小升初数学知识点练习归纳:列方程解应用题
- 格式:doc
- 大小:12.00 KB
- 文档页数:2
列方程解应用题【基础概念】:列方程解决问题就是根据题目中的等量关系先列出方程,再求得问题中的未知量的一种解决问题的方法。
知量的一种解决问题的方法。
把所求问题用一个字母表示,把所求问题用一个字母表示,把所求问题用一个字母表示,并让其参与分析与列式,并让其参与分析与列式,并让其参与分析与列式,很快理很快理清题中的数量关系,可以使一些整数、分数、百分数的应用题化难为易,既可以节省时间,又可以提高解题能力。
【典型例题1】:贵诚超市推销一种积压商品,减价25%出售,每件售价42元,原定价是多少元?【小结】:解决这类问题首先要找到等量关系——原价-减少的钱数=现价,再根据等量关系列出方程,从而解决问题。
【巩固练习】1.列方程解答。
2.列方程解答。
【典型例题2】:甲乙两地相距480千米,客货两车同时从甲乙两地相向而行,客车平均每小时行65千米,货车平均每小时行60千米,行驶了3小时,这时两车还相距多少千米?小时,这时两车还相距多少千米?【小结】:解决这类问题的关键是要明确“行驶的路程、剩下的路程、甲乙两地的距离”之间的关系,即行驶的路程+剩下的路程=甲乙两地的距离,列出方程解答即可。
甲乙两地的距离,列出方程解答即可。
【巩固练习】【巩固练习】3. 甲乙两地相距480千米.客车和货车同时从两地相对开出,千米.客车和货车同时从两地相对开出,相向而行,相向而行,4小时后,小时后,两车还两车还相距80千米.已知货车每小时行53千米,问客车每小时行多少千米?千米,问客车每小时行多少千米?4.一辆客车和一辆货车从甲乙两地同时出发相向而行,经过45小时两车相遇,这时货车行了全程的40%,已知货车每小时行60千米,求甲乙两地的距离。
千米,求甲乙两地的距离。
5、有两包面粉,第一包重是第二包的两倍,如果从第一包取出10千克放入第二包,那么两包样重,问,第一包面粉多重?6、六年级学生合买一件礼物 给母校作纪念,如果 每人出6元则多48元,如果每人出4.5元 ,则小27元,求六年级学生人数?7、妈妈买回一箱梨,按计划天数,如果每天吃四个,由多出24个,如果每天吃6个,则少四个,问计划吃多少天,妈妈买回了多少梨?8、育英学校小学体育室里有足球个数是排球数的2倍,体育课上,每班借7个足球5个排球,排球借完时,还有足球72个,体育室原来有足球排球多少个?9、甲乙仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好用完,而甲仓库还有25 台,原来乙仓库还有冰箱多少台10、有三个连续的整数,已知最少的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续的整数?11、已知三个连续奇数之和是75,求这三个数? 12、10年前父亲的年纪是儿子年纪的7倍,15年后父亲的年纪是他儿子的2倍,问今年父子二人各多少岁?13、小明今年的年龄是明明年龄的5倍,25年后,小明的年龄是明明年龄的2倍少16,问小明和明明各多少岁14、商店购进一批皮球每只成本1.5元,出售时每只售价2元,当商店卖到皮球剩20只时,成本已经全部收回,并且赚了50元,问商店原进购皮球多少只?15、一辆卡车运矿石,晴天每天可运20次,雨天可运12次,一共运了112次,平均每天运次,问这几天当中有几个晴天几个雨天?14次,问这几天当中有几个晴天几个雨天?答案及解析:答案及解析:例1、【思路分析】:本题中的等量关系是:原价-减少的钱数=现价,减少的钱数=原价×25%,所以原价-原价×25%=现价,即可解决。
例1、有一块长方形土地;周长为186米。
已知长比宽多32米;求这块土地的长和宽。
解答:方法(1)用小学方法解:长方形的宽为(186÷2—32)÷2=30.5(米);长方形的长为30.5+32=62.5(米)。
方法(2)用列方程来解:如果长方形的长为x;那么长方形的宽为x—32;根据题意得;186÷2—x=x—3293—x=x—3293+32—x=x125—x=x125=2xX=62.5X—32=62.5—32=30.5答:长方形的宽为30.5米;长方形的长为62.5米。
例2、大、小两个水池都未注满水。
若从小池抽水将大池注满;则小池还剩5吨水;若从大池抽水将小池注满;则大池还剩30吨水。
已知大池容量是小池的1.5倍;问:两池中共有多少吨水?【答案】80【分析】这是直接设未知数的应用题①关键量:水的总量——即为题目所求②用水的总量把大池、小池的水量表示出来;根据两池容积的倍数关系建立等量关系③解:设两池共有x吨水④所以两池共有80吨水⑤答:两池中共有80吨水例3、某陶瓷商;为了促销决定卖一只茶壶;赠一只茶杯;某人共付款162元;购得茶壶和茶杯共36只;已知每只茶壶15元;每只茶杯3元;问其中茶壶、茶杯各多少只?【答案】6;30【分析】①关键量:茶壶的只数——即为题目所求②利用茶壶的只数把买的茶杯的只数表示出来进而根据所花钱的总数建立等量关系③解:设茶壶x只;那么所买茶杯只数为(36-2x)只④所以茶壶的只数是6只;茶杯的只数是36-6=30只⑤答:茶壶6只;茶杯30只例4、爸爸、哥哥、妹妹三人现在的年龄和是64岁。
当爸爸的年龄是哥哥年龄的3倍时;妹妹是9岁;当哥哥的年龄是妹妹年龄的2倍时;爸爸是34岁。
现在三人的年龄各是多少岁?【答案】妹妹10岁;哥哥14岁;爸爸40岁【分析】①关键量:年龄差不变——不是题目所求(直接设显然很麻烦)②可以设妹妹与哥哥的年龄差;再根据哥哥和爸爸的年龄差不变(或者妹妹与爸爸的年龄差不变)建立等量关系③解:哥哥与妹妹的年龄差为x岁所以:当妹妹4岁时;哥哥2×4=8岁;爸爸此时34岁。
列方程解应用题一、列简易方程解应用题10x+1.从而有3(105+x)=10x+1.7x=299999.x=42857。
答:这个六位数为142857。
说明:这一解法的关键有两点:示出来.这里根据题目的特点.采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此.要提高列方程解应用题的能力.就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军.末尾有一通讯员因事要通知排头.于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾.共用了10分50秒。
问:队伍有多长?分析:这是一道“追及又相遇”的问题.通讯员从末尾到排头是追及问题.他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题.他与排尾所行路程和为队伍长。
如果设通讯员从末尾到排头用了x秒.那么通讯员从排头返回排尾用了(650-x)秒.于是不难列方程。
解:设通讯员从末尾赶到排头用了x秒.依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。
解得x=500。
推知队伍长为(2.6-1.4)×500=600(米)。
答:队伍长为600米。
说明:在设未知数时.有两种办法:一种是设直接未知数.求什么、设什么;另一种设间接未知数.当直接设未知数不易列出方程时.就设与要求相关的间接未知数。
对于较难的应用题.恰当选择未知数.往往可以使列方程变得容易些。
例3铁路旁的一条与铁路平行的小路上.有一行人与骑车人同时向南行进.行人速度为3.6千米/时.骑车人速度为10.8千米/时.这时有一列火车从他们背后开过来.火车通过行人用22秒.通过骑车人用26秒.这列火车的车身总长是多少?分析:本题属于追及问题.行人的速度为3.6千米/时=1米/秒.骑车人的速度为10.8千米/时=3米/秒。
火车的车身长度既等于火车车尾与行人的路程差.也等于火车车尾与骑车人的路程差。
小升初数学试题列方程解应用题通用含答案甲船的油量为595+x吨,乙船的油量为225-x吨。
根据题意得:595+x=4(225-x)化简得:x=61所以,乙船要抽出61吨油给甲船。
2.120千米解析】设两镇间的距离为d千米。
甲行驶的距离为15×0.5=7.5千米,乙行驶的距离为10×t千米(t为小时数)。
甲返回西镇后,行驶的距离为15×0.5=7.5千米,再行驶d千米到东镇,总共行驶的距离为7.5+d+7.5+10t。
乙行驶的总距离为d千米。
根据题意得:7.5+d+7.5+10t=1.5+d+10(t-0.5)+30化XXX:d=120所以,两镇间的距离为120千米。
3.哥哥现在27岁,弟弟现在9岁解析】设弟弟当年的年龄为x岁,则哥哥当年的年龄为3x岁。
根据题意得:3x=x+27-30= x-3化简得:x=6所以,哥哥现在27岁,弟弟现在9岁。
4.每筐有68个苹果解析】设每筐有x个苹果,则甲筐剩下的苹果数为x-150,乙筐剩下的苹果数为x-194.根据题意得:x-150=3(x-194) 化简得:x=68所以,每筐有68个苹果。
5.高中毕业生有272人,初中毕业生有408人解析】设初中学生人数为x,则高中学生人数为5x/6.设初中毕业生人数为y,则高中毕业生人数为12y/17.根据题意得:5x/6-12y/17=520化XXX:y=204代入可得:x=680所以,高中毕业生有272人,初中毕业生有408人。
6.第二次降价后的价格是原定价的50%解析】假设原定价为1元/斤,按100%的利润定价,则售价为2元/斤。
按38%的利润重新定价,则售价为1.38元/斤。
售出其中的40%后,剩余的水果全部降价出售,实际获得的总利润为1.506元/斤。
设第二次降价后的售价为x元/斤,则有:0.6×1.38+0.4×x=1.506化简得:x=0.5所以,第二次降价后的价格是原定价的50%。
列方程解应用题3、某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价是多少例题2、甲乙两种商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,但出售时因商店“庆元旦大酬宾”全部商品按定价的九折销售,结果卖出甲乙两种商品各一件课获得27.7元。
求甲乙两种商品的成本各是多少元?练习:某商店的一种皮衣,销售有一定的困难,店老板核算一下:如果按销售价打九折出售,可盈利215元,如果打八折出售就要亏损125元,那么这种皮衣的进价是多少元题型四:行程问题例题1:一辆汽车从甲地开往乙地,平均每小时行20千米。
到乙地后又以每小时30千米的速度返回甲地,往返一次共用了7.5小时。
求甲、乙两地间路程?练习:1、汽车从甲地开往乙地送货,去时每小时行30千米,返回时每小时行40千米。
往返一次共用8小时45分,求甲、乙两地间的路程?2、一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞行1500千米,返回时逆风,每小时可飞行1200千米,这架飞机最多飞出多少千米就要往回飞?例2:一个通讯员骑自行车需要在规定的时间内把信件送到某地,如果他每小时走15千米可早到0.4小时,如果他每小时走12千米就要迟到0.25小时,他去某地的路程有多远?练习1、小李由乡里到县城办事,每小时行4千米,到预定到达时间时,离县城还有1.5千米。
如果小李每小时走5.5千米,到预定到达时间时,又会多走4.5千米。
乡里距县城多少千米?2、小王骑摩托车从B地到A地去开会。
如果每小时行50千米,就要迟到0.2小时,如果每小时行60千米,就会早到1小时,求A、B两地的距离?题型四:工程问题。
列方程及实际应用题知识点梳理1.列方程解应用题的一般步骤(1)审题,分析题目中的数量关系,通常也需要找出单位“1”。
(2)设未知数,通常会以单位“1”设为未知数,也要根据题目的数量关系设定。
(3)找出等量关系,列出方程。
(4)解出方程,检验,作答。
2.常用解法:(1)以总量为等量关系建立方程。
(2)以相差量为等量关系建立方程。
(3)以题中的部分量、剩余量为等量关系建立方程。
3.常见题型:分数应用题、百分数应用题、行程问题、工程问题、比例问题等。
精讲点拨例1两地相距249千米,一列火车从甲地开往乙地,每小时行55.5千米,行了多少小时还离乙地有27千米?举一反三:1.某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作 5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?2.甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?例2 化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?举一反三: 1.师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?例3 有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?举一反三:1.一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?例4 甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣组,问甲、乙两班原来各有多少人?举一反三:1.菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克? 2.某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?例5 小明家买了一袋大米,第一周吃去9千克,第二把周吃去了40%,还剩下6千克。
小升初数学列方程解应用题的知识点
关于小升初数学列方程解应用题的知识点,小编做了如下整理。
1、列方程解应用题的意义
*用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
*弄清题意,确定未知数并用x表示;
*找出题中的数量之间的相等关系;
*列方程,解方程;
*检查或验算,写出答案。
3、列方程解应用题的方法
*综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
*分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题;
e比和比例应用题。
查看更多关于小升初数学列方程解应用题,请关注小升初数学知识点。
2019小升初数学知识点复习-列方程解应用题2019小升初数学知识点复习--列方程解应用题:列方程解应用题列方程解应用题的一般步骤:①弄清题意 ,找出题中条件和所求问题。
②分析题意 ,找出题中等量关系式。
③用x表示未知数量,列出方程 ,解方程。
④检验是否正确 ,写出答语。
列方程解应用题的关键是找出题中的等量关系式。
有的应用题 ,等量关系式很明显 ,直接可得到;有的应用题等量关系式不明显 ,要分析题意才能找出;有的应用题等量关系式隐藏 ,如周长公式、面积公式、体积公式不会出现在题目中 ,所以熟记学过所有的字母公式很重要。
练习:1.找等量关系 ,把方程列完整。
(1) 小思看一本96页的科幻小说。
她每天看X页 ,看了5天还剩24页没看。
?=96或?=24(2妈妈买了2千克白菜 ,每千克2.4元 ,又买了X千克萝卜 ,每千克2.8元。
一共用去13.6元。
?=13.6或?=2.42(3)通讯班铺设一条全长X千米光缆线路 ,工作15天架设了全长的93.75%。
再用同样的工效工作1天 ,铺设1.5千米。
?=1.5152.列方程解以下各题。
(1)长方形周长30cm ,长8cm。
宽是多少cm?(2)某田径队有男队员30人 ,比女队员的少3人。
女队员有多少人?(3)海滨县兴隆农场种小麦189公顷 ,小麦播种面积是玉米的112.5% ,种玉米多少公顷?(4)商店运来苹果750㎏ ,比运来橘子的2倍多250㎏ ,运来橘子多少吨?(5)一支工程队修一条公路。
第一天修了38米 ,第二天修了42米。
第二天比第一天多修的是这条路全长的。
这条路全长多少米?。
小升初数学知识点练习归纳:列方程解应用题编者小语:小升初的压力始终贯穿于六年级的学习生活,为了成功升学,准备好每一门科目的考验势在必行!2019年小升初备考已经开始,小编整理了2019小升初数学知识点复习归纳:列方程解应用题,帮助大家梳理数学知识点,供大家在数学备考复习时使用,祝同学们顺利考入理想学校。
1、列方程解应用题的意义
*用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
*弄清题意,确定未知数并用x表示;
*找出题中的数量之间的相等关系;
*列方程,解方程;
3、列方程解应用题的方法
*综合法:先把应用题中数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从到未知。
*分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到。
4、列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年
便可以积累40多那么材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?
d分数、百分数应用题;
一般说来,〝教师〞概念之形成经历了十分漫长的历史。
杨士勋〔唐初学者,四门博士〕«春秋谷梁传疏»曰:〝师者教人以不及,故谓师为师资也〞。
这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一。
«韩非子»也有云:〝今有不才之子……师长教之弗为变〞其〝师长〞当然也指教师。
这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道〝书读百遍,其义自见〞,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
e比和比例应用题。