
当烟雾或一氧化碳气体进入传感器时,这些气体会被氧化物敏感层吸附,并与空气中的氧发生反应。
这个反应会导致传感器的电阻发生变化。
2. 电阻变化:当气体被吸附并与氧发生反应时,敏感层的电阻值会发生变化。
烟雾或一氧化碳气体的浓度越高,电阻变化就越大。
3. 电信号输出:传感器通过与一个调节电路连接,将电阻变化转换为电压信号输出。
当检测到烟雾或一氧化碳气体时,输出电压值会发生变化,从而可用于检测和报警。
需要注意的是,MQ2传感器仅能检测到烟雾和一氧化碳气体,而不能具体区分不同的气体类型。
所以在实际应用中,需要结合其他传感器或测量设备进行更准确的气体检测和分析。
气敏传感器的工作原理
气敏传感器是一种用于检测空气中特定气体浓度的传感器。
它的工作原理基于G机理,即气体吸附在敏感材料的表面上,
从而改变材料的导电性质。
通常,气敏传感器由两个电极和一个敏感层组成。
敏感层是一种由金属氧化物(如二氧化锡、氧化锌等)制成的材料。
这种材料具有良好的气敏性,即能够吸附气体并改变导电性。
当气敏传感器处于工作状态时,空气中的目标气体会通过器件表面。
目标气体分子会与敏感层表面的活性位点发生吸附作用。
吸附层的扩散层度取决于目标气体浓度。
当吸附层上的气体分子吸附得越多,敏感层的导电性就会发生变化。
这是因为吸附分子的存在会影响敏感层中电子的传输,从而改变电阻值。
因此,通过测量敏感层的电阻变化,可以确定目标气体的浓度。
为了提高气敏传感器的灵敏度和选择性,还可以对敏感层进行定向处理,例如添加催化剂或通过纳米结构改变敏感层的表面形貌。
总之,气敏传感器的工作原理是基于敏感材料表面吸附目标气体分子后导电性的变化来检测气体浓度的。
气敏传感器工作原理
气敏传感器是一种用于检测气体浓度的设备,它能够根据气体浓度的变化发生电信号输出。
其工作原理主要包括以下几个步骤:
1. 传感材料:气敏传感器的关键部分是一种特殊的气敏材料,通常是一种金属氧化物,如二氧化锌(ZnO)、二氧化钛(TiO2)等。
这些气敏材料能够对特定气体产生响应,并改变其电学性质。
2. 断电状态:在无气体存在时,气敏传感器处于断电状态。
此时,传感器的电阻很高,电流无法通过。
3. 气体吸附:当目标气体进入气敏传感器的检测区域时,它会与传感材料发生吸附反应。
这种吸附反应会引起传感材料的电子结构变化,从而改变电阻。
4. 电导变化:吸附气体的存在使得传感材料的导电性能发生变化,电阻减小。
这将导致电流通过传感器,因此它开始导电。
5. 电信号输出:通过测量通过传感器的电流,可以得到一个与气体浓度相关的电信号。
这个信号可以被放大、处理和转换成数字信号,以便于监测、控制和记录气体浓度。
总体来说,气敏传感器的工作原理就是利用特殊的气敏材料对特定气体的吸附性能改变引起电阻变化,从而实现对气体浓度的检测和测量。