4变形体力学概述
- 格式:ppt
- 大小:4.76 MB
- 文档页数:41
土木工程力学(本)第四章静定结构的位移计算学习要求1. 理解变形体体系虚功原理的内容及其应用。
2. 理解并熟练掌握静定结构位移计算的一般公式。
3. 熟练掌握静定结构在荷载作用下的位移计算方法及图乘法。
4. 掌握支座位移和温度改变等因素作用下的位移计算方法。
5. 了解线弹性结构的互等定理。
6. 理解静定结构的基本力学特性。
学习重点1. 变形体体系的虚功原理及其应用。
2. 静定结构位移计算的一般公式和不同外因作用下的应用。
3. 图乘法计算荷载作用下静定梁和刚架等的位移。
4. 静定结构的基本力学特性。
常见问题解答1.什么是结构的变形和位移?变形,是指结构或构件的截面形状发生改变,而位移则是指结构各处位置的移动。
静定结构产生位移的原因有荷载作用、温度变化、支座位移、制造误差、材料收缩等。
荷载作用使静定结构产生内力,进而发生变形,导致结构产生位移。
温度变化时,静定结构产生位移,不产生内力。
支座位移(移动或转动)时,静定结构既无内力也无变形产生,只发生刚体位移。
2.静定结构位移计算时采用了什么假设条件?静定结构位移计算时,通常采用以下假设条件:(1)结构、构件的材料符合胡克定律,即应力应变成线性关系。
(2)结构、构件发生的变形与其几何尺寸相比极其微小,因此,可以认为结构或构件的几何形状和尺寸以及荷载的作用位置及方向在变形前后保持不变。
满足上述假设条件的结构体系称为线弹性结构。
线弹性结构中的结构体始终是连续的,位移与荷载之间成线性比例关系,卸载之后位移完全消失,所以计算位移时可以使用叠加原理。
3.什么是实功和虚功?力在其自身引起的位移上作功称为实功。
当作功所需两个因素中的力与其相应的位移彼此独立无关时,这种功称为虚功。
实功恒为正值,虚功可以是正值、负值和零。
实功不能应用叠加原理。
虚功可以应用叠加原理。
4.什么是变形体体系的虚功原理?变形体体系的虚功原理可以表述为:若变形体体系在力系作用下处于平衡状态,由其它原因产生的微小连续位移满足约束条件,则力状态中的外力在位移状态中相应位移上所作的虚功恒等于力状态中的内力在位移状态中相应变形上所做的虚功。
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
建筑力学常见问题解答3 静定结构內力计算1.为保证结构物正常工作,结构应满足哪些要求?答:为保证结构物正常工作,结构应满足以下要求(1)强度要求:构件在外力作用下不会发生破坏,即构件抵抗破坏能力的要求,称为强度要求。
(2)刚度要求:构件在外力作用下所产生的变形不应超过一定的范围,即构件抵抗变形能力的要求,称为刚度要求。
(3)稳定性要求:构件在外力作用下,其原有平衡状态不能丧失,即构件抵抗丧失稳定能力的要求,称为稳定性要求。
只有满足上述各项要求,才能保证构件安全正常的工作,达到建筑结构安全使用的目的。
2.什么是变形体?变形体分为哪两类?答:各种物体受力后都会产生或大或小的变形,称为变形体。
根据变形的性质,变形可分为弹性变形和塑性变形。
所谓弹性变形,是指变形体在外力去掉后,能恢复到原来形状和尺寸的变形。
当外力去掉后,变形不能完全消失而留有残余,则消失的变形是弹性变形,残余的变形称为塑性变形或残余变形。
3.在建筑力学范围内,我们所研究的物体,一般都作哪些假设?答:在建筑力学范围内,对所研究的变形体作出如下的基本假设:(1)均匀连续假设:即认为整个物体内部是连续不断地充满着均匀的物质,且在各点处材料的性质完全相同。
(2)各向同性假设:即认为制成物体的材料沿着各个方向都具有相同的力学性质。
(3)弹性假设:即当作用于物体上的外力不超过某一限度时,将物体看成是完全弹性体。
总之,在建筑力学的范围内,我们研究的材料是均匀连续的,各向同性的弹性体,且杆件的变形是很小的。
4.什么是杆件?什么是等直杆?答:所谓杆件,是指长度远大于其他两个方向尺寸的变形体。
如房屋中的梁、柱、屋架中的各根杆等等。
杆件的形状和尺寸可由杆的横截面和轴线两个主要几何元素来描述。
横截面是指与杆长方向垂直的截面,而轴线是各横截面中心的连线。
横截面与杆轴线是互相垂直的。
轴线为直线、横截面相同的杆称为等直杆。
建筑力学主要研究等直杆。
图3-15.杆件变形的基本形式有哪几种?答:杆件变形的基本形式有下列四种:(1)轴向拉伸或压缩(图3-2a、b):在作用线与杆轴线重合的外力作用下,杆件将产生长度的改变(伸长或缩短)。
79第四章 变形体静力学基础从本章开始,讨论的研究对象是变形体,属于固体力学的范畴。
在前面各章中,我们将物体视为不发生变形的刚体,讨论其平衡问题。
事实上,物体在力的作用下,不但或多或少总有变形发生,而且还可能破坏。
因此,不仅要研究物体的受力,还要研究物体受力后的变形和破坏,以保证我们设计制造的产品或结构能实现预期的设计功能和正常工作。
要研究固体的变形和破坏,就不再能接受刚体假设,而必须将物体视为变形体。
作用在刚体上的力矢量可以认为是滑移矢,力偶矩矢是自由矢,是因为没有考虑物体的变形。
对于变形体,力矢量不再能沿其作用线滑移,力偶矩矢也不再能自由平移,因为它们的作用位置将影响物体的变形。
变形体静力学研究的是平衡状态下,变形体的受力和变形问题。
§4.1 变形体静力学的一般分析方法在第一章中,已经简要地介绍了以变形体为对象的静力学基本研究方法。
即需要进行下述三个方面的研究:1)力和平衡条件的研究。
2)变形几何协调条件的研究。
3)力与变形之关系的研究。
在开始讨论变形体静力学问题之前,先以一个例子进一步说明变形体静力学问题研究的一般方法。
例4.1 长2L 的木板由二个弹性常数为k 的弹簧支承,如图4.1所示。
弹簧的自由长度为h ,既能受压,也能受拉。
若有一人从板中央图4.1 例4-1图向一端缓慢行走,试求板与地面刚刚接触时,人所走过的距离x。
解:设人重为W,板重与人重相比较小,忽略不计。
讨论板与地面刚刚接触的临界状态,此时F=0;弹簧B受压缩短,弹簧A受拉伸长,板受力如图所示。
1) 力的平衡条件:由平衡方程有:∑F y=F B-F A-W=0 --(1)∑M A(F )=2aF B-(x+a)W=0 --(2)如果x已知,弹簧反力F A、F B即可求得。
现在x未知,只考虑力的平衡不能解决问题,需考虑变形。
板与弹簧相比刚硬得多,可作刚体处理,只考虑弹簧的变形。
2) 变形几何协调条件:弹簧变形如图所示,刚性板要保持为直板,则二弹簧变形后应满足的几何条件是:h B/h A=(L-a)/(L+a) (x>0) --(3)弹簧A、B的变形为δA=h A-h (图中假定为受拉伸长);--(4)及δB=h-h B(图中假定为受压缩短)。
第5章材料力学概述5.1 材料力学的任务工程结构或机械的各组成部分,如建筑物的梁和柱、机床的轴等,统称为构件(member)。
当工程结构或机械工作时,构件将受到载荷的作用。
例如,车床主轴受齿轮啮合力和切削力的作用,建筑物的梁受自身重力和其他物体重力的作用。
在外力作用下,构件具有抵抗破坏的能力,但这种能力是有限的。
同时,其尺寸和形状也将发生变化,称为变形(deformation)。
为保证工程结构或机械的正常工作,构件应有足够的能力负担起应当承受的载荷。
因此,构件必须满足以下要求:1.强度(strength)要求构件在载荷作用下必须不致破坏,即构件应有足够的抵抗破坏的能力。
2.刚度(stiffness)要求构件在载荷作用下的变形必须在许可的范围内,即构件应有足够的抵抗变形的能力。
3.稳定性(stability)要求构件在载荷作用下必须始终保持其原有的平衡形态,即构件应有足够的保持其原有平衡形态的能力。
设计构件时,必须满足上述所提到的强度、刚度和稳定性的要求。
在保证构件满足上述三方面要求的同时,要尽量选用适当的材料和减少材料的消耗量,以节约成本。
综上所述,材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件提供必要的理论基础和计算方法。
在材料力学中,为进行上述的分析和计算,不仅要研究构件的受力状态与变形之间的关系,还要了解材料在外力作用下表现出的变形和破坏等方面的性能,即材料的力学性能,又称机械性能(mechanical properties)。
而力学性能要由实验来测定。
所以实验分析和理论研究同是材料力学解决问题的方法。
5.2 变形固体的基本假设在静力学中,将研究的物体看成是刚体,即假定受力后物体的几何形状和尺寸是不变的。
实际上,刚体是不存在的,任何物体在外力作用下都将发生变形,而且当外力达到某一定值时,物体还会发生破坏。
在静力学中,构件的微小变形对静力平衡分析是一个次要的因素,故可不考虑;但在材料力学中,研究的是构件的强度、刚度和稳定性等问题,对于这些问题,即使变形很小,也是一个主要因素,必须加以考虑而不能忽略。