可生化处理的废水水质要求
- 格式:docx
- 大小:22.81 KB
- 文档页数:4
废水的可生化性一、废水可生化性废水生物处理是以废水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解、废水得以净化。
显然,如果废水中的污染物不能被微生物降解,生物处理是无效的。
如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。
但是当废水中突然进入有毒物质,超过微生物的忍受限度时,将会对微生物产生抑制或毒害作用,使系统的运行遭到严重破坏。
因此对废水成分的分析以及判断废水能否采用生物处理是设计废水生物处理工程的前提。
所谓废水可生化性的实质是指废水中所含的污染物通过微生物的生命活动来改变污染物的化学结构,从而改变污染物的化学和物理性能所能达到的程度。
研究污染物可生化性的目的在于了解污染物质的分子结构能否在生物作用下分解到环境所允许的结构形态,以及是否有足够快的分解速度。
所以对废水进行可生化性研究只研究可否采用生物处理,并不研究分解成什么产物,即使有机污染物被生物污泥吸附而去除也是可以的。
因为在停留时间较短的处理设备中,某些物质来不及被分解。
允许其随污泥进入消化池逐步分解。
事实上,生物处理并不要求将有机物全部分解成CO2、H2O和硝酸盐等,而只要求将水中污染物去除到环境所允许的程度。
多年来,国内外在各类有机物生物分解性能的研究方面积累了大量的资料,以化工废水中常见的有机物为例,各种物质的可降解性可归纳于表--【各类有机物的可降解性及特例】。
在分析污染物的可生化性时,还应注意以下几点。
①一些有机物在低浓度时毒性较小,可以被微生物所降解。
但在浓度较高时,则表现出对微生物的强烈毒性,常见的酚、氰、苯等物质即是如此。
如酚浓度在1%时是一种良好的杀菌剂,但在300mg/L以下,则可被经过驯化的微生物所降解。
②废水中常含有多种污染物,这些污染物在废水中混合后可能出现复合、聚合等现象,从而增大其抗降解性。
有毒物质之间的混合往往会增大毒性作用,因此,对水质成分复杂的废水不能简单地以某种化合物的存在来判断废水生化处理的难易程度。
实验八废水可生化性实验一、实验目的1。
了解废水可生化性判别的原理和方法。
2.掌握废水可生化性生化呼吸线法测定过程。
3.掌握废水可生化性测定的应用。
二.实验原理及方案2.1实验原理1)废水生化处理的机理及要素:可生化废水生化处理主要是通过活性污泥微生物的新陈代谢作用实现的。
活性污泥中微生物是由细菌、真菌、原生动物、后生动物等组成的生态系。
细菌是这个生态系中最主要的组成部分。
利用微生物对废水中有机、有毒物质进行吸附和氧化分解。
其过程有物理化学作用和生物化学作用。
污水中有机物向活性污泥表面附聚。
由于活性污泥为松软的絮状体,表面积大,有较强的吸附力,所以活性污泥能对有机物或有毒物质进行吸附,其中可溶性有机物直接被细菌所吸附,而不溶性有机物通过细菌分泌的酸作用,将其降解为可溶性有机物后,再被细菌吸收,吸收到细菌体内的有机物,在有氧的条件下,将其中一部分有机物进行分解代谢,即氧化分解,以获得合成新细胞所需要的能量,并最终形成二氧化碳和水等稳定物质,再通过凝聚沉淀分离,使污水净化无害。
2)生化处理过程中保证微生物生命的基本要素:a)水温保持20~30℃最为适宜;b)pH值7~9:活性污泥中微生物适宜中性或偏碱性环境中;c)营养物质与活性污泥的结构、处理废水中的有机杂质等密切相关。
除以生物需氧量BOD表示的碳源外,还需要N、P和其它微量元素。
2.2实验方案1)本实验是通过测定活性污泥的呼吸速度来考察有机废水生物处理的可能性。
生物对氧的消耗称之为呼吸,通过连续测定活性污泥微生物的呼吸,即连续测定水样中溶解氧的变化,来研究活性污泥进行生化反应的可能性。
当活性污泥处于内呼吸阶段(微生物取得生命活动的能量,仅仅利用体内贮藏的物质),呼吸速度是恒定的,即耗氧量相对稳定,所以耗氧量与时间成一直线关系,此直线称为内呼吸线。
当活性污泥接触含有有机物或污水后,由于分解水中的有机物,其耗氧速度要加快,耗氧量随时间的变化是一条特征曲线,称之为生化呼吸曲线。
污废水的性质与水质指标【格林环保污水处理知识讲堂】(二)污废水的化学性质及指标污废水中的污染物质,按化学性质可分为无机物与有机物;按存在的形态可分为悬浮状态与溶解状态1、无机化学性质及指标酸碱度;氮、磷;硫酸盐与硫化物;氯化物;非重金属无机有毒物质;重金属离子。
1、无机化学性质及指标1)酸碱度(酸碱污染物):pH值是衡量水中酸碱度的一项重要指标。
(补充pH值测定仿真)主要是工业废水排放的酸碱以及酸雨带来的。
危害:破坏自然缓冲作用,抑制微生物生长,防碍水体自净,使水质恶化、土壤酸化或盐碱化。
各种生物都有自己的pH值使用范围,超过该范围,就会影响其生存。
2)氮:有机氮总氮氨氮凯氏氮※无机氮亚硝酸盐氮硝酸盐氮氮是植物和微生物的主要营养物质,当污水排入受纳水体,使水中的氮浓度超标,就会引起受纳水体的富营养化,促进各种水生生物(主要是藻类)的活性,刺激它们异常繁殖,造成一系列的危害。
氨氮在污废水中存在形式有游离氨与离子状态氨盐两种。
故氨氮等于两者之和。
污废水进行生物处理时,氨氮不仅向微生物提供营养,而且对污废水的pH起缓冲作用。
但氨氮过高时,如超过1600mgL(以N计),对微生物的生活活动产生抑制作用。
(蒸馏滴定法测定氨氮仿真)氮是一项重要的水质指标。
3)磷及其化合物污废水中含磷化物可分为有机磷和无机磷两类.总磷是污水中各种有机磷和无机磷的总和※。
p476 有机磷的存在形式主要有:葡萄糖-6-磷酸,2-磷酸-甘油酸及磷肌酸等;无机磷都以磷酸盐形式存在,包括正磷酸盐、偏磷酸盐、磷酸氢盐、磷酸二氢盐等。
生活污水中有机磷含量约为3mg/L,无机磷含量约为7mg/L。
磷也是植物和微生物的主要营养物质,当污水排入受纳水体,使水中的磷浓度超标,会引起受纳水体的富营养化。
磷是一项重要的水质指标。
4)硫酸盐与硫化物污废水中的硫酸盐用硫酸根表示。
生活污水的硫酸盐主要来源于人类排泄物;工业废水如洗矿、化工、制药、造纸和发酵等工业废水,含有较高硫酸盐,浓度可达1500~7500mg/L 污废水中的,在缺氧的条件下,由于硫酸盐还原菌、反硫化菌的作用,被脱硫、还原成硫化氢。
污水处理厂进水标准污水处理厂是城市环境保护的重要设施,它的进水标准直接关系到处理效果和环境保护的成效。
污水处理厂进水标准是指进入污水处理厂的废水应当符合的一系列指标要求,包括水质、水量、水温等方面的要求。
在我国,污水处理厂进水标准是由国家环保部门颁布的环境标准来规定的,其目的是保护水环境,减少对自然水体的污染,保障人民群众的饮用水安全。
首先,污水处理厂进水标准对废水的水质要求非常严格。
一般来说,废水中的悬浮物、化学需氧量(COD)、生化需氧量(BOD)、氨氮、总磷、总氮等指标都必须符合国家规定的排放标准。
这些指标的合格与否直接影响到污水处理厂的处理效果,如果废水中的这些指标超标,就会给处理厂的设备和工艺带来不良影响,甚至导致处理厂无法正常运行。
因此,严格控制进水水质是保证污水处理厂正常运行的关键。
其次,污水处理厂进水标准还对废水的水量和水温有一定要求。
废水的水量要求是指进入处理厂的废水流量不能超过处理厂设计能力,否则会导致处理设备超负荷运行,影响处理效果。
同时,废水的水温也要求在一定范围内,过高或过低的水温都会影响处理设备和微生物的正常运行,从而影响处理效果。
除了水质、水量和水温外,污水处理厂进水标准还可能对废水的pH值、悬浮物的粒径、有机物的种类等进行限制。
这些限制的设定是基于对处理设备和工艺的保护,同时也是为了保护接收水体的水质,防止废水对水环境造成二次污染。
总的来说,污水处理厂进水标准是保障污水处理厂正常运行和水环境保护的重要依据,只有严格执行这些标准,才能保证废水得到有效处理,水环境得到有效保护。
因此,各地污水处理厂的管理者和操作人员都应当严格执行国家规定的进水标准,确保污水处理工作的顺利进行,为城市环境保护做出应有的贡献。
废水的可生化性一、废水可生化性废水生物处理是以废水中所含污染物作为营养源,利用微生物的代谢作用使污染物被降解、废水得以净化。
显然,如果废水中的污染物不能被微生物降解,生物处理是无效的。
如果废水中的污染物可被微生物降解,则在设计状态下废水可获得良好的处理效果。
但是当废水中突然进入有毒物质,超过微生物的忍受限度时,将会对微生物产生抑制或毒害作用,使系统的运行遭到严重破坏。
因此对废水成分的分析以及判断废水能否采用生物处理是设计废水生物处理工程的前提。
所谓废水可生化性的实质是指废水中所含的污染物通过微生物的生命活动来改变污染物的化学结构,从而改变污染物的化学和物理性能所能达到的程度。
研究污染物可生化性的目的在于了解污染物质的分子结构能否在生物作用下分解到环境所允许的结构形态,以及是否有足够快的分解速度。
所以对废水进行可生化性研究只研究可否采用生物处理,并不研究分解成什么产物,即使有机污染物被生物污泥吸附而去除也是可以的。
因为在停留时间较短的处理设备中,某些物质来不及被分解。
允许其随污泥进入消化池逐步分解。
事实上,生物处理并不要求将有机物全部分解成CO2、H2O和硝酸盐等,而只要求将水中污染物去除到环境所允许的程度。
多年来,国内外在各类有机物生物分解性能的研究方面积累了大量的资料,以化工废水中常见的有机物为例,各种物质的可降解性可归纳于表--【各类有机物的可降解性及特例】。
在分析污染物的可生化性时,还应注意以下几点。
①一些有机物在低浓度时毒性较小,可以被微生物所降解。
但在浓度较高时,则表现出对微生物的强烈毒性,常见的酚、氰、苯等物质即是如此。
如酚浓度在1%时是一种良好的杀菌剂,但在300mg/L以下,则可被经过驯化的微生物所降解。
②废水中常含有多种污染物,这些污染物在废水中混合后可能出现复合、聚合等现象,从而增大其抗降解性。
有毒物质之间的混合往往会增大毒性作用,因此,对水质成分复杂的废水不能简单地以某种化合物的存在来判断废水生化处理的难易程度。
废水的生化处理方法一、专业术语1.化学需氧量(COD cr)化学需氧量是指在规定条件下用化学氧化剂(K2Cr2O7或KMnO4)氧化分解水中有机物时,与消耗的氧化剂当量相等的氧量(mg/L)。
当氧化剂用重铬酸钾(K2Cr2O7)时,由于重铬酸钾氧化作用很强,所以能够较完全地氧化水中大部分有机物(除苯、甲苯等芳香烃类化合物以外)和无机性还原物质(但不包括硝化所需的氧量),此时化学需氧量用COD Cr,或COD表示;如采用高锰酸钾(KMnO4)作为氧化剂时,则称为高锰酸指数,写作COD Mn。
与BOD5相比,COD Cr能够在较短的时间内(规定为2小时)较精确地测出废水中耗氧物质的含量,不受水质限制,因此得到了广泛的应用。
缺点是不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧,造成一定误差。
如果废水中各种成分相对稳定,那么COD与BOD之间应有一定的比例关系。
一般说来,COD Cr>BOD20>BOD5>COD Mn,其中BOD5/COD Cr可作为废水是否适宜生化法处理的一个衡量指标。
比值越大,该废水越容易被生化处理。
—般认为BOD5/COD Cr大于0.3的废水才适宜采用生化处理。
2.五日生化需氧量(BOD5)生化需氧量(BOD)是表示在有氧条件下,温度为20℃时,由于微生物(主要是细菌)的活动,使单位体积污水中可降解的有机物氧化达到稳定状态时所需氧的量(mg/L)。
BOD的值越高,表示需氧有机物越多。
20℃时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成在第一阶段的氧化分解过程(完成过程的99%)。
就是说,测定第一阶段的生化需氧量,需要20天,这在实际工作中是难以做到的。
为此又规定一个标准时间,一般以5日作为测定BOD的标准时间,因而称之为五日生化需氧量,以BOD5表示之。
BOD5约为BOD20的70%左右。
3.氨氮(NH3-N)氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。
城市污水再生利用工业用水水质标准征求意见稿目次1 范围 (1)2规范性引用文件 (1)3术语和定义 (1)4水质指标 (3)5采样与监测 (3)6安全利用 (5)前言本标准按照GB/T 1.1-2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。
本标准代替GB/T 19923-2005《城市污水再生利用工业用水水质》,与GB/T 19923-2005相比,除编辑性修改外主要技术变化如下:——细化了标准适用范围,强调了作为工业用水水源的基本属性;——删除了规范性引用文件中GB/T 6276.1、GB/T 6920、GB/T 7477、GB/T 7478、GB/T 7488、GB/T 7494、GB/T 11896、GB/T 11899、GB/T 11903、GB/T 11911、GB/T 11914、GB/T 13200、GB/T 16633、GB/T 16488,增加了GB/T 12997、GB/T 12998、GB/T 12999、HJ 505、GB/T 22597、HJ 636、GB/T 39302、HJ 637、GB/T 12149、HJ 347、GB/T 15451的引用(见第2章,2005年版的第2章);——增加了“循环冷却水补充水”、“间冷开式循环冷却水系统”、“直流冷却水”、“洗涤用水”、“除尘水”、“冲渣(灰)水”、“锅炉补给水”、“工艺用水”、“产品用水”的术语和定义,调整了“业用水水源”的术语和定义(见第3章,2005年版的第3章);——将水质指标调整为基本控制项目和选择性控制项目,简化了水质分类(见表1、表2,2005年版的表1);——修改了悬浮物、浊度、生化需氧量、化学需氧量、铁、锰、氨氮、总磷、余氯、粪大肠菌群等部分指标值(见第4章表1、表2,2005年版的第4章表1);——增加了嗅、总氮、氟化物、硫化物的指标限值规定(见表1、表2,2005年版的第4章表1);——增加了“采样及保管”(见5.1节);——修改了水质指标的测定方法和执行标准(见5.2节,2005年版的7.3节);——增加了监管部门的检测频次,修改了运营单位的检测频次(见5.3节,2005年版的7.2节);——将“安全利用”独立成章,补充了再生水使用原则,完善了关于标识的要求(见6.2、6.3节,2005年版的第6章)。
可生化处理的废水的水质要求一、温度对大多数细菌而言,其适宜温度范围为20-40℃,温度低于10℃或髙于40℃,处理效果明显下降。
因此,对于高温废水必须有降温措施;在北方地区,冬季应注意保温,有条件的,可将建筑物建于室内或采用余热加温。
二、溶解氧为了使好氧微生物正常代谢和使沉淀分离性能良好,一般要求溶解氧维持在0.5-2.0mg/L。
厌氧微生物的生长不需要氧,在有氧的情况下,生长反而受到抑制,甚至会死亡。
三、PH值微生物的生长都有一个最佳PH值范围,对于好氧生物处理,适宜的值为6-9。
纺织印染废水大部分PH值较高,一般为9-12,细菌经驯化后对酸碱度的适应范围可印染废水处理进一步提高。
但若PH值超过11,处理效果会显著下降。
对厌氧生物处理,PH值必须控制在6.5-8,因为甲烷细菌生长最佳值范围较窄,PH值低于6或高于8时,对甲烷细菌都有不利影响。
四、BOD5/CODCr传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。
目前普遍认为,BOD/COD<0.3的废水属于难生物降解废水,在进行必要的预处理之前不易采用好氧生物处理;而BOD/COD>0.3的废水属于可生物降解废水。
该比值越高,表明废水采用好氧生物处理所达到的效果越好。
在考虑上述BOD5和CODCr测试中存在的问题的基础上,还要注意以下几个问题:(1)某些废水中含有有机悬浮物容易被重铬酸钾氧化,以CODCr的形式表现出来,但BOD5数值却较低BOD5与CODCr比值较小。
而实际上生物处理的效果却不一定差。
(2)重铬酸钾的氧化能力虽然很强,但如吡啶类却不能被其氧化,所测得的CODCr较低,但却可以和微生物作用,以BOD5的形式表现为生物需氧量,因而对BOD5/CODCr比值影响很大。
五、盐度多数人认为, 高盐环境对生化处理有抑制作用,在高盐度环境下, 微生物代谢酶活性受阻, 生物增长缓慢, 产率系数低。
可生化处理的废水的水质要求
一、温度
对大多数细菌而言,其适宜温度范围为20-40℃,温度低于10℃或髙于40℃,处理效果明显下降。
因此,对于高温废水必须有降温措施;在北方地区,冬季应注意保温,有条件的,可将建筑物建于室内或采用余热加温。
二、溶解氧
为了使好氧微生物正常代谢和使沉淀分离性能良好,一般要求溶解氧维持
在0.5-2.0mg/L。
厌氧微生物的生长不需要氧,在有氧的情况下,生长反而受到抑制,甚至会死亡。
三、PH值
微生物的生长都有一个最佳PH值范围,对于好氧生物处理,适宜的值为6-9。
纺织印染废水大部分PH值较高,一般为9-12,细菌经驯化后对酸碱度的适应范围可印染废水处理进一步提高。
但若PH值超过11,处理效果会显著下降。
对厌氧生物处理,PH值必须控制在6.5-8,因为甲烷细菌生长最佳值范围较窄,PH
值低于6或高于8时,对甲烷细菌都有不利影响。
四、BOD5/COD
Cr
传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微
生物可降解性。
目前普遍认为,BOD/COD<0.3的废水属于难生物降解废水,在进行必要的预处理之前不易采用好氧生物处理;而BOD/COD>0.3的废水属于可生
物降解废水。
该比值越高,表明废水采用好氧生物处理所达到的效果越好。
在考虑上述BOD5和CODCr测试中存在的问题的基础上,还要注意以下几个问题:
(1)某些废水中含有有机悬浮物容易被重铬酸钾氧化,以CODCr的形式表现出来,但BOD5数值却较低BOD5与CODCr比值较小。
而实际上生物处理的效果却不一定差。
(2)重铬酸钾的氧化能力虽然很强,但如吡啶类却不能被其氧化,所测得的CODCr较低,但却可以和微生物作用,以BOD5的形式表现为生物需氧量,因而对BOD5/CODCr比值影响很大。
五、盐度
多数人认为, 高盐环境对生化处理有抑制作用,在高盐度环境下, 微生物
代谢酶活性受阻, 生物增长缓慢, 产率系数低。
Ingram通过对杆菌的研究发现, 当NaCl浓度>10g/L时, 微生物呼吸速率降低。
Lawton GW的研究表明, 当NaCl 浓度>20g/L时, 会导致滴滤池BOD去除率降低, 在此浓度下, 采用活性污泥法BOD去除率降低, 同时污泥的絮凝性变坏, 出水SS升高, 硝化细菌受到抑制, 以含高浓度卤代有机物废水进行的实验表明, BOD的去除率随着盐浓度的增加
而降低。
Davis.E.M报告, 使用活性污泥系统, 对含盐浓度高达12%的废水进行中试处理实验, 实验结果证明, 废水中的TOC去除率仅为28%~43%, 而且试验运行困难。
但是也有一些学者研究竟得出截然相反的结论。
他们认为, 高盐度不会降
低废水生物处理的有机物去除率, 适当的含盐量可以提高污泥絮凝性, 还对生
物处理系统起到稳定作用。
Woolard 等把嗜盐微生物在序批式生物膜反应器
( SBR) 中培养, 处理含盐量 1%~15%的合成含酚废水, 即使含盐量高达
15%(150g/L) ,对酚的去除率依然在 99%左右。
M.F.Hamoda 等采用活性污泥法
处理含盐废水( 10g/L 和 30g/L) 的研究发现, 在高盐度环境中生物活性和有
机物去除率均有提高, TOC 去除率在 NaCl 为 0g/L、10g/L、30g/L 时分别为96.3%、98.9%、99.2%, 他们认为在高盐度环境中,微生物生长没有受到抑制, 相反促进了一些嗜盐细菌的生长, 使反应器内微生物浓度增加, 降低了有机负荷, 也提高了污泥的絮凝性。
由此可见, 嗜盐微生物比普通微生物对高盐度环境有
更强的适应能力, 以嗜盐微生物为主的生物处理系统更具稳定性。
1、盐度对好氧生物系统的影响
尽管研究发现,当废水中的氯离子浓度大于5~8 g/L 时,就会对传统的好氧生物处理系统产生抑制作用。
但实践证明,活性污泥只要经过适当驯化,利用微生物处理高盐分废水是可能的。
通过逐步提高有机负荷和盐浓度的方法,可驯化出耐盐浓度3%~5% (甚至更高)的污泥。
一般情况下,盐度越高,污泥驯化的时间越长,经驯化的菌群发生变化,菌胶团以嗜盐菌为主。
研究发现,盐浓度的变化对生物处理系统存在影响,高含盐有机废水不利于生物处理,盐浓度的波动对生物处理影响更大。
文湘华等认为,盐浓度的变化过大,会导致细胞组分的分解,在延时曝气工艺中,盐度的急剧增高,导致BOD去除率降低;反之,当进水由含盐水换成一般废水时,曝气池中污泥浓度降低。
降低含盐浓度比增加含盐浓度,对微生物的影响更大。
由此可见,高含盐废水的生物处理,盐浓度的大幅度变化,会影响高含盐废水生物处理系统的正常运行。
盐浓度的改变,直接影响渗透压的变化,渗透压的急剧变化,会直接导致细胞活性降低,甚至死亡。
但是,也有一些学者得出了截然相反的结论。
他们认为,高盐度不会降低废水生物处理的有机物去除率,适当的含盐量可以提高污泥絮凝性,还对生物处理系统起到稳定作用。
例如Campos等发现,盐度对污泥的沉降性能影响很轻微,并不会对污泥的物理性质产生长久的影响。
出现这些分歧,可能是由于盐分对污泥沉降性能的影响,不仅取决于盐分的浓度,还可能取决于废水中所含盐分的种类。
盐分可以增加混合液的重量,这不利于污泥的沉降,同时盐分还可以增加电荷强度,这有利于污泥的沉降。
2、盐度对厌氧生物系统的影响
大量含盐有机废水,采用厌氧处理更具有实用性。
经过连续驯化的厌氧污泥可以适应更高的盐度,对盐度的抗冲击性更强。
厌氧条件下,甲烷菌活性会受到
盐度的抑制,特别是当向厌氧反应器投加NaOH和Na
2CO
3
调节pH值时,钠离子的
影响就不容忽视。
海产品加工的废水中,含高浓度的离子主要是Na+、Cl- 和SO
2
-4 。
Gumersindo Ferjoo利用UASB研究了VFA的甲烷化反应,当钠离子质量浓度从
3g/L 增加到16g/L,硝化作用减少50% ,厌氧污泥显示了较高的耐盐性。
经过40d 的硝化反应,当钠离子质量浓度为21.5g/L时,甲烷菌活性增加了45%。
当阴阳离
子同时存在时,产生拮抗作用,从而影响了钠离子的毒性。
所以,废水中含海水盐度较含钠盐度更好处理。