正弦波产生电路
- 格式:doc
- 大小:118.00 KB
- 文档页数:3
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
正弦波产生的原理正弦波产生的原理正弦波,在电子学中被广泛应用于信号传输、功率放大、调制解调、振荡等方面。
正弦波是最简单的周期波形之一,它能够被使用者方便地辨认和使用。
本文将从物理学和电子学角度探讨正弦波的产生原理,并介绍正弦波产生器的工作原理。
一、物理学角度正弦波可以由简谐振动产生。
简谐振动是一种物理学现象,指具有恒定周期的振动运动。
其核心思想是保持振动平稳,并返回其原始状态。
在简谐振动的情况下,系统中的受力完全受外界的引导,并且满足牛顿第二定律,即F = -kx。
其中F是受力,x是位移,k是一个常数,称为力常数。
当我们将质点拉到其平衡位置时,它会释放弹性能量。
这种能量会使质点开始振动,并且振幅的大小与初始位移的大小有关。
当振动发生时,质点尝试回到平衡位置,但惯性会使其超过一定位移,然后反向运动。
因此,振动周期可以定义为一个完整振动运动所需的时间。
如果我们假设时间和位移之间存在某种关系,那么我们将获得振动速度和加速度。
具体而言,加速度随时间和位移的改变而变化,而速度则随时间和位移的导数变化。
这些变化可以解释我们看到的波动周期性,即正弦波。
二、电子学角度在电子学中,正弦波可以通过使用RC、RL和LC电路产生。
RC、RL 和LC电路是包含电阻、电容和电感的电路。
对于这三种电路,通过施加恒定电压或电流,并考虑电阻、电感和电容的特性,我们可以产生不同类型的波形信号。
例如, RC电路可以产生锯齿波。
RL电路可以产生方波。
LC电路可以产生正弦波。
LC电路由电容器和电感器组成。
它们是一对共振电路,电容器存储电荷,而电感则储存能量。
在LC电路中,电容器和电感器的值可以调节以控制波形。
当电容器的极性相反时,电容器和电感会产生共振,并产生正弦波。
正弦波的产生也可以通过使用晶体管、二极管和其他电子元件组成的电路。
例如,晶体管和二极管可以结合形成多种产生正弦波的电路,例如Colpitts振荡器和Hartley振荡器。
波形产生电路实验报告一、实验目的本实验旨在探究波形产生电路的基本原理和实现方法,并通过实验操作,了解不同电路参数对波形产生的影响。
二、实验器材1.示波器2.函数信号发生器3.电阻、电容等元器件4.万用表三、实验原理1.基本原理:波形产生电路是指能够产生各种规定形状的周期性信号的电路。
其中,常见的信号有正弦波、方波、三角波等。
2.具体实现:通过改变元器件参数或改变连接方式,可以得到不同形状和频率的周期性信号。
例如,正弦波可以通过RC滤波电路产生;方波可以通过比较器电路和反相放大器电路产生;三角波可以通过积分放大器电路和反相放大器电路产生。
四、实验步骤及结果分析1.正弦波产生电路:(1)将函数信号发生器输出连接至RC滤波电路输入端;(2)调节函数信号发生器输出频率为1000Hz;(3)调节RC滤波电路中的R值和C值,观察示波器上输出的正弦波形状,并记录下所使用的元器件参数;(4)重复以上步骤,改变RC电路中的R和C值,观察输出波形的变化情况。
实验结果:通过调节RC电路中的R和C值,可以得到不同频率和振幅的正弦波。
2.方波产生电路:(1)将函数信号发生器输出连接至比较器电路输入端;(2)设置比较器电路阈值电压为0V;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的方波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变比较器电路阈值电压和函数信号发生器输出频率,观察输出波形的变化情况。
实验结果:通过调节比较器电路阈值电压和函数信号发生器输出频率,可以得到不同占空比和频率的方波。
3.三角波产生电路:(1)将函数信号发生器输出连接至积分放大器电路输入端;(2)将积分放大器电路输出连接至反相放大器输入端;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的三角波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变积分放大器电路中的R和C值,观察输出波形的变化情况。
波形发生电路原理波形发生电路是一种电子电路,用于产生特定形状和频率的电压或电流波形。
它通常由活动元件(例如晶体管、集成电路)和被动元件(例如电阻、电容)组成。
波形发生电路的原理基于信号的周期性。
一般来说,波形发生电路需要一个参考信号(例如时钟信号、振荡器信号),根据参考信号的周期和幅值来产生期望的波形。
具体的原理取决于所采用的电路拓扑和元件类型。
常见的波形发生电路包括正弦波发生器、方波发生器、矩形波发生器和三角波发生器等。
下面以正弦波发生器为例,介绍其工作原理:1. 整体思路:正弦波发生器的核心思想是利用反馈机制,将一个信号通过放大和滤波处理后再输入到自身,形成一个稳定的正弦波输出。
2. 振荡器电路:正弦波发生器的关键是振荡器电路,它负责产生频率恒定的振荡信号。
常见的振荡器电路包括LC振荡器、晶体振荡器、RC振荡器等。
以LC振荡器为例,它由电感(L)和电容(C)构成,并配合放大元件组成正反馈网络。
3. 放大器电路:振荡器电路生成的振荡信号较弱,需要经过放大器电路放大后才能得到理想的输出。
这里可以采用放大器电路,如共射放大电路或运算放大器等。
4. 滤波器电路:放大器电路放大信号后,仍然会存在一些杂散信号或高频成分。
因此,需要使用滤波器电路,如低通滤波器或带通滤波器,将不需要的信号滤除,只保留所需的正弦波信号。
通过以上的电路组合,正弦波发生器可以实现将一个参考信号转换成期望频率和幅度的正弦波输出。
实际设计时,需要根据具体要求选择合适的元件和电路拓扑,以实现所需的波形。
需要注意的是,不同类型的波形发生器可能有不同的电路原理和参数设置,本文所述仅作为示例,具体应用需根据实际情况进行调整和优化。
正弦波的工作原理
正弦波的工作原理是由一个振荡器产生的周期性变化信号。
振荡器通常由一个反馈电路组成,该电路将一部分信号输出并输入到振荡器的输入端,形成一个正反馈回路。
当振荡器启动时,初始输入信号经过放大并经过反馈电路返回到输入端。
由于正反馈的存在,输出信号越来越增强,振幅逐渐增加。
当振幅达到阈值时,反馈电路开始衰减,导致输出信号减小。
随着时间的推移,输出信号继续增加和减小,形成周期性的波形。
如果振荡器的频率稳定且恒定,输出信号将呈现出特定的频率和振幅。
这种周期性的波形就是正弦波。
正弦波具有许多应用,其中包括电力系统中的交流电信号、音频信号和无线通信中的调制信号。
正弦波的特点是周期性变化且具有相同的波形,这使得它在许多领域中都具有重要的作用。
1KHZ正弦波产生电路(文氏电桥振荡器)电路原理:TR1 结型场效应管在这里充当压控可变电阻,它与R3、R4一起构成文氏振荡器的负反馈回路,TR1的电阻越大,负反馈越强。
D2、D3、R8、R9、R10与IC(2/2)对输出振荡电压进行全波整流,在IC的1脚产生负的整流输出电压,经过D1与R7、C4滤波后获得一个负的直流电压,该电压与振荡输出的幅值差不多相等。
这个负电压加在TR1的G极,控制着TR1的D-S极之间的电阻值。
振荡输出幅度增大,TR1的G极电压就越负,TR1的D-S极间阻值变大,负反馈增强,使得振荡幅度减小。
通过以上的自动调节,使振荡幅度保持稳定,避免放大器进入非线性区域,从而获得良好的正弦波形。
文氏振荡器常见的一种稳幅措施是在负反馈回路中加入二极管(见下图):目的也是在输出幅度增大时使负反馈增强,但由于二极管的非线性,会使输出波形发生少许畸变。
而提供的这个电路的负反馈回路中不含有非线性元件,因而能获得高质量的正弦波形。
正弦波产生电路作者:佚名来源:爱华发布时间:2008-5-23 9:44:39 [收藏] [评论]一:产生正弦振荡的条件正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般是在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路四个部分。
我们在分析正弦振荡电路时,先要判断电路是否振荡。
方法是:(重点)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产生振荡;放大电路的结构是否合理,有无放大能力,静态工作是否合适;是否满足幅度条件,检验,若:(1)则不可能振荡;(2)振荡,但输出波形明显失真;(3)产生振荡。
波形【2 】产生电路请求:设计并制造用分立元件和集成运算放大器构成的能产生方波.三角波和正弦波的波形产生器.指标:输出频率分离为:102H Z.103H Z和104Hz;方波的输出电压峰峰值V PP≥20V(1)计划的提出计划一:1.由文氏桥振荡产生一个正弦波旌旗灯号.2.把文氏桥产生的正弦波经由过程一个过零比较器从而把正弦波转换成方波.3.把方波旌旗灯号经由过程一个积分器.转换成三角波.计划二:1.由滞回比较器和积分器构成方波三角波产生电路.2.然后经由过程低通滤波把三角波转换成正弦波旌旗灯号.计划三:1.由比较器和积分器构成方波三角波产生电路.2.用折线法把三角波转换成正弦波.(2)计划的比较与肯定计划一:文氏桥的振荡道理:正反馈RC收集与反馈歧路构成桥式反馈电路.当时,F=1/3.Au=3.然而,起振前提为Au略大于3.现实操作时, R1=R2.C1=C2.即f=f假如要知足振荡前提R4/R3=2时,起振很慢.假如R4/R3大于2时,正弦波旌旗灯号顶部掉真.调试艰苦.RC串.并联选频电路的幅频特征不对称,且选择性较差.是以废弃计划一.计划二:把滞回比较器和积分比较器首尾相接形成正反馈闭环体系,就构成三角波产生器和方波产生器.比较器输出的方波经积分可得到三角波.三角波又触发比较器主动翻转形成方波,如许即可构成三角波和方波产生器.经由过程低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化规模很小的情形下应用.然而,指标请求输出频率分离为102H Z.103H Z和104Hz.是以不知足应用低通滤波的前提.废弃计划二.计划三:方波.三角波产生器道理如同计划二.比较三角波和正弦波的波形可以发明,在正弦波从零逐渐增大到峰值的进程中,与三角波的差别越来越大;即零邻近的差别最小,峰值邻近差别最大.是以,依据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形.并且折线法不受频率规模的限制.分解以上三种计划的优缺陷,最终选择计划三来完成本次课程设计.(3)工作道理:1.方波.三角波产生电路道理该电路由滞回比较器和积分器构成.图中滞回比较器的输出电压u01=Uz ±,它的输入电压就是积分电路的输出电压u02.则U1A 的同相输入端的电位:101202up=1212R u R u R R R R +++,令up=un=0,则阀值电压:1022R Ut u Uz R ±==±;积分电路的输入电压是滞回比较器的输出电压u01,并且不是+Uz,就是-Uz,所以输出电压的表达式为:01(10)0202(0)82u t t u u t R C -=-+;设初态时u01正好从-Uz 跃变到+Uz,则:(10)0282Uz t t u Ut R C -=-+,积分电路反向积分,u02随时光的增加线性降低,一旦u02=-Ut,在稍减小,u01将从+Uz 跃变为-Uz,使式变为:(21)0282Uz t t u Ut R C -=-,积分电路正向积分,u02随时光增加线性增大,一旦u02=+Ut,再稍微增大,uo1将从-Uz 跃变为+Uz,回到初态.电路反复上述进程,因而产生自激振荡.由上剖析,u01是方波,且占空比为50%,幅值为Uz ±;u02是三角波,幅值为Ut ±.取正向积分进程,正向积分的肇端值-Ut,终了值+Ut,积分时光为T/2,代入(21)0282Uz t t u Ut R C -=-,得282Uz T Ut Ut R C +=-,式中12R Ut Uz R =,整顿可得:24812R f R R C =. 2.正弦波产生电路道理折线法是用多段直线逼近正弦波的一种办法.其根本思绪是将三角波分成若干段,分离按不同比例衰减,所获得的波形就近似为正弦波.下丹青出了波形的1/4周期,用四段折线逼近正弦波的情形.图中UImax 为输入三角波电压幅值.依据上述思绪,可以采用增益主动调节的运算电路实现.应用二极管开关和电阻构成反馈通路,跟着输入电压的数值不同而转变电路的增益.在ωt=0°~25°段,输出的“正弦波”用此段三角波近似(二者重合),是以,此段放大电路的电压增益为1.因为ωt=25°时,标准正弦波的值为sin25°≈0.423,这里uO=uI=25/90UImax≈0.278UImax ,所以,在ωt=90°时,输出的“正弦波”的值应为uO=0.278/0.423UImax≈0.657UImax .在ωt=50°时,输入三角波的值为uI=50/90UImax≈0.556UImax,请求输出电压uO=0.657UImax×sin50°≈0.503UImax,可得在25°~50°段,电路的增益应为ΔuO/ΔuI=(0.503−0.278)/(0.556−0.278)=0.809.在ωt=70°时,输入三角波的值为uI=70/90UImax≈0.778UImax,请求输出电压uO=0.657UImax×sin70°≈0.617UImax,可得在50°~70°段,电路的增益应为ΔuO/ΔuI=(0617−0.503)/(0.778−0.556)=0.514.在ωt=90°时,输入三角波的值为uI=UImax,请求输出电压uO≈0.657UImax,可得在70°~90°段,电路的增益应为ΔuO/ΔuI=(0.657−0.617)/(1−0.778)=0.180. 下页图所示是实现上述思绪的反相放大电路.图中二极管D3~D5及响应的电阻用于调节输出电压u03>0时的增益,二极管D6~D8及响应的电阻用于调节输出电压u03<0时的增益.电路的工作道理剖析如下.当输入电压uI <0.278UImax时,增益为1,请求图中所有二极管均不导通,所以反馈电阻Rf=R11.据此可以选定Rf=R11=R6的阻值均为1kΩ.当ωt=25°~50°时,电压增益为0.809,请求D1导通,则应知足:13//110.8096R R R =,解出R13=4.236k Ω.因为在ωt=25°这一点,D1开端导通,所以,此时二极管D1正极电位应等于二极管的阈值电压Vth .由图可得:03141314u VEE Vth VEE R R R --=+,式中u03是ωt=25°时输出电压的值,即为0.278UImax .取UImax=10V ,Uth=0.7V ,则有100.278(15)14(15)0.74.23614R R ⨯--+-=+解出R14=31.97k Ω.电阻取标准值,则R13=4.22k Ω,R14=31.6k Ω.其余剖析如上.须要解释,为使各二极管可以或许工作在开关状况,对输入三角波的幅度有必定的请求,假如输入三角波的幅渡过小,输出电压的值不足以使各二极管依次导通,电路将无法正常工作,所以上述电路采用比列可调节的比例运算电路(U3A 模块)将输出的三角波的幅值调至10V ±.(4)元件选择:①选择集成运算放大器因为方波前后沿与用作开关的器件U1A 的转换速度SR 有关,是以当输出方波的反复频率较高时,集成运算放大器A1 应选用高速运算放大器.集成运算放大器U2B 的选择:积分运算电路的积分误差除了与积分电容的质量有关外,重要事集成放大器参数非幻想所致.是以为了减小积分误差,应选用输入掉调参数(VI0.Ii0.△Vi0/△T.△Ii0/△T )小,开环增益高.输入电阻高,开环带较宽的运算放大器.反比拟例运算放大器请求放大不掉真.是以选择信噪比低,转换速度SR 高的运算放大器.经由芯片材料的查询,TL082 双运算放大转换速度SR=14V/us.相符各项指标请求.②选择稳压二极管稳压二极管Dz 的感化是限制和肯定方波的幅度,是以要依据设计所请求的方波幅度来选稳压管电压Dz.为了得到对称的方波输出,平日应选用高精度的双向稳压管③电阻为1/4W的金属薄膜电阻,电位器为周详电位器.④电容为通俗瓷片电容与电解电容.(5)仿真与调试按如下电路图衔接衔接完成后仿真,仿真组图如下仿真完成后开端焊接电路,焊接完成后开端调试,调试组图如下:.(5)总结该设计完整知足指标请求.第一:下限频率较高:70hz.原因剖析:电位器最大阻值和相干电阻阻值的参数不准确.改良:用阻值周详电位器和电阻.第二:正弦波在10000HZ时,波形已变坏.原因剖析:折线法中各电阻阻值不精准,TL082CD不知足参数请求.改良:采用精准电阻,用NE5532代替TL082CD..(6)心得领会“掉败乃成功之母”.从始时的调试到最后完成课程设计阅历了多次掉败.不能半途而废,永不废弃的精力在本身选择的道路上保持走下去!在此次设计进程中,表现出本身单独设计的才能以及分解应用常识的才能,领会了学乃至用.并且从设计中发明本身日常平凡进修的不足和薄弱环节,从而加以填补.时,此次模仿电子课程设计也让我熟悉到以前所学常识的不深刻,基本不够扎实,乃至于此次在设计电路图的时刻,须要反复翻阅教材的常识.我深深知道了常识连贯应用的重要性.(7)参考书目:1.童诗白.华成英,《模仿电子技巧基本》2.吴慎山,《电子技巧基本试验》3.周誉昌.蒋力立,《电工电子技巧试验》4.广东工业大学试验教授教养部,《Multisim电路与电子技巧仿真试验》(8)元件清单。
电路原理:
TR1 结型场效应管在这里充当压控可变电阻,它与R3、R4一起构成文氏振荡器的负反馈回路,TR1的电阻越大,负反馈越强。
D2、D3、R8、R9、R10与 IC(2/2)对输出振荡电压进行全波整流,在IC的1脚产生负的整流输出电压,经过D1
与R7、C4滤波后获得一个负的直流电压,该电压与振荡输出的幅值差不多相等。
这个负电压加在TR1的G极,控制着TR1的D-S极之间的电阻值。
振荡输出幅度增大,TR1的G极电压就越负,TR1的D-S极间阻值变大,负反馈增强,使得振荡幅度减小。
通过以上的自动调节,使振荡幅度保持稳定,避免放大器进入非线性区域,从而获得良好的正弦波形。
文氏振荡器常见的一种稳幅措施是在负反馈回路中加入二极管(见下图):
目的也是在输出幅度增大时使负反馈增强,但由于二极管的非线性,会使输出波形发生少许畸变。
而提供的这个电路的负反馈回路中不含有非线性元件,因而能获得高质量的正弦波形。