深基坑和边坡支护
- 格式:doc
- 大小:30.50 KB
- 文档页数:4
深基坑支护施工方案(放坡)一、方案概述深基坑支护施工方案是在地下建筑物施工中常见的工程技术,旨在确保基坑施工期间的安全和稳定。
本文将重点介绍基坑支护中的放坡技术,并对其施工方案进行详细阐述。
二、放坡技术介绍放坡即是在基坑周边开挖时,将边坡放坡到一定的坡度,以减轻土体的压力,提高边坡的稳定性。
放坡技术常用于较大规模的基坑开挖工程中,特别是在地质条件较差或基坑深度较大的情况下,具有较好的效果。
三、放坡施工方案1. 设计方案根据工程要求和地质条件,确定放坡的坡度和边坡的宽度。
通常情况下,放坡的坡度应根据实际情况进行调整,以确保施工安全和边坡稳定。
2. 边坡处理在进行放坡前,需要对边坡进行处理,包括除去表面松软的土层,清理杂物和植被以及进行坡面光滑处理。
同时,还需要按照设计要求设置排水设施,防止雨水对边坡造成影响。
3. 支护结构放坡后,还需要根据实际情况选择适当的支护结构进行固化。
支护结构可以采用钢支撑或混凝土加固等方式,以增加边坡的稳定性。
4. 定期监测在施工过程中,需要定期对边坡进行监测,及时发现问题并采取相应的处理措施,确保边坡的稳定性和安全性。
四、施工注意事项1.施工人员应严格按照设计要求和安全规范进行施工,保证工程质量和施工安全。
2.在施工过程中,应注意保护现场环境,防止对周围建筑物和人员造成影响。
3.施工过程中如遇恶劣天气或其他不可抗力因素,应及时停工并采取有效措施进行应对。
五、总结放坡技术是深基坑支护施工中的重要环节,正确的施工方案和严格的施工管理对保证工程质量和安全性至关重要。
通过本文的介绍,希望能对深基坑支护施工中的放坡技术有所了解,并在实际工程中得到应用和推广。
目录目录 (1)编制说明 (3)第一部分基坑支护方案设计 (4)1、编制依据 (4)1.1施工方案设计依据 (4)1。
2施工涉及有关规范和规程 (4)1。
3 其它 (4)2、工程概述 (4)2.1工程概况 (4)2。
2工程地质概况 (4)2.3地下水情况 (5)2。
4工程施工方案设计特点及施工难点 (5)3、施工方案设计 (5)3.1基坑支护工程 (5)4、主要施工方法和技术要点 (6)4。
1基坑支护施工方法和技术要点 (6)5、说明 (7)第二部分施工组织设计 (8)1、施工部署 (8)1.1工程目标策划 (8)1。
2施工策划 (8)1。
3管理体系 (9)1。
4施工组织 (9)1.5施工中与其他单位的配合 (9)1。
6施工机械 (10)2、施工准备 (10)2.1技术准备 (10)2.2技术人员准备 (11)2.3施工生产准备 (11)3主要施工项目 (11)3。
1 边坡支护 (11)4、质量保证体系 (12)4.1项目质量体系框图 (12)4。
2质量标准及质量保证措施的基本要求 (13)4。
3分项目质量保证措施 (13)4。
4应急措施 (14)5、基坑边坡监测方案 (15)5.1监测目的 (15)5。
2监测项目 (16)5.3边坡水平位移监测 (16)6、冬季施工措施 (17)7、安全管理措施 (18)7。
1施工安全措施 (18)7.2机具管理措施 (18)7.3临时管理措施 (19)8、安全生产与文明施工 (20)8.1安全生产机构 (20)8.2安全生产措施 (20)8.3文明施工 (21)9、环境保护措施 (21)10、成品保护措施 (21)10。
1基坑边坡正常使用要求 (21)11、护坡工程验收标准 (22)11。
1土钉墙支护工程 (22)12、基坑支护风险评估及紧急预案 (22)12.1基坑水平位移变形要求: (22)13、验算项目: 基坑支护剖面计算书 (24)附:1、基坑支护平面示意图2、基坑支护剖面图3、土钉墙剖面详图4、位移观测点布置平面示意图编制说明1、《胜芳国际家具博览中心二期A栋基坑支护工程施工方案》是根据建设单位提供的相关设计图纸,以及现场踏勘,结合施工区域土质实际情况,依据现行国内规范标准,参照同地区同类型相似的已施工程经验,针对本工程基础边坡支护的设计部分重点进行了编制。
高边坡和深基坑工程在施工过程中存在一定的风险和隐患,为了确保工程安全,需要对潜在的安全隐患进行识别和评估,并采取相应的预防措施。
以下是一些常见的高边坡和深基坑隐患识别及措施:### 高边坡隐患识别及措施:隐患识别:1. 地质条件复杂,包括软土、岩层稳定性差等。
2. 边坡开挖坡比不当,超过了设计的允许坡度。
3. 边坡缺乏有效的支护结构,如锚杆、喷浆等。
4. 地下水活动对边坡稳定性产生影响。
5. 气象条件不利,如暴雨、地震等。
6. 施工扰动,如爆破作业、机械振动等。
措施:1. 加强地质勘察,确保设计依据的准确性。
2. 根据地质条件合理设计边坡坡比,必要时采用放缓坡比或加固措施。
3. 施工前应进行边坡稳定性分析,并根据分析结果采取相应的支护措施。
4. 控制地下水的影响,如采用排水井、排水泵等措施。
5. 制定应急预案,应对极端气象条件可能引发的安全问题。
6. 加强施工过程中的监测,如位移监测、裂缝监测等,及时发现异常情况。
### 深基坑隐患识别及措施:隐患识别:1. 基坑周边环境复杂,如地下管线、建筑物临近等。
2. 基坑开挖深度过大,超过5米,尤其地质条件不佳时。
3. 基坑支护结构设计不合理或施工质量问题。
4. 基坑周边堆载不当,超过了设计允许载荷。
5. 地下水控制不利,导致基坑水位上升。
6. 施工过程中的振动、噪声、尘土等对周围环境造成影响。
措施:1. 详细调查周边环境,识别潜在的干扰因素,并采取相应的保护措施。
2. 依据地质条件合理设计基坑支护结构,确保支护体系的稳定性。
3. 加强基坑周边的监测,如位移、倾斜、裂缝等,及时掌握基坑变化情况。
4. 合理控制基坑周边的堆载,避免超过设计允许的载荷。
5. 采取有效措施控制地下水,如排水、降水等,以维持基坑的稳定。
6. 制定环境保护措施,如降尘、降噪、垃圾清运等,减轻施工对环境的影响。
对于高边坡和深基坑工程,应当采取综合性的安全管理措施,从设计、施工到监测各个环节都要充分考虑安全隐患的识别和控制,确保工程安全。
目录附图一、编制依据1、《建筑地基基础设计规范》GB50007-2011;2、JGJ120-2012《建筑基坑支护技术规程》;3、GB50330-2002《建筑边坡工程技术规范》4、GB50202-2002《建筑地基基础工程施工质量验收规范》;5、《挡土墙国家标准图集》04J0086、《建筑结构荷载规范》GB50009--20127、《混凝土结构设计规范》GB50010--20108、本工程《岩土工程地质勘察报告》。
9、挡土墙设计方案10、本工程有关设计图纸。
11、国家住房和城乡建设部《关于印发(危险性较大的分部分项工程安全管理办法)》。
二、工程概况1、工程概况本工程建设地点位于松阳县乌行山,洞阳观旅游度假村二期滨水酒店相对标高±0.000相当于绝对标高160.900m。
地上二层、地下一层建筑面积3469.1 m²,基础采用柱下独立天然基础和防水板,基础持力层为③-2层中微风化砂砾岩,地基承载力标准值fka=2000kPa,基础入持力层≥200mm。
防水板厚度400mm,地下室防水板板、剪力墙及顶板混凝土强度等级为C30,抗渗等级S6。
因场地在山坡部位地形比较复杂开挖深度1~4.85m,土、石方开挖工程量约4500m³。
2、地基基础分析及水文特征根据《岩土工程地质勘察报告》坑壁侧壁出露的土层主要有①层素填土、②-1层粉质粘土、②-2含碎石粉质粘土、③-1层强风化砂砾岩和③-2层中微风化砂砾岩。
土\岩石边坡按l:1坡度放坡开挖。
本工程与度假酒店紧邻地下室基坑开挖深度较深,深度达到4.85m,属于局部深基坑。
本工程基坑存地下水有松散岩类孔隙潜水和基岩风化裂隙水,总体看地下水水量不大。
地下水对基础施工影响较大。
在基坑施工时需准备施工降水设备排水。
基坑开挖后,应通知勘察单位,会同各有关部门,做好验槽工作。
若遇地质情况复杂,不能满足设计要求时,可进行施工勘察。
3、周边环境东侧距离在建的度假酒店6m~10m宽,南、北、西侧基坑边都是空地基坑施工点距离洞阳观水库大坝比较近,由于③-1层强风化砂砾岩和③-2层中微风化砂砾岩层比较坚硬,采用凿岩机挖凿,考虑施工安全及减少坡面的影响,我公司决定采用挖掘机挖除基坑上层土方,凿岩机挖凿基坑石方。
深基坑支护的方法深基坑支护是指在进行深基坑开挖时,为了保护周围建筑物的安全,需要采取一系列的措施来保证基坑的稳定。
下面将介绍几种常见的深基坑支护方法。
一、土方开挖支护方法1.刚性支护法:刚性支护法主要适用于软土地层,采用硬化方式将土壤体加固,以提供足够的抗侧力。
常见的刚性支护方法包括桩墙、悬臂墙、楼板支撑和封闭墙等。
- 桩墙:在基坑边缘挖掘一排或多排钢筋混凝土桩,形成围护墙,以抵抗土体的侧压力。
- 悬臂墙:在基坑边缘设置一排或多排截面较小的悬臂桩,用于支撑土体,以防止土体塌方。
- 楼板支撑:在基坑底部设置混凝土楼板,以支撑土体,避免基坑底部发生位移。
- 封闭墙:在基坑边缘挖掘一排或多排钢筋混凝土墙,形成封闭结构,以抵抗土体的侧压力。
2.软土交通平台法:软土交通平台法适用于软土地层,通过在基坑两边或四周增加软土交通平台,以减小土体的侧压力。
- 加压排水法:通过对软土进行加压和排水处理,提高土体的强度和稳定性。
二、锚固支护法锚杆是一种常见的深基坑支护材料,其通过将钢管或钢筋混凝土锚杆埋设在地下,然后用浆液充填锚孔,在土体和锚杆之间形成黏结力,以增加土体的抗侧稳定性。
锚固支护法常见的类型包括锚杆支护、锚索支护和锚桩支护等。
- 锚杆支护:使用钢管或钢筋混凝土锚杆,将其埋设在土体内,并用浆液充填锚孔,形成黏结力,增加土体的稳定性。
- 锚索支护:使用钢缆作为锚索,通过埋设锚孔和浇筑锚孔浆液,将锚索固定在土体中,以增加土体的抗侧稳定性。
- 锚桩支护:在基坑边缘挖掘一条或多条钢筋混凝土锚桩,将其埋设在土体内,并用浆液充填锚孔,以抵抗土体的侧压力。
三、挡土墙支护法挡土墙是一种常见的深基坑支护结构,常用于大型基坑或需要长期使用的基坑。
挡土墙可以分为开挖式挡土墙和边坡式挡土墙。
- 开挖式挡土墙:在基坑边缘先进行部分开挖,然后在开挖边缘设置混凝土挡土墙,以防止土体坍塌。
- 边坡式挡土墙:在基坑边缘挖掘一坡度较小的土坡,并用支护材料加固土坡,以防止土体塌方。
深基坑边坡支护设计与控制摘要:经济的发展,用地的紧张,高层建筑作为城市建筑工程项目越来越多、越来越高,深基坑支护工程是随着高层建筑的发展而出现的一门新的实践工程学,本文浅析合理设计深基坑支护的重要性,对深基坑支护类型、工艺及适用条件进行了归纳。
关键词:深基坑支护工艺1 合理设计支护的意义经济的腾飞,城市的发展,高层建筑越来越多。
在具体的工程中我们发现,深基坑开挖和开挖后地下室的施工还存在着坑边坡土方易失稳的现象,通过大量的工程实践分析其成因,大概有这么几个:(1)对有丰富的地表水,同时地下水水位较高的土层实施基坑开挖,没有进行有效的降、排水措施,导致受到地表水以及地下水的影响出现土体湿化,内聚力降低的现象;(2)开挖基坑过深,但是放坡偏少,开挖不同土层时,没有注意到土的特性的不同,应该对应地放成不同的坡度;(3)虽然实施了边坡支护,不过选择措施不合适,不能满足现场和设计的要求,支护没有起到相应的作用;(4)如果基坑坡顶存在太大的堆载,附近有动荷载,容易导致坡体内剪切应力增大而出现土方失稳。
不过不管什么原因一旦导致深基坑边坡土失稳,将造成局部或大面积塌陷、滑塌,使地基土层受到扰动,承载力降低,施工困难,甚至影响到周边建筑物和设施的安全。
但由于考虑到基坑支护是临时性结构,因此,必须对基坑边坡进行具体分析,采取经济且合理的支护措施。
2 深基坑工程的内容2.1 现场勘察勘察对具体的施工方法的选择和施工顺序起到指导作用,是工程质量和安全的重要保障,通过勘察来确定施工场地的岩土参数与地下水参数,对其随地层位移的限值作出分析;同时也要调查场地附近和周边的建筑设施、地下埋设物和城市道路设施等等外部施工环境。
2.2 支护结构设计这个方面的内容包括挡土墙围护结构、支承体系以及土体加固等几个部分的设计。
同时也要注意与基坑工程的施工方案紧密结合起来搞好支护结构设计,设计必须以勘察和调查结果为主要依据,其中囊括了当地的经验,场地的土体及地下水状况,场地四周环境,安全所允许的地层变形限值等等,还要结合考虑工期和成本因素。
深基坑支护的方法
深基坑支护是指在施工过程中,为了防止土体坍塌,保障人员和设备的安全,采取一系列的措施对基坑进行支护。
常见的深基坑支护方法有:
1. 土钉墙支护:在基坑侧壁钻孔,插入土钉,并通过钢筋网和喷混凝土等材料来加固土体,从而形成一个稳定的支撑结构。
2. 地下连续墙支护:在基坑的周边打入连续的混凝土墙体,通常采用顶墙法、割管灌注法或连续墙龙门吊法,以提供支撑和防护。
3. 钢支撑支护:使用钢板桩、槽钢、U型钢等构件,通过连续或交叉设置搭建形成一个稳定的钢支撑结构,以抵抗土体侧向和垂直力。
4. 土壤冻结支护:通过向土体注入低温冷却的冷冻液体,将周围土体冻结成为一个整体,从而形成一个冻土屏障来支护基坑。
5. 桩基支护:在基坑周边打入钢筋混凝土桩,形成一个固定的边坡或连续墙结构,以增强土体的稳定性。
6. 超前开挖法:通过提前开挖基坑旁边的土体,减小边坡高度,从而降低土体的受力,减轻支撑结构的负荷。
7. 水平内支撑法:在基坑侧壁设置水平的支撑结构,如水平杆、层分度杆等,以增加侧向稳定性。
深基坑支护方法的选择取决于工程地质条件、基坑形状和大小、周边环境等因素。
在进行施工前,应根据现场实际情况进行工程设计和安全评估,选取合适的支护方法,保障施工的安全和效益。
基坑边坡支护专项施工方案3篇【Pa,强度等级M10,添加三乙醇氨早强剂,注浆充盈系数应大于1。
5、喷射混凝土配合比(参考)水泥:砂:石=1:1.5:2.5,水灰比0.45_0.5,掺加速凝剂。
6、土钉墙顶部地面应做混凝土护面并与应地坪相连,护面宽度不小于2m。
土钉墙面层插入基坑底面以下不应小于0.2m;坡顶、坡脚应采取排水措施,在坡面上应设置泄水孔。
八、基坑监测本工程应加强信息化施工,施工期间根据监测资料及时控制和调整施工进度和施工方法。
施工过程中应由专业监测单位进行监测,遇到异常问题及时采取措施。
1、本次测试所采用的具体项目(1)水平、垂直位移的量测主要用于观测边坡、地下管线及邻近建筑物的水平位移及沉降。
管线的测点、相邻建筑物布置测点应与有关管理部门和业主商定。
(2)地下水位的观测布置坑外地下水位观测井,监测坑外地下水位的变动情况。
(3)坑外地表沉降及临近管线、建筑位移在基坑周围进行地表沉降及管线位移监测,有关项目由监测单位和管线单位确定方案。
2、监测报警值(1)围护体位移值:_gt;5mm/d(土方开挖阶段6mm/d)或者累计_gt;50mm。
周边地表沉降大于30mm。
(2)坑外地下水位:_gt;800mm。
(3)地下管线的报警值应根据相关管理部门的规定确定。
3、在围护结构施工前,应对各项量测内容测得初读数,对邻近建筑应记录好初始的位移、倾斜和开裂等情况。
在基坑降水及开挖期间,须做到一日一测。
在基坑施工期间的观测间隔,可视测得的位移及内力变化情况放长或减短。
测得的数据应及时上报甲方、设计院及相关单位和部门。
九、施工注意事项1、基坑开挖宜自场地一侧至另一侧、从高到低分级分段进行。
2、局部土质较差或高差较大处应减小放坡坡度或采取支护措施(如设置挡土墙)。
十、基坑支护方案1、基坑开挖和土钉墙施工应按设计要求自上而下分段分层进行,在机械开挖后,应辅以人工修整坡面,坡面平整度的允许偏差宜为_plusmn;20mm,在坡面喷射混凝土支护前,应清除坡面虚土。
住宅楼深基坑土方开挖及边坡支护专项施工方案一、工程概述二、施工目标1.安全施工,确保工人的人身安全。
2.保证基坑的稳定,防止塌方和渗水问题。
3.保护周边建筑物和道路的安全。
4.在保证质量的前提下,按时完成土方开挖及边坡支护工程。
三、施工方案1.施工前准备工作(1)制定详细的施工方案,明确施工序列和施工方法。
(2)组织人员进行施工前的技术交底和培训,确保每个工人都掌握施工要求和安全措施。
(3)准备施工所需的设备和材料,包括挖掘机、推土机、水泥和钢筋等。
(4)确定施工现场的临时交通路线和施工区域的范围。
2.基坑土方开挖(1)按照设计要求进行基坑的标高定位和揭线。
(2)采用机械开挖的方式进行土方开挖,根据土体的性质选择合适的施工设备。
(3)在挖掘机操作的时候,应注意切坡和挖土的平衡,防止土坡的坍塌和滑塌。
(4)挖掘机挖土的同时,要对土体进行分层处理和检验,确保土体的稳定性和承载能力。
3.边坡支护(1)根据土壤的性质和坡度,选择合适的边坡支护方式,可以采用护坡挡墙、钢筋混凝土梁等。
(2)在边坡支护的过程中,要注意选择合适的支护材料和支护方式,确保支护的稳定性和持久性。
(3)边坡支护完成后,进行验收检查,确保支护工程符合设计要求。
4.安全监测与管理(1)在施工过程中,进行安全监测和管理,包括土体位移、周边建筑物的震动等。
(2)安装监测仪器,随时监测土方开挖和边坡支护的变形和变化情况。
(3)制定安全管理制度,加强施工现场的安全教育和培训,确保工人的安全。
五、施工组织与控制1.确定工程的施工进度和施工计划,合理安排各个施工工序的顺序。
2.按照施工方案和施工计划进行施工,确保施工的顺利进行。
3.严格质量控制,对土方开挖和边坡支护工程进行验收和检查。
4.加强与监理单位和设计单位的沟通和协调,保障施工的质量和进度。
六、施工安全措施1.挖掘机操作人员必须持有效的操作证书,并按照操作规程进行作业。
2.施工现场设置明显的警示标志和防护措施,禁止非施工人员进入施工区域。
深基坑边坡支护施工方案1工艺流程(1)锚杆及土钉墙施工工艺流程:锚杆及土钉墙施工工艺流程:基坑开挖→修整边壁→测量、放线→人工洛阳铲钻孔→插杆筋→压力注浆→养护→边坡立面平整→绑扎钢筋网片→进行喷射混凝土作业→混凝土面层养护→裸露主筋除锈→上横梁(或预应力锚件)→焊锚具→张拉(仅限于预应力锚杆)→锚头(锚具)锁定。
(2)排桩施工工艺流程:桩位测量放线→安装钻机并定位→钻进成孔→清孔并检查成孔质量→下放钢筋笼、导管→灌注混凝土→拔出护筒→孔口回填→桩机移位→桩养护2 操作工艺(1)排桩墙施工桩位测量放线:根据现场坐标基准点及高程基准点测出桩位中心,打入定位桩.锅锥钻机就位:移动钻机,使转盘中心与桩位中心重合,再找平垫实,使机座周正水平。
使桩位偏差<50mm,竖向偏差〈1%。
钻进成孔:锅锥顺钻杆滑落孔底后,钻杆回转带动锅锥回转,锅底的锅齿将土刮入锅中.锅装满土后卷扬机将锅顺杆提升到孔口,卸掉泥土,反复进行直达设计孔深。
一次清孔:钻进到设计孔深后,将钻具略微提起,慢速回转,测到终孔孔深才能提钻,否则继续清孔。
(2)基坑开挖基坑开挖应按设计规定以每2。
5m为一层,分段开挖,做到随时开挖,随时支护,随时喷混凝土,在完成上层作业面的锚杆预应力张拉或土钉与喷射混凝土以前,不宜进行下一层土的开挖。
本基坑南北间距约为132m,东西间距约为72m,当上一层土钉或锚杆未完时,允许在距离四周边坡10m的基坑中部自由开挖,但应注意与分层作业区的开挖相协调;严禁边壁出现超挖或造成边壁土体松动或挡土结构的破坏。
(3)排水锚杆、土钉支护宜在排除作业层地下水的情况下进行施工.基坑东、南侧坡顶地面采用C20混凝土硬化至围墙脚部;基坑北侧坡顶向外延伸2m范围内用C20混凝土硬化,并且里高外低,便于径流远离边坡。
坡顶排水沟与基坑边缘的距离为2。
0m,沟底和两侧找平砂浆中掺入5%的防水剂。
为了排除积聚在基坑内的渗水和雨水,在坑底设置排水沟和集水坑,坑内积水应及时抽出,排水沟和积水坑宜用砖砌并用砂浆抹面以防止渗漏。
高填方区深基坑边坡支护设计与施工研究随着我国城市化进程逐渐加快,城市建筑的规模正在不断的扩大,人们对于建筑工程的地下空间要求越来越高,这就导致了深基坑工程在逐渐的增加。
深基坑支护工程的设计与施工难度较高,如果基坑边坡由回填土组成,那么,由于一般回填土的结构松散、土质差,导致力学指标低,特别是剪切指标低,边坡的稳定性差,支护难度大。
在基坑开挖前,需对场地的地质情况进行详细的勘察,必须查明回填土的土类、密实度、回填时间等,还需进行取样试验,得出回填土的物力学指标,在不能取样的场地,或取样困难的土类,应尽可能地进行一些原位测试工作,取得相应的指标数据。
一、回填土的类型及特点自然界的岩土类别众多,可以回填的土类也非常多,其分类的标准和方式也不是统一的,本文仅在基坑边坡中常见的岩土种类进行分类,一般场地中经过事先碾压或夯实的填土,其达到一定的密实度,边坡自稳能力较好,在本文中不讨论这类情况。
本文主要讨论未经人工处理过的回填土,未自重固结,或固结时间不够,欠固结的土类。
其特点是结构松散,或较松散的,分类的方式可按照填料的成分来分。
1、碎石、块石类土该类土多为工程建设弃渣,块石及碎石的粒径大小不一,比较杂乱,块石间孔隙较大,透水性好,也容易赋存滞水。
该类土在山区地区临近山地坡脚较常见,一般在抛填时,自上而下的抛填方式导致较大粒径的块石滚落在坡脚,而上部的粒径相对较小,该类边坡稳定性相对较好。
2、一般粘土类该类土较为均匀,但土的含水量不一,状态不一,可能还夹有一些粗颗粒。
透水性相对较差,滞水的水量不是很大,该类边坡的稳定性差。
3、杂填土类该类土为最常见,一般在城镇的建设中均会有大量的建筑垃圾、甚至部分生活垃圾回填,夹杂有碎石、块石、粘土、耕土、植物等等,成分很杂乱。
结构松散,土层的均匀性极差。
该类土透水性好,也容易赋存滞水,该类边坡的稳定性差。
二、高回填土边坡的破坏模式由于高层建筑一般位于城市内,城区有众多建筑和纵横的道路,建设场地红线周边不可能有很大的空间,基坑边坡一般是自立或者坡率较大的,也就是说基坑边坡一般不能按照自然放坡达到稳定。
目录一、编制依据 (2)二、工程概况 (2)三、基坑支护方案的选择 (3)四、施工部署 (4)五、基坑开挖 (5)六、边坡支护 (7)七、安全保证组织措施 (16)八、安全保证技术措施 (16)九、边坡安全监测 (17)十、施工应急措施 (18)十一、文明施工 (20)附图一、编制依据1、《建筑地基基础设计规范》GB50007—2011;2、JGJ120-2012《建筑基坑支护技术规程》;3、GB50330—2002《建筑边坡工程技术规范》4、GB50202-2002《建筑地基基础工程施工质量验收规范》;5、《挡土墙国家标准图集》04J0086、《建筑结构荷载规范》GB50009-—20127、《混凝土结构设计规范》GB50010--20108、本工程《岩土工程地质勘察报告》.9、挡土墙设计方案10、本工程有关设计图纸。
11、国家住房和城乡建设部《关于印发(危险性较大的分部分项工程安全管理办法)》。
二、工程概况1、工程概况本工程建设地点位于松阳县乌行山,洞阳观旅游度假村二期滨水酒店相对标高±0.000相当于绝对标高160.900m。
地上二层、地下一层建筑面积3469。
1 m²,基础采用柱下独立天然基础和防水板,基础持力层为③-2层中微风化砂砾岩,地基承载力标准值fka=2000kPa,基础入持力层≥200mm。
防水板厚度400mm,地下室防水板板、剪力墙及顶板混凝土强度等级为C30,抗渗等级S6. 因场地在山坡部位地形比较复杂开挖深度1~4.85m,土、石方开挖工程量约4500m³。
2、地基基础分析及水文特征根据《岩土工程地质勘察报告》坑壁侧壁出露的土层主要有①层素填土、②—1层粉质粘土、②—2含碎石粉质粘土、③—1层强风化砂砾岩和③-2层中微风化砂砾岩。
土\岩石边坡按l:1坡度放坡开挖。
本工程与度假酒店紧邻地下室基坑开挖深度较深,深度达到4。
85m,属于局部深基坑。
深基坑支护方案
深基坑支护方案通常涉及多个方面,包括但不限于以下方面:
1.边坡支护的设计思路与安排:考虑施工的安全性、工程质量和成本优化等因素。
首先,进行施工场地的勘察,了解地下管线的分布、支护段界限、施工基坑情况等。
接着,确定具体的施工步骤,如钢管桩施工、土方开挖、锚杆和混凝土施工等。
2.排水与降水方法:在土方开挖过程中,当开挖底面标高低于地下水位的基坑时,
需要采取有效的降水措施,以防止土方开挖困难、边坡塌方和地基被水浸泡等问题。
常用的方法包括设明沟、集水井排水法等。
3.排桩或地下连续墙:排桩通常由挡土墙、支架或土锚以及防渗帷幕组成,可采
用悬臂支护结构、拉锚支护结构、内支护结构和锚杆支护结构等形式。
地下连续墙具有施工振动小、噪声低、墙体刚度大、防渗性能好等优点,可与内支撑、自上而下法和半自上而下法结合使用。
以上仅为深基坑支护方案的部分内容,具体的支护方案还需要根据工程的具体情况进行详细设计和规划。
在实际操作中,建议咨询专业的工程师或相关机构,以确保工程的安全和顺利进行。
项目三土方边坡与基坑支护职业能力目标基坑是建筑工程的一部分,尤其是对深基坑开挖与支护问题,引起了各方面的广泛重视;由于影响其工程质量的因素复杂,因此,在基坑工程施工中,处理不当时可能会出现一些意外的情况,给工程造成一定的经济损失;通过本项目的学习,应了解土压力的类型,熟悉其影响因素,土方边坡的稳定分析,基坑支护结构的类型及选型原则,基坑支护结构的破坏形式与现场监测;关键词中英文主动土压力Active earth Pressure;静止土压力Earth pressure at rest ;被动土压力Passive earth Pressure;边坡Side slope任务一土压力的类型与影响因素在建筑工程地基与基础施工中,为了防止土坡发生滑动和坍塌,需用各种类型的挡土结构物加以支挡;支挡结构物的典型代表就是挡土墙,它是用来支撑天然或人工斜坡不致坍塌以保持土体稳定性,或使部分侧向荷载传递分散到填土上的支挡结构物;要想解决好基坑支护问题,需要我们学习相关的一些理论知识;一、土压力的类型土压力是指由于土体自重、土上荷载或结构物的侧向挤压作用,挡土结构物所承受的来自墙后填土的侧向压力;土压力的确定是挡土支护施工设计的重要依据;1、土压力试验在实验室里通过挡土墙的模型试验,可以测得当挡土墙产生不同方向的位移时,将产生三种不同性质的土压力;在一个长方形的模型槽中部插上一块刚性挡板,在板的一侧安装压力盒,填上土;板的另一侧临空;在挡板静止不动时,测得板上的土压力为E0 ;如果将挡板向离开土体的临空方向移动或转动时,则土压力逐渐减小,当墙后土体发生滑动时达到最小值,测得板上的土压力为E a ;反之,将挡板推向填土方向则土压力逐渐增大, 图6-2 墙身位移与土压力的关系当墙后土体发生滑动时达到最大值,测得板上的土压力为Ep;土压力随挡板移动而变化的情况如图6-2 所示;2、土压力种类上述土压力试验表明,根据挡土墙的位移情况和墙后土体所处的应力状态,可将土压力分为以下三种;,可以将土压力分为以下三种情况;1 静止土压力 E;如图6-3a 所示,挡土墙在墙后填土的推力作用下,不发生任何方向的移动或转动时,墙后土体没有破坏,而处于弹性平衡状态,作用于墙背的水平压力称为静止土压力E;例如,地下室外墙在楼面和内隔墙的支撑作用下几乎无位移发生,作用在外墙面上的土压力即为静止土压力;2 主动土压力 E;如图6-3b 所示,挡土墙在填土压力作用下,向着背离土体方a向发生移动或转动时,墙后土体由于侧面所受限制的放松而有下滑的趋势,土体内潜在滑动面上的剪应力增加,使作用在墙背上的土压力逐渐减小;当挡土墙的移动或转动达到一定数值时,墙后土体达到主动极限平衡状态,此时作用在墙背土体主动推墙;上的土压力,称为主动土压力Ea图6-3 土压力的类型3被动土压力 Ep;如图6-3c 所示,当挡土墙在较大的外力作用下,向着土体的方向移动或转动时,墙后土体由于受到挤压,有向上滑动的趋势,土体内潜在滑动面上的剪应力反向增加,使作用在墙背上的土压力逐渐增大;当挡土墙的移动或转动达到一定数值时,墙后土体达到被动极限平衡状态,此时作用在墙背上的土压力,称为被动土压力Ep土体被动地被墙推移;静止土压力的计算主要应用弹性理论的方法;主动土压力和被动土压力的计算主要应用朗肯土压力理论和库仑土压力理论以及由此发展起来的一些近似方法及图解法;试验研究表明,在相同条件下,主动土压力小于静止土压力,而静止土压力又小于被动土压力,即: Ea <Eo< Ep;二、影响土压力的因素1、挡土墙的位移;挡土墙的位移或转动方向和位移量的大小,是影响土压力大小的最主要因素;墙体位移的方向不同,土压力的性质就不同;墙体方向和位移量大小决定着所产生的土压力的大小;其它条件完全相同,仅仅挡土墙的移动方向相反,土压力的数值相差可达20 倍左右;2、挡土墙类型;挡土墙的剖面形状,包括墙背为数值还是倾斜、光滑还是粗糙,都关系采用何种土压力计算理论公式和计算结果;如果挡土墙的材料采用素混凝土或钢筋混凝土,可认为墙背表面光滑,不计摩擦力;若是砌石挡土墙,则必须计入摩擦力,因而土压力的大小和方向都不相同;3、填土的性质;挡土墙后填土的性质,包括填土松密程度即重度、干湿程度即含水率、土的强度指标内摩擦角和粘聚力的大小,以及填土表面的形状水平、上斜或下斜等,都将会影响土压力的大小;任务二土方边坡与稳定在工程建设中常会遇到土坡稳定性问题,如道路路堤,基坑的放坡开挖和山体边坡等;边坡由于丧失稳定性而滑动,称为“滑坡”; 如果施工中处理不当,一旦发生滑坡将会造成严重的工程事故,不仅影响工程进度,甚至威及生命安全和工程存亡,应该引起重视;因此应正确认识土方边坡与稳定方面的相关知识,积极采取必要时的工程措施;一、土方边坡土坡就是具有倾斜表面的土体;由于地质作用自然形成的土坡,如山坡、江河的岸坡等称为天然土坡;经过人工开挖,填土工程建造物如基坑、渠道、土坡、路堤等的边坡,通常称为人工土坡;土坡的外形和各部分名称,如图6-35 所示;在土体自重和外力作用下,坡体内将产生切应力,当切应力大于土的抗图6-35 土坡的各部分名称剪强度时,即产生剪切破坏,如靠坡面处剪切破坏面积很大,则将产生一部分土体相对另一部分土体滑动的现象,称为滑坡或塌方;为保证施工时土体的稳定,防止塌方,保证施工安全,当挖土超过一定的深度时,深度不宜超过下列规定:密实、中密的砂土和碎石类土——;硬塑、可塑的粉土及粉质粘土——;硬塑、可塑的粘土和碎石类土填充物为粘性土—;坚硬的粘土—;当地质条件良好,土质均匀且地下水位低于基坑槽或管沟底标高时,挖土深度在5m以内不加支撑的边坡最陡坡度应符合表1-3规定,即使按规定放坡,施工中也要随时检查边坡的稳定情况;表1—3注:1、静载指堆土或材料等,动载指机械挖土或汽车运输作业等;静载或动载距挖方边缘的距离应保证边坡直立壁的稳定,堆土或材料应距挖方边缘以外,高度不超过;2、当有成熟的施工经验时,可不受本表限制;二、影响土方边坡稳定的因素土方边坡稳定在工程上具有很重要的意义,特别要注意外界不利因素对土坡稳定的影响;影响土方边坡稳定主要有以下因素:1土坡坡度;土坡坡度有两种表示方法:一种以高度和水平尺度之比来表示;另一种以坡角θ的大小来表示;坡角θ越小则土坡越稳定,但不经济;坡角θ越大则土坡越经济,但不安全;2土坡高度;土坡高度H 是指坡脚到坡顶之间的铅直距离;试验研究表面,对于粘性土坡,其他条件相同时,坡高越小,土坡越稳定;3土的性质;土的性质越好,土坡越稳定;例如,土的抗剪强度指标:粘聚力C 、内摩擦角Φ值大的土坡比C、Φ值小的土坡稳定;有时由于地震等原因,使Φ降低或产生孔隙水压力,可能使原来稳定的边坡失稳滑动,地下水位上升,对土坡不利; 4气象条件;若天气晴朗,土坡处于干燥状态,土的强度高,土坡的稳定性就好;若在雨季,尤其是连续大暴雨,大量的雨水入渗,使土的强度降低,可能导致土坡滑动;5地下水的渗透;当土坡中存在与滑动方向一致的渗透力时,对土坡稳定不利;例如,水库土坝下游土坡可能发生这种情况;6震动荷载;震动荷载,如地震、工程爆破、车辆震动等,会产生附加的震动荷载,降低土坡的稳定性;震动荷载还可能使土体中的孔隙水压力升高,降低土体的抗剪强度;震动能量愈大则愈威险;7人类活动和生态环境;人类活动和生态环境,将对土坡的稳定性产生影响;例如,经过漫长时间形成的天然土坡原本是稳定的,如在土坡上建造房屋,增加了坡上荷载,有可能引起土坡的滑动;如在坡脚建房,为增加平地面积,往往将坡脚的缓坡削平,则土坡更容易失稳发生滑动;三、土坡滑动失稳的理论分析从影响土方边坡稳定的因素来看,土坡滑动失稳的原因一般有以下两类情况:l外界力的作用破坏了土体内原来的应力平衡状态;如基坑的开挖,由于地基内自身重力发生变化,改变了土体原来的应力平衡状态;又如路堤的填筑、土坡顶面上作用外荷载、土体内水的渗流、地震力的作用等也都会破坏土体内原有的应力平衡状态,导致土坡坍塌;2土的抗剪强度由于受到外界各种因素的影响而降低,促使土坡失稳破坏;如外界气候等自然条件的变化,使土时干时湿、收缩膨胀、冻结、融化等,从而使土变松,强度降低;土坡内因雨水的浸入使土湿化,强度降低;土坡附近因打桩、爆破或地震力的作用将引起土的液化或触变,使土的强度降低;四、施工中边坡失稳的原因与措施根据工程实践调查分析,造成边坡塌方的主要原因有以下几点:1、未按规定放坡土体本身稳定性不够而产生塌方;2、基坑上边缘附近堆物过重,使土体中产生的剪应力超过土体的抗剪强度;3、地面水及地下水渗入边坡土体,使土体的自重增大,抗剪能力降低,从而产生塌方;因此,防止边坡塌方的主要措施有:1、放足边坡:边坡的留置应合乎规范的要求,其坡度大小,则应根据土壤的性质、水文地质条件、施工方法、开挖深度、工期的长短等因素而定;施工时应随时观察土壁变化情况;2、在边坡上堆土方或材料以及使用施工机械时,应保持与边坡边缘有一定安全距离;当土质良好时,堆土或材料应距挖方边缘以外,高度不应超过;在软土地区开挖时,应随挖随运,以防由于地面加荷引起的边坡塌方;3、作好排水工作,防止地表水、施工用水和生活废水浸入边坡土体,在雨期施工时,应更加注意检查边坡的稳定性,必要时加设支撑;当基坑开挖完后,可采用塑料薄膜覆盖,水泥砂浆抹面、挂网抹面或喷浆等方法进行边坡坡面防护,可有效防止边坡失稳;在土方开挖过程中,应随时观察边坡土体,当出现如裂缝、滑动等失稳迹象时,应暂停施工,必要时将施工人员和机械撤出至安全地点;同时,应设置观察点,并对土体平面位移和沉降变化作好记录,随后与设计单位联系,研究相应的措施,如排水、支档、减重反压和护坡等方法进行综合治理;有些情况下,也可采用通风疏干、电渗排水,爆破灌浆,化学加固等方法,改善滑动带岩土的性质,以稳定边坡;五、边坡稳定分析简介地基稳定性可采用圆弧滑动面法进行验算.最危险的滑动面上诸力对滑动中心所产生的抗滑力矩与滑动力矩应符合下式要求:MR/MS≥式中MS---滑动力矩;MR---抗滑力矩.当边坡坡角大于45°,坡高大于8m时,尚应按式MR/MS≥验算坡体稳定性;在建设场区内,由于施工或其他因素的影响有可能形成滑坡的地段,必须采取可靠的预防措施,防止产生滑坡;对具有发展趋势并威胁建筑物安全使用的滑坡,应及早整治,防止滑坡继续发展;必须根据工程地质、水文地质条件以及施工影响等因素,认真分析滑坡可能发生或发展的主要原因,可采取下列防治滑坡的处理措施:1.排水:应设置排水沟以防止地面水浸入滑坡地段,必要时尚应采取防渗措施;在地下水影响较大的情况下,应根据地质条件,做好地下排水工程;2.支挡:根据滑坡推力的大小、方向及作用点,可选用重力式抗滑挡墙、阻滑桩及其他抗滑结构;抗滑挡墙的基底及阻滑桩的桩端应埋置于滑动面以下的稳定土岩层中;必要时,应验算墙顶以上的土岩体从墙顶滑出的可能性;3.卸载:在保证卸载区上方及两侧岩土稳定的情况下,可在滑体主动区卸载,但不得在滑体被动区卸载;4.反压:在滑体的阻滑区段增加竖向荷载以提高滑体的阻滑安全系数;四、土坡稳定分析的几个问题1. 关于挖方边坡和天然边坡人工挖出和天然存在的土坡是在天然地层中形成的,但与人工填筑土坡相比有独特之处;对均质挖方土坡和天然土坡稳定性分析,与人工填筑土坡相比,求得的安全系数比较符合实测结果,但对于超固结裂隙粘土,算得的安全系数虽远大于1,表面上看来已稳定,实际上都已破坏,这是由超固结粘土的特性决定的;随着剪切变形的增加,抗剪强度增大到峰值强度,随后降至残余值,特别是粘聚力下降较大,甚至接近于零,这些特性对土坡稳定性有很大影响;2. 关于圆弧滑动法该法把滑动面简单地当做圆弧,并认为滑动土体是刚性的,没有考虑分条之间的推力,或只考虑分条间水平推力毕肖普公式,故计算结果不能完全符合实际,但由于计算概念明确,且能分析复杂条件下土坡稳定性,所以在各国实践中普遍使用;由均质粘土组成的土坡,该方法可使用,但由非均质粘土组成的土坡,如坝基下存在软弱夹层或土石坝等,其滑动面形状发生很大变化,应根据具体情况,采用非圆弧法进行计算比较;不论用哪一种方法.都必须考虑渗流的作用;3. 土的抗剪强度指标选用问题选用的土抗剪强度指标是否合理,对土坡稳定性分析结果有密切关系;应结合边坡实际加荷情况,填料性质和排水条件等,合理选用土的抗剪强度指标;4. 安全系数选用问题从理论上讲,处于极限平衡状态的土坡,其安全系数K=1,所以:若设计土坡时的K>1,就应满足稳定要求;但实际工程中,有些土坡安全系数K>1,还是发生了滑动;而有些土坡安全系数K<1,却是稳定的;这是因为影响安全系数的因素很多,如抗剪强度指标的选用、计算方法的选择、计算条件的选择等;目前对土坡稳定容许安全系数的数值,各部门尚无统一标准,选用时要注意计算方法、强度指标和容许安全系数必须相互配合,并要根据工程不同情况,结合当地已有经验加以确定; 5. 成层土土坡或地表面有堆载等复杂情况下土坡稳定性分析当土坡滑动体由两层或更多土层组成时,滑动面往往贯穿多个土层;土坡稳定性分析时,土体自重的应该根据滑动体的具体组成,采用相应的重度计算;抗剪强度也应该依据实际情况分段采用相应的抗剪强度指标计算;当地表面有堆载时,按划分后的土条,将堆载分摊到相应的土条顶面;土坡稳定性分析时,将堆载作为竖直向的力,计入相应的平衡方程;6.土坡稳定的允许高度建筑地基基础设计规范GB50007-2002 规定:边坡的坡度允许值,应根据当地经验,参照同类土层稳定坡度确定,当土质良好且均允匀,可按表6-6 确定;表6-6土质边坡的坡度允许值土坡失稳是土体内部应力状态发生显著改变的结果,土坡稳定性分析的实质就是土的抗剪强度问题的实际应用;影响土坡稳定的因素很多,如抗剪强度指标的选用、计算方法的选择、计算条件的选择等;目前对土坡稳定容许安全系数的数值,各部门尚无统一标准,选用时要注意计算方法、强度指标和容许安全系数必须相互配合,并根据工程情况,结合当地经验确定;任务三基坑支护结构的类型及选型原则城市高层建筑的迅速发展,地下停车场、人防工程、地铁等工程都需要深基坑开挖,加上基坑周围通常存在交通要道、已建建筑或管线等各种构筑物,无疑增加了基坑开挖的难度;而要保护基坑及其周边建、构筑物的安全使用,支护结构的合理选择是关键;我们知道,一般的基坑支护大多是临时结构、投资太大也易造成浪费,但支护结构不安全又势必会造成工程事故;因此,如何安全、合理地选择合适的支护结构并根据基坑工程的特点进行科学的设计是基坑工程要解决的主要内容;以下简单介绍当前基坑工程中常见的支护结构类型及不同地基土条件下的基坑工程支护结构选型原则;一、基坑支护的类型及其特点和适用范围1、放坡开挖放坡开挖是根据基坑具体施工条件和不同土质的要求放足边坡进行土方开挖;适用于周围场地开阔,周围无重要建筑物的情况;其要求边坡土体稳定,位移控制严格,由于不需支挡材料,经济性好,但回填土方较大;2、排桩支护由于其对各种地质条件的适应性、施工简单易操作且设备投入一般不是很大,在我国排桩式支护是应用较多的一种;排桩通常多用于坑深7~15m的基坑二程,做成排桩挡墙,顶部浇筑砼圈梁,它具有刚度较大、抗弯能力强、变形相对较小,施工时无振动、噪音小,无挤土现象,对周围环境影响小等特点;当工程桩也为灌注桩时,可以同步施工,从而有利于施工组织、工期短;当开挖影响深度内地下水位高且存在强透水层时,需采用隔水措施或降水措施;当开挖深度较大或对边坡变形要求严格时,需结合锚拉系统或支撑系统使用;排桩支护一般造价较高;3、深层搅拌水泥土围护墙深层搅拌水泥土围护墙是采用深层搅拌机就地将土和输入的水泥浆强行搅拌,形成连续搭接的水泥土柱状加固体挡墙;水泥土围护墙优点:由于一般坑内无支撑,便于机械化快速挖土;具有挡土、止水的双重功能;一般情况下较经济;施工中无振动、无噪音、污染少、挤土轻微,因此在闹市区内施工更显出优越性;水泥土围护墙的缺点:首先是位移相对较大,尤其在基坑长度大时,为此可采取中间加墩、起拱等措施以限制过大的位移;其次是厚度较大,只有在红线位置和周围环境允许时才能采用,而且在水泥土搅拌桩施工时要注意防止影响周围环境;4、高压旋喷桩高压旋喷桩所用的材料亦为水泥浆,它是利用高压经过旋转的喷嘴将水泥浆喷入土层与土体混合形成水泥土加固体,相互搭接形成排桩,用来挡土和止水;高压旋喷桩的施工费用要高于深层搅拌水泥土桩,但其施工设备结构紧凑、体积小、机动性强、占地少,并且施工机具的振动很小,噪音也较低,不会对周围建筑物带来振动的影响和产生噪音等公害,它可用于空间较小处,但施工中有大量泥浆排出,容易引起污染;对于地下水流速过大的地层,无填充物的岩溶地段永冻土和对水泥有严重腐蚀的土质,由于喷射的浆液无法在注浆管周围凝固,均不宜采用该法;5、钢板桩钢板桩有平板形和波浪形两种,采用带锁口或钳口的热轧型钢,依靠锁口或钳口相互咬合连接,形成钢板桩支护钢板桩之间通过锁口互相连接,形成一道连续的挡墙, 同时也具有较好的隔水能力;钢板桩截面积小,易于打入;U形、z形等波浪式钢板桩截面抗弯能力较好;钢板桩在基础施工完毕后还可拔出重复使用;钢板桩支护适于软弱场地地基和地下水位高且水量丰富的地区,具有强度高、阻水、施工简便、快捷等特点,悬臂时以H≤4m为宜;缺点一是一次投入钢材多;二是不能完全挡水和对土中的细小颗粒阻挡效果不佳,在地下水位高的地区还需采取隔水或降水措施;三是抗弯能力较弱,支护刚度小,开挖后变形较大;因此基坑深度4m时,通常在桩顶部设置一道支撑或锚拉;施工工艺简单但对设备要求较高,在同等条件下一般比其他支护形式工期短,造价相对较高;目前,也有用由槽钢正反扣搭接或并排组成的一种简易钢板桩围护墙;槽钢长6~8m ,型号由计算确定;其特点为:槽钢具有良好的耐久性,基坑施工完毕回填土后可将槽钢拔出回收再次使用;施工方便,工期短;不能挡水和土中的细小颗粒,在地下水位高的地区需采取隔水或降水措施;抗弯能力较弱,多用于深度≤4m的较浅基坑或沟槽,顶部宜设置一道支撑或拉锚;支护刚度小,开挖后变形较大;6、钢筋混凝土板桩钢筋混凝土板桩具有施工简单、现场作业周期短等特点,曾在基坑中广泛应用,但由于钢筋混凝土板桩的施打一般采用锤击方法,振动与噪音大,同时沉桩过程中挤土也较为严重,在城市工程中受到一定限制;此外,其制作一般在工厂预制,再运至工地,成本较灌注桩等略高;但由于其截面形状及配筋对板桩受力较为合理并且可根据需要设计,目前已可制作厚度较大如厚度达500mm 以上的板桩,并有液压静力沉桩设备,故在基坑工程中仍是支护板墙的一种使用形式;7、钻孔灌注桩钻孔灌注桩围护墙是排桩式中应用最多的一种,在我国得到广泛的应用;其多用于坑深7~15m 的基坑工程,在我国北方土质较好地区已有8~9m 的臂桩围护墙;钻孔灌注桩支护墙体的特点有:施工时无振动、无噪音等环境公害,无挤土现象,对周围环境影响小;墙身强度高,刚度大,支护稳定性好,变形小;当工程桩也为灌注桩时,可以同步施工,从而施工有利于组织、方便、工期短;桩间缝隙易造成水土流失,特别时在高水位软粘土质地区,需根据工程条件采取注浆、水泥搅拌桩、旋喷桩等施工措施以解决挡水问题;适用于软粘土质和砂土地区,但是在砂砾层和卵石中施工困难应该慎用;桩与桩之间主要通过桩顶冠梁和围檩连成整体,因而相对整体性较差,当在重要地区,特殊工程及开挖深度很大的基坑中应用时需要特别慎重;8、地下连续墙通常连续墙的厚度为600mm、800mm、1000mm,也有厚达1200mm的,但较少使用;地下室连续墙作为基坑支护结构,墙体刚度大,集挡土、截水、防渗和承重于一体,是支护结构中最强的支护型式;适用于地质条件差和复杂,基坑深度大,周边环境要求较高的基坑;地下连续墙可作为地下室墙体的组成部分,对于开挖量大、基坑深的工程更显出独特的优越性,是一种很有前途的基坑支护方式,但需专用机具设备,机械化程度比较高,它的采用宜与内衬结合后做为地下室外墙使用,从而降低支护结构的成本;地下连续墙的优越性早巳为世界公认,在大深度基坑和复杂的工程环境下非它莫属;唯其造价较高,施工要求专用设备,。
深基坑和边坡支护质量控制要点
1 基本规定
1.1 深基坑工程施工前必须办理质量监督手续。建设单
位和施工单位在办理建筑工程质量监督手续时,应提交以下
资料:
(1)工程招投标文件;
(2)施工、监理、监测合同;
(3)分包单位施工资质;
(4)工程地质勘察报告;
(5)专项设计方案、图纸及专项设计方案专家评审组报告;
(6)施工图审查机构出具的设计方案复核证明;
(7)经施工企业技术负责人和总工程师批准的专项施工方
案;
(8)监理规划。
建设单位或者工程总承包单位应当按照承发包有关管
理规定,择优选择具备相应资质和能力的深基坑工程勘察、
设计、施工、监理和监测单位。
建设单位应按要求委托监测单位。
1.2 支护结构施工及使用的原材料和成品、半成品应做
进场复检。围护结构的施工质量验收合格后方可进行土方开
挖。
1.3 基坑开挖及土方运输方案按专项施工方案进行。土
方开挖的顺序、方法必须与设计方案相一致,并遵循“开槽
支撑,先撑后挖,分层开挖,严禁超挖”的原则。
1.4 基坑开挖过程中,基坑周边严禁超堆荷载,应采取
措施防止碰撞支护结构、工程桩或扰动基底原状土。
1.5 基坑土方工程验收必须确保支护结构安全和周围环
境安全为前提。按开挖监控方案要求进行基坑监测。
1.6 发生异常情况时,应立即按应急方案采取相应措施。
2 监督程序和内容
2.1 办理基坑支护工程质量监督手续后的第二个工作
日,建设单位组织监理、施工、监测、专项设计单位到施工
现场进行设计交底,质量监督部门参加设计交底并提出质量
监督方案,各方了解对专项施工组织要求、施工技术标准,
基坑土方开挖程序、现场检测试验监测要求和监督要求。
2.2 支护结构施工过程监督抽查内容:
检查支护结构原材料和成品、半成品及构件质量保证文
件是否齐全和复验报告是否合格;
检查施工方法及技术要求是否与专项施工方案一致;
2.3 基坑土方开挖前监督验收内容:
支护结构的施工质量检查检测结果能否达到设计与规
范标准的验收要求。
控制地面堆载、地表水、地下水的措施是否到位;
对邻近建(构)筑物、道路,供电及市政管线的保护措
施、监控措施是否到位,监测方案是否得到落实;
土方开挖及运输方案是否按专项施工方案进行。
2.4 基础施工前进行竣工验收并形成验收文件。未经验
收或验收不合格的不得进入下道工序施工。竣工验收时应提
交以下资料:
专项设计文件资料;
支护结构原材料和成品、半成品及构件质量合格证和质
量鉴定文件;
支护结构工程施工记录及隐蔽工程验收文件;
检测试验及见证取样文件;
基坑监测报告或监测结果;
其他必须提供的文件或记录。
3 排桩墙支护
3.1 桩位偏差不宜大于50mm,垂直度不宜大于0.5%。
3.2 钻孔灌注桩桩底沉渣不宜大于200mm,桩长不小于
设计长度。
3.3 排桩宜采取隔桩施工,邻桩成孔施工应在灌注混凝
土24小时后进行。
3.4 采用低应变动测法检测桩身完整性,检测数量不宜
少于总桩数的10%,且不得少于5根。用钻芯法作补充检测
时,检测数量不宜少于总桩数的2%,且不得少于3根。
4 锚杆及土钉墙支护
4.1 一般情况下,应遵循分段开挖、分段支护的原则。
4.2 锚杆钻孔水平方向孔距在垂直方向误差不大于
100mm,倾斜度不大于1度,长度偏差不大于30mm。
4.3 预应力锚杆必须做基本试验和验收试验,锚杆锁定
力应符合设计要求。设计有抗拔力要求的锚杆必须做验收试
验。验收试验数量不应少于总数的5%,且不得少于3根。
4.4 浆体强度应送样检验。
4.5 墙面喷射混凝土厚度及强度采用钻孔检测,钻孔数
为每100m2墙面积一组,每组不应少于3点。
5 水泥土墙
5.1 桩位偏差不宜大于50mm,垂直度不宜大于0.5%。
5.2 应采取切割搭接法施工。
5.3 设计开挖龄期采用钻芯法检测桩身完整性,检测数
量不宜少于总桩数的2%,且不得少于5根;并根据设计要
求进行单轴抗压强度试验。